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Abstract—Recently, due to the dangerous spread of COVID-

19, there has been strong competition among computer science 

researchers within the scientific research community to employ 

deep learning for the development of intelligent medical systems 

that diagnose this illness. Enhancing accuracy is considered the 

most important objective, and augmentation techniques are used 

in this context. This study addresses two main issues related to 

applying augmentation on X-ray and CT-scan images: losing the 

positional information of augmented medical images and the 

integration of extracted features while scanning them. The use of 

the Vision Transformer Structure, supported by a Position-Aware 

Embedding (PAE) method, is proposed to deal with these issues. 

Moreover, in this study, a student–teacher-based approach was 

adopted to enable considerable resistance against training on a 

small batch of training images. Due to the sensitivity of medical 

data, preserving the privacy of patients was taken into account by 

using a pseudonym-based anonymity approach. After evaluations 

based on accuracy, precision, recall, and specificity metrics, the 

results showed that the proposed system has a high-level capability 

to predict class images (X-ray or CT-scan) as well as considerable 

resistance against training on small medical images. 

Keywords—COVID-19; medical images; augmentation; vision 

transformer; training data ratio 

I. INTRODUCTION 

The medical sector is considered the most important sector 
in people’s lives because staying healthy leads to higher work 
productivity and increased happiness. Therefore, governments 
always rank fighting epidemics at the top of their priorities. In 
2019, strange medical signals were observed in some patients in 
Wuhan, China. These signals showed that the patients had been 
infected with a serious new strain of coronavirus disease (known 
as COVID-19) [1, 2]. Subsequently, various parts of the world 
experienced COVID-19 outbreaks, prompting the World Health 
Organization (WHO) to inform the public that the COVID-19 
crisis had become a global pandemic after the disease was found 
to have exceptional spreadability. Governments all over the 
world colluded to fight against the dangerous spread of COVID-
19 and its manifold consequences that came in different forms 
(losses of human life, economic recessions, faltering medical 
health systems, and necessary lifestyle changes). Most 
scientists, physicians, and politicians have agreed that the best 
way to stop the spread of COVID-19 is early diagnosis and 
detection and adherence to preventive measures such as social 
distancing [3]. Fig. 1 summarises and arranges the historical 
events outlined above. 

 

Fig. 1. Historical events resulting from the outbreak of COVID-19. 

A. Motivation 

The traditional ways of detecting COVID-19 are antibody 
testing and Quantitative Reverse Transcription Polymerase 
Chain Reaction (QRT-PCR), both of which have some issues. 
Antibody testing generates high false-negative rates when it 
comes to dealing with early active infections [4, 5]. With QRT-
PCR, generating results is time-consuming; thus, it is unsuitable 
when working under severe time constraints. Relying on 
medical image analysis and making diagnoses via the use of CT 
images has proven effective in the early detection of COVID-
19. However, techniques based on CT images are time-
consuming, as they require some pre-activities to be carried out 
(e.g., transferring patients to a CT facility and the sterilization of 
medical devices) and other post-activities (e.g., discussing with 
consultants to analyse the results of the test). Using X-ray 
images is preferable to the use of CT scan images in terms of 
cost. However, some research has shown that when COVID-19 
progresses in its infection of patients' bodies, some visual 
features of X-ray images become blurred (i.e., less informative) 
[6]. As a result, there is a strong motivation among researchers 
to develop advanced diagnostic systems to detect COVID-19, 
and here, deep learning (DL) techniques come to the fore. Fig. 2 
summarizes this motivation. 
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Fig. 2. Motivation. 

B. Statement of the Problem 

In order to fight against COVID-19, researchers in the field 
of computer science have made invaluable contributions to the 
development of intelligent diagnosing systems by enhancing the 
accuracy of the intelligent systems developed for detecting 
COVID-19. They have employed the principles of Medical 
Image Analysis (MIA) and deep learning (DL) to train 
intelligent systems. X-rays and CT scans are considered the 
most common sources of medical images. Among the intelligent 
systems used for diagnosing COVID-19, their low accuracy is 
the root cause of why many of these systems fail, as insufficient 
accuracy leads to an increase in the rate of deaths among 
infected people because of the high number of cases that are 
falsely classified as negative [7]. Fig. 3 illustrates the low 
accuracy problem. 

 

Fig. 3. The low accuracy problem leads to a high death ratio. 

One possible way to enhance accuracy is to carry out 
effective data pre-processing before the system’s training stage. 
In this context, augmentation-based techniques, which center 
around rescaling medical images to enable the extraction of 
learning features in an efficient way, are widely used [8]. 
However, the use of augmentation-based techniques can lead to 
some issues, including the following: 1) the loss of positional 
information because the original input medical image is divided 
into segments, and incorrectly re-ordering segments leads to 
confusion in the learning process [9]; 2) the integration of 
extracted features across the entire medical image is crucial to 
ensure learning on all features [10]; and 3) resistance against 
different sizes of training datasets becomes a barrier for ensuring 

that the diagnosing system can be applied in real-time [11]. 
Fig. 4 illustrates the issues that can arise when using 
augmentation-based techniques. 

 

Fig. 4.  Issues resulting from poor augmentation. 

C. Research Questions 

This study aims to address the following research questions: 

1) How can one avoid losing the positional information of 

augmented medical images that are used as inputs for the 

training process? 

2) How can one ensure the integration of extracted features 

while scanning whole medical images? 

3) How can one enable resistant real-time diagnosing 

against small training datasets? 

4) How can the preservation of the privacy of patients, 

which is a mandatory requirement in the medical sector, be 

ensured? 

