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Abstract—The ability to predict cancer before the onset of 

clinical symptoms represents a paradigm shift in oncology and 

preventive medicine. Existing diagnostic approaches remain 

reactive, relying on imaging or symptomatic manifestations that 

frequently detect the disease only at advanced stages, particularly 

in pancreatic, lung, and ovarian cancers. To address this gap, we 

propose a novel methodology that integrates the Internet of Things 

(IoT), Artificial Intelligence (AI), and Deep Learning for proactive 

cancer prediction. Continuous high-resolution physiological, 

behavioral, and environmental data are collected through IoT-

enabled wearable and implantable devices and analyzed using a 

hybrid architecture that combines Autoencoders, Convolutional 

Neural Networks (CNNs), and Recurrent Neural Networks 

(RNNs), with a specific focus on Long Short-Term Memory 

(LSTM) models. Unlike previous work, which primarily targeted 

general IoT-based monitoring or symptom-driven detection, this 

study explicitly demonstrates how the fusion of multidimensional 

IoT data and advanced deep learning enables the identification of 

micro-level deviations from an individual’s baseline as early 

biomarkers of cancer risk. Experiments conducted on synthetic 

datasets simulating pancreatic, lung, and ovarian cancer 

progression show that the proposed framework achieves an 

accuracy of 89%, a sensitivity of 85%, a specificity of 91%, and an 

AUC of 0.93, with an average early detection lead time of 7.5 

months. These findings highlight the rigor and originality of the 

proposed approach, which advances the field by offering a 

validated, proactive methodology for cancer prediction and 

establishing clear differences from prior studies by the authors 

that focused on narrower IoT applications. This work paves the 

way for predictive and preventive oncology, where intervention 

can occur long before clinical manifestation of the disease. 

Keywords—Deep learning; internet of things; artificial 

intelligence; convolutional neural network; recurrent neural 
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I. INTRODUCTION 

Cancer remains one of the most pressing global health 
challenges and a leading cause of mortality, accounting for 
nearly ten million deaths annually according to the World Health 
Organization. Despite significant advances in therapeutic 
protocols and diagnostic technologies, for Hussain [1], survival 
outcomes continue to depend heavily on the stage at which the 
disease is detected. The medical consensus is clear: early 
detection substantially improves survival rates as proposed by 
Moglia [2]. It reduces the invasiveness of treatment, and 
enhances patients’ quality of life. Nevertheless, conventional 
diagnostic approaches such as imaging, biomarker assays, and 
population-wide screening, for Gong [3], these programs often 
identify cancer only after the appearance of macroscopic lesions 
or clinical symptoms. For aggressive cancers such as pancreatic, 

lung, and ovarian, symptoms usually manifest at advanced 
stages as cited by Bicheng [4], leaving patients with limited 
treatment options and poor prognosis. This reality underscores 
the inadequacy of the existing reactive paradigm in oncology, 
where interventions predominantly occur after disease 
manifestation. In recent years, there has been a shift toward 
preventive and predictive medicine, as tried by Panda [5], 
aiming to anticipate and mitigate disease before symptoms 
appear. Within oncology, the ability to forecast cancer, as 
proposed by Tirumanadham [6], risk in pre-symptomatic stages, 
represents a transformative opportunity. Such an approach 
would allow interventions long before tumor progression or 
metastasis, thereby opening the door to a truly preventive model 
of cancer care. For Yang [7], the emergence of the Internet of 
Things (IoT) and the rapid progress of Artificial Intelligence 
(AI), particularly deep learning, have created unique 
opportunities to realize this vision. IoT-enabled devices such as 
wearable sensors, implantable biosensors, and environmental 
monitoring systems can continuously capture multidimensional 
data streams reflecting physiological, behavioral, and 
environmental factors, for Meddaoui [8]. These data, 
imperceptible to conventional diagnostic methods, may reveal 
subtle deviations that precede clinical symptoms by several 
months. Deep learning models, with their capacity to handle 
complex and heterogeneous data, are ideally suited to detect 
such micro-level anomalies and temporal patterns, as mentioned 
by Anandan [9], enabling the proactive identification of elevated 
cancer risk. However, despite promising advances, existing 
research remains limited in scope. Most oncology studies rely 
on single modalities such as imaging or genomics, while IoT-
based healthcare applications focus mainly on chronic disease 
management, patient monitoring, or symptom-driven detection. 
few, if any, frameworks integrate multimodal IoT data with 
advanced hybrid deep learning architectures for the specific 
purpose of pre-symptomatic cancer prediction. This gap 
highlights the need for a comprehensive, end-to-end 
methodology, as proposed by Zhang [10] that unifies continuous 
data collection with deep learning models capable of anomaly 
detection and temporal sequence analysis. The present work 
addresses this gap. The research problem examined in this study 
is the lack of integrated IoT–deep learning systems for proactive 
cancer prediction before the onset of clinical symptoms. As 
suggested by Youssef [11], the objective of this study is to 
design and evaluate a hybrid architecture that combines 
autoencoders, convolutional neural networks (CNNs), and 
recurrent neural networks (RNNs) with a specific focus on Long 
Short-Term Memory (LSTM), as presented by Zaher [12], 
models to detect subtle deviations from personalized health 
baselines. The key contributions of this study are fourfold: We 
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propose a novel proactive cancer prediction methodology that 
unifies continuous IoT-based data collection, as proposed by 
Savka [13], with a hybrid deep learning framework for anomaly 
detection and temporal modeling. We validate this methodology 
using simulated datasets for three cancers: pancreatic, as used by 
Mukherjee [14], lung and ovarian, where early detection 
remains particularly challenging. We introduce a new evaluation 
metric, the early detection lead time, as demonstrated by Islam 
[15], which quantifies the temporal advantage gained by 
identifying risks months before symptom onset. We clearly 
distinguish this work from our prior, as observed by Alatawi’s 
[16] research on IoT-based monitoring applications by 
demonstrating its originality in targeting. For Parra [17], 
proactive oncology and establishing methodological 
innovations specific to cancer risk prediction. 