D. Contributions 

In addressing the research questions listed above, this work 
aims to make the following contributions to the literature: 

 Regarding the first research question, a Position-Aware 
Embedding (PAE) method that takes into account the 
corresponding positional information during the 
flattening process is presented. 

 Regarding the second research question, an Integration-
based Vision Transformer Structure (IbVTS) is 
proposed. The self-attention mechanism provided by this 
VTS, which ensures the integration of the information 
extracted from each segment of the flattened medical 
images, is explained. 

 Regarding the third research question, the IbVTS is 
supported by a distillation tactic to activate less training 
data for the purpose of supporting the classification 
layer. 

 Regarding the fourth research question, a pseudonym-
based anonymity approach (PAA) is proposed to hide the 
personal information of patients. 

E. Structure of Study 

The rest of this study is structured as follows: Section II 
outlines related works. In Section III, the architecture of the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

196 | P a g e  

www.ijacsa.thesai.org 

proposed intelligent diagnosing system is presented in detail, 
along with the role of each component. The experimental results 
are documented in Section IV, and finally, Section V concludes 
the study and lists directions for future research. 

II. RELATED WORK 

Many survey-based papers have addressed intelligent 
systems used to diagnose COVID-19 and provided various 
taxonomies, such as [12, 13, 14]. The authors of [12] relied on 
the application of different deep learning approaches used to 
diagnose COVID-19 (convolutional neural network, Generative 
Adversarial Network, and Long Short-Term Memory) to derive 
their taxonomy. The author of [13] presented a taxonomy based 
on methods used for the data pre-processing stage and 
techniques used for feature extraction. Convolutional neural 
networks, recurrent neural networks, deep belief networks, and 
reinforcement learning are the deep learning architectures used 
to shape the base of the taxonomy presented in [14]. This work 
groups intelligent systems into five categories based on the type 
of learning, as shown in Fig. 5. 

 

Fig. 5. Taxonomy of intelligent systems used to diagnose COVID-19. 

A. Convolutional-Based Learning 

In this category, convolutional neural networks dominate the 
architectures of the proposed systems. CNNs consist of two 
main types of layers: a convolutional layer and a pooling layer. 
CNNs employ filtering principles used in the domain of image 
processing to extract features. 

In [15], the researchers proposed an automatic system for 
diagnosing COVID-19 using a pre-trained U-net architecture. 
The purpose of this U-net architecture is to segment medical 
images of the lungs. Next, the segments are used as inputs for a 
deep neural network to output the class of the given image. They 
used a dataset of 540 patients, with 313 (138 males; 175 females) 
of these patients being COVID-19 positive and 229 (88 males; 
141 females) being COVID-19-negative. The experiments were 
conducted on the CT-scan dataset and produced 90.1 % 
accuracy on binary classes. The CNN-based architecture 
presented in [16] consists of 25 layers (19 layers for convolution 
and 6 max-pooling layers). Convolutional layers are connected 
to batch normalization for input standardization and to regulate 
the intelligent model. To ensure the continuity of neurons, a 
leaky rectified linear unit is utilized. The maxpool function is 
used for the down-sampling of the inputs. The authors used an 
X-ray dataset comprising 600 medical images for binary 
classification. An accuracy of 87 % was obtained. 

B. Transfer-Based Learning 

In this category, two main domains are involved: the source 
domain and the target domain. The source domain is 
characterized by models that are data-rich and have high-quality 
feature extraction capabilities. In contrast, the target domain 
suffers from low-quality feature extraction capabilities and 
requires help from pre-trained models. The purpose of transfer-
based learning is to shift the knowledge from the source domain 
to the target domain. The degree of maturity of the transferred 
knowledge depends on the degree of similarity between the 
source and target. 

Transfer-based learning was applied to CT scan medical 
images in [17] to avoid the high costs and computational 
complexity associated with constructing a CNN model. Two 
main DL-based algorithms were used (ResNet18 and ResNet50) 
as pre-trained models. Then, discriminant correlation was 
employed for feature fusion to generate a better image 
representation. The data of the training dataset were gathered 
from a local medical center, with there being 420 samples for 
each class (normal and infected). The results showed that an 
accuracy of 96.35 % was achieved. The authors of [18] chose to 
use VGG16, VGG19, ResNet, DenseNet, and InceptionV3 as 
pre-trained DL-based models with rich knowledge. These 
architectures were used to transfer information derived from 
chest X-ray images. To enhance the classification accuracy, a 
rotation-based augmentation technique was employed and 
referred to as a heading model. The results obtained after 
conducting experiments showed that among the five models 
used, VGG19 achieved the best accuracy (80%). 

C. Ensemble-Based Learning 

The key idea of ensemble learning is to combine multiple 
models (referred to as learners) to generate an enhanced model. 
There is a wide spectrum of tactics used to perform a 
combination, such as majority voting, plurality voting, and 
weighted voting. 

The authors of [19] proposed an intelligent model that 
combines EfficientNet and SE-ResNext to predict one of the 
three classes that label input images (COVID-19, pneumonia, 
and normal). They chose to use X-ray medical images and a 
weighted voting-based combination tactic. The results showed 
that the proposed model achieved a higher accuracy (about 95%) 
than that achieved by each combined model separately. In the 
context of ensemble learning, the authors of [20] utilized a stack 
of pre-trained deep learning models. They used VGG-16 as base 
learners, trained with a diverse set of inputs, followed by a 
logistic regression model, the meta learner, to combine the base 
learner predictions. This combination tactic relies on a fusion 
technique to enable the system to predict the class of the medical 
images. They achieved a high level of accuracy (about 89%). 

D. Discrimination-Based Learning 

The key idea behind discrimination-based learning is to, as a 
first step, generate tuples that are similar in features and class to 
real training data. Then, the resultant tuples and real ones are 
mixed and act as inputs for the discriminator to be handled under 
a distinguishing process (i.e., to distinguish the real tuples from 
generated ones). In the context of discrimination-based learning, 
Generative Adversarial Networks (GANs) rules supreme. 
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A GAN-based system was proposed by the authors of [21] 
to construct synthetic CT scan images of both COVID-19 
patients and healthy controls. The construction process was 
performed during the data augmentation stage. The Whale 
Optimization Algorithm (WOA) was used to optimize the 
hyperparameters of the GAN. The model was trained using the 
SARS-CoV-2 CT-Scan dataset, which consists of 2482 images 
(1252 COVID-19 cases and 1230 healthy cases). In terms of 
accuracy, the model obtained an accuracy value of 99.22%. A 
U-Net-based GAN designed for lung segmentation using chest 
X-ray images was proposed in [22]. This strategy involved 
employing a fully convolutional neural network in conjunction 
with the GAN model to segment images of the lungs in order to 
make COVID-19 diagnoses. 

E. Sequential-Based Learning 

In this category, the Long Short-Term Memory (LSTM) 
dominates because it was originally developed to enhance neural 
networks by enabling learning from sequential data. 

The authors of [23] presented a hybrid intelligent model for 
diagnosing COVID-19 using an LSTM with a CNN. The 
development of the model consisted of three steps. First, medical 
images were enhanced in the pre-processing stage based on the 
contrast technique. Then, the enhanced images were used as 
model inputs for the purpose of learning. Finally, the Softmax 
function was used in the classification layer to distinguish 
between three classes: COVID-19, normal, and pneumonia. This 
model was trained on the COVID-19 Radiography dataset, 
which consists of 1143 images of COVID-19 cases, 1341 
images of normal cases, and 1345 images of Pneumonia cases. 
The authors achieved an accuracy of 98.97 %. The authors of 
[24] utilized a pre-defined histogram threshold to segment CT 
scan-derived medical images. For feature extraction, both the Q-
Deformed entropy (QDE) and a CNN were used. Finally, the 
extracted features were fused and used as inputs for the LSTM 
classifier to predict the classes of the images. The highest 
classification accuracy value obtained was 99.68%. 

III. PROPOSED SYSTEM 

This section presents the proposed intelligent system. 
Firstly, the framework of the system is presented, followed by 
the system’s architecture and the role of each component 
involved in constructing the architecture. 

A. Framework of Proposed System 

The environment within which the proposed system operates 
is medical health care centers/hospitals. For a given number of 
patients (Pat), medical machines capture chest images derived 
from two types of imaging techniques: X-ray, denoted as 
(MIxr), and CT scan, denoted as (MIct). Both types form a real 
dataset [see Eq. (1)]: 

RDS = ⋃ {MIxr
i , MIct

i }Pat
i=1   (1) 

Each medical image is modeled as follows [see Eq. (2)]: 

𝑀𝐼𝑡𝑦𝑝𝑒∈(𝑥𝑟,𝑐𝑡)
𝑖 = 〈𝐼𝐷𝑝, 𝑁𝐴𝑀𝐸𝑝, 𝐵𝑂𝐷𝑝, 𝑆𝐸𝑋𝑝 , 𝐷𝑖𝑠〉|𝑖 =

1,2, … , 𝑃𝑎𝑡    (2) 

where, IDp, NAMEp, AGEp, SEXp , Dis  represent the 
personal information of the patient, specifically their identifier, 
name, date of birth, sex, and medical description or health status. 

In reality, in the usage stage of the proposed system (i.e., 

after training and testing), MItype∈(xr,ct)
i  is used as an input to 

predict one of three classes (healthy, pneumonia, or COVID-19), 
as shown in Fig. 6. 

 

Fig. 6. Framework of the proposed system. 

B. System Architecture 

The objective of the proposed system is to, via learn mapping 
from inputs, predict/classify medical images to the correct class 
label. The proposed system is managed by six components. 
From a DL-based perspective, the components are grouped 
according to three phases, as shown in Fig. 7. 

 

Fig. 7. Architecture of the proposed system. 

Table I summarizes the main task of each component, the 
technique used for each task, and the quality attribute each task 
maintains. 

TABLE I.  COMPONENTS 

Name of 

component 
Main task 

Used 

technique 

Quality 

attribute 

Anonymizer Privacy preservation Pseudonym Privacy 

Augmentator Augmentation Cutmix\Mixup Contrast 

Patch 

Embedder 

Solving positional information 

losses 
PAE Resistance 

Integrator Effective feature extraction IbVTS Performance 

Trainer 
Training on integrated extracted 

features 
Distillation 

Accuracy 

Classifier Prediction of output Softmax 
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C. Role of the Anonymizer Component 

This component is responsible for protecting the privacy of 
patients by executing the pseudonym-based anonymity 
approach (PAA). For this, a pseudonym technique is employed. 
This technique is widely used to protect location privacy in 
location-based services. The key idea of the pseudonym 
technique is to handle personal data so that no data can be 
attributed to a specific person or data subject without additional 
information [25]. In this study, PAA was performed through 
three main steps: removing, replacing, and generalising. Fig. 8 
illustrates these steps with an example. 

 

Fig. 8. Application of the three steps of the PAA. 