 The remainder of this study is structured as follows: Section 
II reviews the state-of-the-art in early cancer detection, IoT 
applications in healthcare, and deep learning in oncology. 
Section III presents the proposed methodology, including IoT-
based data collection, preprocessing techniques, and the hybrid 
deep learning architecture. Section IV describes the 
experimental design, datasets, and results. Section V discusses 
clinical implications, limitations, and challenges, while Section 
VI concludes the study and outlines directions for future 
research in predictive and preventive oncology. 

II. RELATED WORK 

The fight against cancer has always been at the heart of 
medical research, with considerable efforts dedicated to 
understanding its biology, like Soto [18], developing effective 
treatments, and improving detection strategies. Traditionally, for 
Mangayarkarasi [19], cancer detection relies on mass screening 
methods (mammography, cervical smear, colonoscopy) or on 
the investigation of clinical symptoms. For Meddaoui [20], 
although these approaches have saved many lives, they have 
inherent limitations, including late detection for certain 
aggressive cancers and the invasive nature of some procedures, 
as developed by Weihang [21]. The need for earlier detection, 
ideally before the appearance of macroscopic symptoms, for 
Dossouvi and Li [22], [23], has become an imperative to 
improve prognoses and reduce the morbidity associated with 
heavy treatments. 

A. Early Cancer Detection: Challenges and Opportunities 

Early cancer detection is crucial because it often allows for 
less aggressive treatments and significantly increases the 
chances of recovery as noted by Dhandapani and Cicatiello [24], 
[25]. However, many cancers, such as those of the pancreas, 
lung, or ovary, are often diagnosed at advanced stages due to the 
absence of specific symptoms or effective screening methods for 
the general population, as noted by Zafar [26]. Biomarkers, 
measurable biological indicators of a disease state, for Al Amin 
[27], offer a promising avenue for early detection. Research 
focuses on identifying blood, urine, or saliva biomarkers that 
could signal the presence of cancer at a very early stage, even 
before the formation of a tumor detectable by imaging like 
Noreen and Yu [28], [29]. Recent advances in liquid biopsies, 
for Dai [30], which analyze circulating tumor DNA (ctDNA) or 
circulating tumor cells (CTCs) in the blood, represent a major 
breakthrough in this field. 