As shown in Fig. 8, Maha Majed is the name of a real patient 
with a clear ID and clear date of birth, which, in turn, 
compromises this patient’s privacy. Through using the PAA, 
their ID is removed. Their real name is replaced by "Muna 
Naser", which is a false name selected from the lock space that 
generates many pseudonyms based on some rules that help to 
create a false name adapted from the patient’s real name. In our 
example, the real name consists of two parts (first name and last 
name), and so does the false one. In addition, the length of each 
part is 4 and 5 letters, respectively, which also matches the 
length of the first and last names of the pseudonym (false name). 
It is worth mentioning that privacy protection is a separate 
research field, and we will not discuss privacy protection in 
detail in this work, as we are only concerned about DL. The date 
of birth of the real patient is generalized in the anonymized 
profile so that no specific value is given. As for the sex and 
description fields, they are kept untouched. This way, the 
privacy of the patient is ensured, since the attacker cannot 
construct a malicious profile of a patient, and they also cannot 
make any inferences or link any information to a specific patient. 

After performing the PAA task using the Anonymizer 

component, the resultant medical image (MItype∈(xr,ct)
i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  is 

privacy protected [see Eq. (3)]. 

(𝑀𝐼𝑡𝑦𝑝𝑒∈(𝑥𝑟,𝑐𝑡)
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  = 〈𝑁𝐴𝑀𝐸𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ⌊𝐵𝑂𝐷𝑝⌋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑆𝐸𝑋𝑝 , 𝐷𝑖𝑠〉|𝑖 =

1,2, … , 𝑃𝑎𝑡    (3) 

D. Role of the Augmentator Component 

This component is responsible for the augmentation of 
medical images. The objective of augmentation is to enhance the 
quality of training by enabling the extraction of more 
meaningful information. There is a wide spectrum of techniques 

used for augmentation [26]. The simplest techniques rely on 
some geometric transformation, such as rotating and cropping. 
However, such geometric transformation-based techniques are 
costly and complex, and they also require some manual 
operations to determine the angles and measures that suit the 
situation. Due to these limitations, researchers have moved 
towards more advanced techniques. Random erasing-based 
techniques such as the Cutout technique are used in this context 
[27]. The key idea behind the Cutout technique is to randomly 
remove/mask a square region of pixels in order to force the 
model to focus on a specific region and thus extract more robust 
features. For example, if the removed pixels form the 
background of a given image, then this noise will disappear. 
However, a critical weakness of the Cutout technique is related 
to its randomizing process. This means that sometimes it 
removes some informative parts of the given image, and 
consequently, some important features will be completely 
missing from the extracted space. The Mixup [28] technique 
saves all parts of a given image. The key idea behind this 
technique is to mix a pair of input images with their classes 
during training. Thus, more generalizable features that cover all 
input images are achieved. However, it may generate blurry 
images. An effective solution to the issue of blurring is 
discrimination, which is achieved by the use of the Cutmix 
technique [29]. Instead of masking the region, as is the case in 
the Cutout technique, it is replaced by the corresponding region 
from a different medical image. In this study, since we dealt with 
both X-ray- and CT scan-derived medical images, the Cutmix 
technique was used for the augmentation of the X-ray medical 
images, while the Mixup technique was used for the 
augmentation of the CT scan images. The reason behind this is 
that the ribs may blur X-ray scans, whereas there is no source of 
blurring in CT scans. 

From a mathematical modeling perspective, let 〈αA̅̅̅̅ , βA
̅̅ ̅〉 and 

〈αB̅̅ ̅, βB
̅̅ ̅〉  represent two privacy-protected training samples, 

where α̅ = (MItype∈(xr,ct)
i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) is a training image and β̅ = Dis  is 

the corresponding label. For Mixup, the augmented sample is 

denoted as (α̿, β̿) , and the mixing process is given by the 
following Eq. (4) and Eq. (5): 

α̿ = δ αA̅̅̅̅ + (1 − δ) αB̅̅ ̅   (4) 

β̿ = δ βA
̅̅ ̅ + (1 − δ) βB

̅̅ ̅    (5) 

where, δ ∈ [0, 1] is sampled from a beta distribution. 

As for Cutmix, the generated augmented privacy-protected 
image is modeled as follows [see Eq. (6) and Eq. (7)]: 

α̿ = ϑ ⟦ψ⟧ αA̅̅̅̅
 
+ (1 − ϑ) ⟦ψ⟧ αB̅̅ ̅   (6) 

β̿ = δ βA
̅̅ ̅ + (1 − δ) βB

̅̅ ̅    (7) 

where, ϑ ∈ {0, 1} is a binary mask for determining which 
pixel is removed and replaced by the second image, and ⟦ψ⟧ is 
the multiplication operation. 

From a visual perspective, the application of both Mixup and 
Cutmix to medical images is illustrated in Fig. 9 and Fig. 10, 
respectively. 
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Fig. 9. Mixup-based augmentation. (a) Detailed operation; (b) different 

augmented samples. 

 

Fig. 10. Effectiveness of the Cutmix technique compared to Mixup and 

Cutout. 

In Fig. 10(a), compared to Fig. 10(c), there are clear blurring 
regions that minimize the contribution of extracted features in 
the enhancement of training. Fig. 10(b) compared to Fig. 10(c), 
there are some informative parts out of the extracted space (the 
lower-right part of the left lung). In Fig. 10(c), the Cutmix 
technique avoids the pitfalls of both Mixup and Cutout, as a clear 
view of each specified part is used for the effective extraction of 
features. 

E. Role of the Patch Embedder Component 

This component is responsible for solving the problem of 
positional information losses by carrying out the Position-Aware 
Embedding (PAE) method on the augmented medical images. 
In detail, for a given augmented medical image ( α̅̅ =

MItype∈(xr,ct)
i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), which is generated from the source image 

(MItype∈(xr,ct)
i ), these two images are divided into parts of the 

same area, and then they are flattened into a sequence of non-
overlapping patches. Then, corresponding positional 
information and learnable class tokens are manipulated, as 
shown in Fig. 11. 

 

Fig. 11. Task of the patch embedder component when dealing with an X-ray 

image. 

As shown in Fig. 11, λ and £ are the two dimensions of an 
augmented and privacy-protected medical image α̅̅. The area of 
α̅̅ is given by the following Eq. (8): 

α̅̅r =  λ × £    (8) 

α̅̅ is divided into a number of patches (each one has an area 
equal to τ × τ = τ2). Relying on the total area of the medical 

image and the area of a patch, the number of patches k is given 
by the following Eq. (9): 

k =
α̅̅r

τ2    (9) 

In terms of k patches, α̅̅ is modeled as follows [see Eq. (10)]: 

α̅̅ = ⋃ (α̅̅ pt
i )k

i=1      (10) 

The generated flatted patches are passed to a linear 

embedding layer (LYRe
l ) to adjust their dimensions in a way that 

suits the dimensions of the model (DIMm). The PAE method is 
applied to both the original image and the augmented instance. 
Fig. 12 provides a comprehensive view of a scene after the PAE 
method has been carried out. 

 

Fig. 12. Application of PAE on both a source image and an augmented 

image. 

The application of PAE results in a series of patches that 
have the same spatial arrangement as in the source image. Let 
(𝔗lct)  denote learnable class tokens and (PSinfo)  denote the 
positional information. Then, the output of the PAE is given by 
the following Eq. (11): 

PAE0
out = [𝔗lct; α̅̅LYRe

l ] + PSinfo, which can be detailed as 

follows: 

PAE0
out = [𝔗lct; α̅̅ pt

1 LYRe
l ; α̅̅ pt

2 LYRe
l ; … ; α̅̅ pt

k LYRe
l ] +

PSinfo(11) 

where, 𝐿𝑌𝑅𝑒
𝑙 ∈ ℛ(𝜏2𝑐ℎ)×𝐷𝐼𝑀𝑚, and 𝑃𝑆𝑖𝑛𝑓𝑜 ∈ ℛ(𝑘+2)×𝐷𝐼𝑀𝑚. 

F. Role of the Integrator Component 

This component is responsible for ensuring effective feature 
extraction. It employs the concepts of the Vision Transformer 
(VisTrs) to carry out its mission [30]. The key idea behind the 
VisTrs is based on two fundamentals of performing image 
classification: 1) dealing with medical images as a series of 
patches that can be mapped into a semantic label, and 2) using a 
self-attention technique that enables effective feature extraction 
by handling the patches within an integration-based scan (i.e., 
integrate information at the level of the whole area of the image). 
This study adapts these two fundamentals and proposes an 
Integration-based Vision Transformer Structure (IbVTS). The 
structure of the VisTrs follows the encoder–decoder approach. 
In the context of the adaptation proposed in this work, the first 
fundamental of the VisTrs is satisfied by using a distill classifier 
(along with a corresponding distillation token), which will be 
discussed further on in this section when providing details on the 
role of the Trainer component. The second fundamental of the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

200 | P a g e  

www.ijacsa.thesai.org 

VisTrs focuses on feature extraction and is satisfied as described 
below. 

From a detail-based hierarchical perspective, the encoder of 
the VisTrs consists of a number of layers (NoL), and each layer 
contains two major units. The first unit is called multi-head self-
attention (MhSa), which is responsible for carrying out the self-
attention technique to ascertain the dependencies between the 
different patches that represent a given input image. The second 
unit is called the feed-forward unit (FeFoU) , which is 
responsible for generating a fully/densely connected network of 
features. Relying on a normalization layer (LYnrm), the MhSa 
and FeFoU are connected. From a mathematical perspective, the 
two units can be modeled as follows [see Eq. (12) and Eq. (13)]: 

PAEφ
out̃ = MhSa 〈LYnrm (PAEφ−1

out )〉 + PAEφ−1
out |φ =

1,2, … ,NoL   (12) 

PAEφ
out = FeFoU 〈LYnrm (PAEφ

out̃ )〉 + PAEφ
out̃ |φ =

1,2, … ,NoL    (13) 

The operations that are executed within the self-attention 
technique are as follows: 

1) For a given input sequence of image features, {
𝑘: 𝑘𝑒𝑦

𝑞: 𝑞𝑢𝑒𝑟𝑦
𝑣: 𝑣𝑎𝑙𝑢𝑒

 

are calculated for each element included in the sequence. 

2) Relying on the inner/dot product, the relevance between 

the current element and other elements is obtained. In other 

words, this step highlights and integrates the relative importance 

of the patches in the sequence. 

3) The results of step 2 are scaled based on the dimension 

of key (Kdim) as a scaling factor and then used as inputs for the 

Softmax function. 

4) To focus on more important values, the output of the 

Softmax function is multiplied by v. 
Eq. (14) and Eq. (15) summarize the operations of the self-

attention technique. 

{
k: key

q: query
v: value

= PAE 
input 𝕌k,q,v|𝕌k,q,v ∈ ℛDIMm ×3Kdim (14) 

SeAt(PAE 
input) = softmax (qkT √Kdim⁄ ) . v (15) 

The environment (patches) within which the self-attention 
(SeAt) is executed allows for the parallel execution of these 
operations. Here, the MhSa, considered an extension of SeAt, 
comes to the fore. To activate self-attention (SeAt) in a parallel 
manner, instead of using a single value for the triplet (k, q, v), 
multiple values are used. Consequently, we deal with (h) heads 
(i.e., a head for each attention). The results of all the attention 
heads are concatenated to express the first unit of the encoder of 
the VisTrs [see Eq. (16)]. 

MhSa (PAE 
input) =

concat 〈SeAt1(PAE 
input); SeAt2(PAE 

input); … ; SeAth(PAE 
input); 〉 〈lw〉

 (16) 

where, lw  represents the learnable weights, lw ∈
ℛh.Kdim×DIMm . 

As for FeFoU, it is constructed by a fully connected layer, 
followed by GeLU, followed by another fully connected layer. 

Fig. 13 presents the Integrator component, which is based on the 
Patch Embedder component. 

 

Fig. 13. A VisTrs architecture-based Integrator built based on the mission of 

the patch embedder component. 

G. Role of the Trainer and Classifier Components 

These components are responsible for training the model in 
a way that enhances both model performance and prediction 
accuracy. Originally, the VisTrs is driven from the data-efficient 
image transformer [31], where minimizing training is a major 
goal based on the student–teacher approach. The student–
teacher approach relies on a distillation token generated from the 
augmented image instance. So, the left part of Fig. 13 represents 
the student, and the right part represents the teacher. Based on 
this, Eq. (11) is updated to become the following Eq. (17): 

PAE0
out = [𝔗lct; 𝔗dst; α̅̅ pt

1 LYRe
l ; α̅̅ pt

2 LYRe
l ; … ; α̅̅ pt

k LYRe
l ] +

PSinfo (17) 

where, LYRe
l ∈ ℛ(τ2ch)×DIMm , PSinfo ∈ ℛ(k+2)×DIMm , and 

𝔗dst  denote the distillation token. In other words, the Trainer 
uses extracted features to train two classifiers, where each one 
has a dense layer followed by the Softmax function. The student 
classifier provides the class token, while the teacher classifier 
provides the distill token. Both of them are used as inputs for the 
fusion layer, which provides the final class of the medical image 
according to the following Eq. (18): 

Cfinal =
1

2
 × (Ctoken

class + Ctoken
distill)   (18) 

Fig. 14 illustrates the Trainer’s task, which is based on that 
of the Integrator. 

 

Fig. 14. Mission of the trainer component. 

In reality, in the context of classification, a given medical 
image can be classified as healthy/normal, COVID-19, or 
pneumonia. To enable binary (healthy or COVID-19) or multi-
class modes (binary plus pneumonia), a loss function is used in 
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the Classifier component, and this function is expressed as 
follows [see Eq. (19)]: 

𝒬 (𝔙ij, 𝔚ij) =
−1

pat
∑ ∑ 𝔚ij log (

1

1+e
−𝔙ij

) + (1 −ds
j=1

trg
i=1

𝔚ij) log  (1 −
1

1+e
−𝔙ij

)   (19) 

where, trg, ds are the number of training images and defined 
classes. 𝔚ij  represents the ground-truth labels. 𝔙ij  is the 

predicted probability. 

H. Details of the Proposed System’s Architecture 

A sequence diagram, Fig. 15, is used to show the tasks of the 
components involved in the architecture of the proposed system. 

 

Fig. 15. Sequence diagram based on architecture details. 

IV. EXPERIMENTAL RESULTS AND EVALUATION 

In this work, experiments were conducted on two different 
datasets to construct (train) and test the proposed diagnosing 
system. One of these datasets is the COVIDx dataset, created to 
store X-ray medical images [32]. This dataset consists of 13,962 
X-ray images distributed over three classes, as summarized in 
Table II. We also used the SARS-CoV-2 dataset, which contains 
CT scan-derived medical images [33]. This dataset comprises 
2,482 CT scan images distributed over two classes, as 
summarized in Table III. 

TABLE II.  DESCRIPTION OF THE COVIDX DATASET 

Class 1 Healthy 

Number of images 8066 

Samples 

  
Class 2 Pneumonia 

Number of images 5538 

Samples 

  
Class 3 COVID-19 

Number of images 358 

Samples 

  

TABLE III.  DESCRIPTION OF THE COVIDX DATASET OVER TWO CLASSES 

Class 1 Healthy 

Number of images 1230 

Samples 

  
Class 2 COVID-19 

Number of images 1252 

Samples 

  

A. Types of Evaluation 

As shown in Fig. 16, we used two types of evaluation 
metrics: visual evaluation and numeric evaluation. 

 

Fig. 16. Types of evaluation metrics used in the present study. 

B. Used Metrics 

Four metrics were used in this study for evaluation purposes. 
All of them were derived from the confusion matrix summarized 
in Table IV. 

TABLE IV.  CONFUSION MATRIX 

Predicted class 

Actual class 
𝐂𝐟𝐢𝐧𝐚𝐥 ¬ 𝐂𝐟𝐢𝐧𝐚𝐥 Sum 

Cfinal TP FN S 

¬ Cfinal FP TN Su 

Sum  S ̃  Sũ All 

The elements of the above confusion matrix are as follows: 

 True positives (TPs): The positive images that were 
correctly labeled by the classifier. 

 True negatives (TNs): The negative images that were 
correctly labeled by the classifier. 

 False positives (FPs): The negative images that were 
incorrectly labeled as positive (e.g., images of class 
healthy = no  for which the classifier predicted 
healthy = yes). 

 False negatives (FNs): The positive images that were 
mislabeled as negative (e.g., images of class healthy =
yes for which the classifier predicted healthy = no). 

Accuracy =
TP+TN

All
   (20) 

Accuracy refers to the recognition rate, which quantifies the 
percentage of test set images that have been correctly classified. 
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In other words, it reflects how well the classifier recognizes 
images from the various classes [see Eq. (20)]. 

Precision =
TP

S  ̃
   (21) 

Precision refers to the exactness, which refers to the 
percentage (%) of images that the classifier correctly labeled as 
positive. Therefore, it determines how many of the positive 
predictions are correct [see Eq. (21)]. 

Recall =
TP

S
    (22) 

Recall (also known as sensitivity) refers to the completeness, 
which refers to the percentage (%) of positive tuples that the 
classifier labeled as positive. Recall is used as a measure of a 
classifier’s tendency to identify infected cases [see Eq. (22)]. 

Specificity =
TN

Su
   (23) 

Specificity refers to the true negative recognition rate. In 
other words, it measures the ability of a classifier to detect non-
infected cases [see Eq. (23)]. 

It is worth mentioning that in terms of semantic meaning, a 
high value for any of the metrics mentioned above is preferable 
and reflects better performance, and vice versa. 

Regarding visual evaluation, heat maps were employed to 
reflect the attention maps used in the learning process. Heat 
maps are used to illustrate the gradually increasing focus on 
regions of interest over layers during the learning process. This, 
in turn, reflects how regions are tightly coupled with the 
predicted class when it comes to the visual monitoring of 
progress. 

It is worth mentioning that experimrnts are conducted in the 
Artificial Intelligence and Multi Media (AIMD) Lab within the 
campus of Fahad Bis Sultan University (FBSU) at Computing 
College. 

C. Evaluation Based on X-ray Dataset 

The COVIDx dataset was divided into a training part (25 %) 
and a testing part (75 %), taking into account the four metrics 
used for each class. Table V summarizes the results obtained 
with and without using augmentation. 

TABLE V.  EXPERIMENTAL RESULTS BASED ON X-RAY IMAGES FROM THE 

COVID DATASET 

Approach 
Term 

Metric 
AVG 

Class 

Healthy 
COVID-

19 
Pneumonia 

Without 

Augmentation 

Accuracy ≈ 87.16 88.23 87.77 85.47 

Precision ≈ 87.37 87.11 86.81 88.2 

Recall ≈ 87.84 89.21 88 86.31 

Specificity ≈ 87.11 86.26 87.62 87.45 

      

With 

Augmentation 

Accuracy ≈ 92.62 95.88 90 91.98 

Precision ≈ 93.47 94.63 92.12 93.66 

Recall ≈ 93.22 97.52 90 92.13 

Specificity ≈ 95.98 93.83 98.57 95.53 

The values documented in Table V represent good 
performance with regard to diagnosing positive and negative 
cases. However, to highlight the effectiveness of the proposed 
augmentation technique, Fig. 17 compares the averages of the 
two approaches (with and without augmentation) for each class. 

Fig. 17 reflects considerable enhancements for the four 
metrics when using augmentation, where it contributes 5.46, 6.1, 
5.38, and 8.87 enhancements for accuracy, precision, recall, and 
specificity, respectively. The reason behind this is related to the 
effective extraction of features used for training, since the 
augmentation technique used enabled an increased focus on the 
regions of interest. This justification is visually supported by the 
heat map shown in Fig. 18. 

 

Fig. 17. Comparison between the augmentation-based approach and the non-

augmentation-based approach on the X-ray dataset. 

 

Fig. 18. Heat map of a source COVID-19 X-ray image. 

Fig. 18 shows the gradually increasing focus on the zones 
that are informative for diagnosing/predicting illness. The heat 
map above reflects the confused focus on random zones of the 
lung and the point at which the focus becomes more specific on 
the zones that are tightly coupled with the class of the image, 
reaching the zones that represent COVID-19 in terms of medical 
diagnosis. 

To measure the resistance of the proposed system against a 
small-sized training dataset (and to, in turn, evaluate its potential 
for usage in reality), we repeated our experiments using a 
different training/testing data ratio (stepwise increase of 10 %), 
meaning that 20 % of the COVIDx dataset was used for training 
and 80 % was used for testing), as shown in Fig. 19. 
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Fig. 19. Average of four metrics over different training/testing data splits. 

Fig. 19 presents the results of seven experiments, each of 
which had its own unique training/testing division ratio. For 
example, in our second experiment, 30% of the dataset was 
allocated for training, and 70% was allocated for testing, 
meaning that this split can be expressed as 30|70. Regarding 
accuracy, it is obvious that there was a gradual increase in 
enhancement from about 92% in the first experiment to about 
99% in the seventh one. This means that allocating more data 
for training leads to greater accuracy. However, there is a gap 
(about 8.8) in accuracy values between the 20|80 training ratio 
and its counterpart, the 80|20 training ratio. However, in both 
cases, the accuracy is still within a considerable range, which is 
a good indicator of the proposed system’s potential for use in 
reality. The other metrics fluctuated randomly in response to the 
different training ratios. In this context, it is worth mentioning 
that accuracy is the most important measure to consider when 
evaluating a system. 

D. Evaluation Based on CT Scan Dataset 

To facilitate a fair comparison between our evaluation of the 
proposed system based on X-ray images and CT scan images, 
the same evaluation procedure followed for our experiments on 
the X-ray images was repeated. Therefore, the SARS-CoV-2 
dataset was divided into a training part (25 %) and a testing part 
(75 %), taking into account the four metrics used for each class. 
Table VI summarizes the results obtained with and without 
using augmentation. 

TABLE VI.  EXPERIMENTAL RESULTS BASED ON CT SCAN IMAGES FROM 

THE SARS-COV-2 DATASET 

Approach 
Term 

Metric 
AVG 

Class 

 Healthy COVID-19 

Without 

Augmentation 

Accuracy ≈ 94.72  94.44 95 

Precision ≈ 94.36  93.88 94.83 

Recall ≈ 94.86  94.69 94.98 

Specificity ≈ 94.32  94.54 94.09 

      

With 

Augmentation 

Accuracy ≈ 97.83  97.55 98.11 

Precision ≈ 97.49  97.21 97.76 

Recall ≈ 97.68  97.33 98.03 

Specificity ≈ 96.85  96.57 97.13 

The values documented in Table VI indicate that the model’s 
performance was better than that achieved via the use of the X-
ray images in terms of diagnosing positive and negative cases. 

However, to highlight the effectiveness of the proposed 
augmentation technique, Fig. 20 compares the averages of the 
two approaches (with and without augmentation) for each class. 

Fig. 20 shows that considerable improvements in the four 
metrics were achieved when using augmentation, as 
enhancements of 3.11, 3.13, 2.82, and 2.53 were recorded for 
accuracy, precision, recall, and specificity, respectively. The 
results derived from the use of CT scan images are better than 
those derived from the use of X-ray images. The CT scan-
derived results’ superiority can be attributed to the ability of the 
Mixup augmentation technique to overcome the blurring issue 
that arises due to the ribs obscuring features in X-ray images. 
This justification is visually supported by the heat map shown in 
Fig. 21. 

 

Fig. 20. Comparison between the augmentation-based approach and the non-

augmentation-based approach when using the CT-scan dataset. 

 

Fig. 21. Heat map of a source COVID-19 CT scan image. 

As was the case with the X-ray images presented in Fig. 18, 
Fig. 21 shows the gradually increasing focus on the zones that 
are informative for diagnosing/predicting illness. In other words, 
the system learned to highlight sets of pixels that are strongly 
linked with illness. It is worth mentioning that the CT scanning 
technique is more accurate than X-ray imaging, which means 
that learning on CT scan images leads to higher levels of 
accuracy, especially if they are supported by augmentation, 
since augmentation leads to the extraction of more meaningful 
features. 

To measure the resistance of the proposed system against a 
small-sized CT-based training dataset, the same procedure 
adopted to assess the resistance of the X-ray dataset was 
repeated, as shown in Fig. 22. 
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The results of the seven experiments (shown in Fig. 22) 
provide strong proof of the effectiveness of applying 
augmentation on CT scan images to increase the level of 
accuracy and other metrics as the training ratio increases. Steady 
enhancements for all metrics were recorded. Although the 
accuracy increases, there is a small gap (3.15) between the 
accuracy value when using an 80|20 testing and training ratio 
and that when using a 20|80 testing and training ratio. This 
proves that the proposed system has the ability to be trained on 
a small amount of data, which further indicates its potential for 
use in reality. 

 

Fig. 22. Average of the four metrics over different training/testing data splits 

in the CT-based training dataset. 

E. Security Analyzing 

To analyze the proposed model’s resistance against 
compromising the privacy of patients, let PGuess

e  denote the 
probability that a malicious party can successfully guess 
whether the event e  is true. The proposed privacy protection 
method is resistant if [see Eq. (24)]: 

PGuess
e1=personal infoi ∈RDS

= PGuess

e1=personal infoj ∈RDS
∀ (0 < i ≠ j ≤

pat)    (24) 

Proof: The attacker cannot obtain any benefit from 
employing their side’s information to recognize the patient. This 
is because the lock space prevents the attacker from knowing the 
ID of the patient. Moreover, the first name and last name are 
masked by dummies of the same size (i.e., a first and last name 
with the same number of letters as the patient’s first and last 
name), which, in turn, leads to more confusion on the attacker’s 
side. Furthermore, the generalization tactic applied to the date of 
birth of the patient does not reveal any specific information 
about the age of the patient. Only the attacker can know the 
gender of the patient and whether they have COVID-19. As a 
result, the attacker is forced to randomly guess the personal 
information of the patient, which leads to uncertainty in inferring 
sensitive information when attempting to compromise a 
patient’s privacy and potentially harm them. 

V. CONCLUSION 

In this study, a deep learning-based system dedicated to 
detecting COVID-19 using X-ray- and CT scan-derived medical 
images is presented. The system is managed by six components. 
The Anonymizer is responsible for preserving the privacy of 
patients through the use of a pseudonym-based anonymity 
approach. The Augmentator is responsible for increasing the 

quality of the medical images through the use of augmentation 
techniques (Cutmix and Mixup for X-ray and CT scan images, 
respectively). The Patch Embedder is responsible for solving the 
problem of positional information loss by applying the Position-
Aware Embedding method to the augmented medical images. 
The Integrator is responsible for effective feature extraction, 
which is carried out through employing the concepts of the 
Vision Transformer Structure. The Trainer and Classifier 
components are responsible for training the proposed system 
based on the student–teacher approach and generating the final 
classes via the Softmax function. The COVIDx (X-ray images) 
and SARS-CoV-2 (CT-scan images) datasets were utilized in 
this study to train and test the proposed system. Our evaluations, 
which were based on accuracy, precision, recall, and specificity 
metrics, showed that there was an enhancement in values when 
using augmentation. However, the enhancement achieved after 
training on CT scan images was better than that achieved after 
training on X-ray images. Moreover, the system was evaluated 
using a small amount of data by reversing the training/testing 
ratios. The results corresponding to the use of X-ray images 
were promising, as the system achieved 92% accuracy when 
20% of the data were allocated for training and 80% of the data 
were allocated for testing and 98.8% accuracy when 80% of the 
data were allocated for training and 20% of the data were 
allocated for testing. However, compared to the results derived 
from the use of X-ray images, the results corresponding to the 
use of CT scan images were better, with an accuracy value of 
96% being achieved after 20% of the data were allocated for 
training and 80% of the data were allocated for testing, as well 
as an accuracy value of 99.15% being achieved after 80% of the 
data were allocated for training and 20% of the data were 
allocated for testing. The key limitation of this work is related to 
the fact that we ignored evaluating performance in terms of the 
time taken to generate predictions and complexity. In future 
work, we will address this limitation by adopting a parallel 
training approach. In addition, testing the proposed system using 
additional datasets as well as including statistical significance 
testing (e.g., confidence intervals, p-values) will be in future 
work. 
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