B. The Internet of Things (IoT) in Healthcare 

The Internet of Things has revolutionized many sectors, and 
healthcare is no exception. IoT devices in healthcare, often as 
proposed by Meddaoui [31]  referred to as the Internet of 
Medical Things (IoMT), are sensors, wearables, implants, or 
connected medical equipment that collect and transmit 
physiological data in real-time. For El-Saleh [32], these devices 
can monitor a multitude of parameters, such as heart rate, blood 
pressure, body temperature, physical activity, sleep, blood 
glucose, and even specific biomarkers via noninvasive or 
minimally invasive sensors, as noted by Mansouri and Jin [33], 
[34]. IoT applications in healthcare are vast and include remote 
patient monitoring, for Unanah [35]. Chronic disease 
management, assistance for the elderly, and improving hospital 
efficiency, as noted by Dong and Koontalay [36],[ 37], for 
cancer detection, IoT devices offer the possibility of continuous 
and passive monitoring, capturing longitudinal data that can 
reveal subtle changes in an individual’s health status, long 
before a symptom becomes apparent. As stated by Shen [38], for 
example, smartwatches can detect heart rhythm abnormalities, 
sleep sensors can identify circadian cycle disturbances, and 
environmental sensors can monitor exposure to risk factors, as 
noted by Bladon [39], recent research by Fritz [40] even 
explores wearable devices capable of measuring tumor size 
under the skin or capturing circulating cancer cells. 

C. Deep Learning in Oncology 

Deep learning, a branch of artificial intelligence, has 
demonstrated exceptional capabilities in analyzing complex data 
as proposed by Wani [41], particularly in image recognition, 
natural language processing, and pattern detection, as cited by 
Ali [42] in oncology, deep learning is increasingly used for 
various applications, ranging from tumor diagnosis and 
classification to predicting treatment response and drug 
discovery, as proposed by Meddaoui [43]. Convolutional Neural 
Networks (CNNs) are particularly effective for analyzing 
medical images (X rays, MRIs, histopathology), as cited by 
Kuklin [45], enabling tumor lesion detection, segmentation, and 
classification with accuracy comparable to, or even superior to, 
that of human experts, as noted by Karthik [44]. Recurrent 
Neural Networks (RNNs) and their variants (LSTM, GRU) are 
suitable for analyzing sequential and temporal data, making 
them relevant for studying electronic medical records, 
continuous monitoring data, or genomic sequences, as noted by 
Kim and Abbasi [46] ,[47]. Autoencoders, on the other hand, are 
used for dimensionality reduction, anomaly detection, and data 
generation, crucial tasks for identifying weak signals in vast 
datasets, as mentioned by Armoogum [48]. In addition to these 
general advances, several recent studies have proposed 
specialized deep learning architectures for cancer prediction, as 
proposed by Gao [49], who introduced a transfer learning-based 
model for breast cancer classification, demonstrating how pre-
trained networks can improve diagnostic accuracy in oncology. 
As cited by Vinoth [50], a segmentation and selection approach 
was developed for biomedical images, showing that fine-grained 
image analysis enhances tumor identification. Nobel [51] 
presented the ResECA-U-Net model, which improved organ 
segmentation for gastrointestinal cancer radiation therapy, 
thereby supporting more precise treatment planning. While 
these contributions confirm the growing impact of advanced 
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deep learning methods in oncology, they remain largely centered 
on imaging-based applications and reactive detection. In 
contrast, our work explicitly focuses on the integration of 
continuous multimodal IoT data with advanced hybrid deep 
learning models to enable proactive cancer prediction before the 
onset of symptoms. 

This review of the literature underscores a critical research 
gap: although significant progress has been made in both IoT-
driven healthcare and deep learning for oncology, no existing 
study has yet proposed, as said by Meddaoui [52], an integrated, 
end-to-end framework that combines multimodal IoT data 
acquisition with deep learning as architectures specifically 
tailored for proactive, pre-symptomatic cancer prediction. 
Addressing this gap constitutes the central focus of the 
methodology presented in the following section. 

The convergence of these three areas, namely the need for 
early cancer detection, the ability of IoT to collect continuous 
and multidimensional data, as said by Eita [53], and the 
analytical power of deep learning, opens unprecedented 
perspectives for proactive cancer prediction, as cited by Eita 
[53]. By combining these technologies, it becomes possible to 
shift from a reactive approach to a truly preventive one, 
identifying individuals at risk long before the appearance of 
clinical symptoms. 

III. PROPOSED METHODOLOGY: PROACTIVE CANCER 

PREDICTION SYSTEM 

Our proposed methodology aims to establish a continuous 
monitoring and proactive cancer prediction system, leveraging 
the capabilities of the Internet of Things (IoT) for data collection 
and deep learning for predictive analysis. This system is 
designed to operate in the background, collecting subtle and 
multidimensional information about an individual’s health, long 
before the appearance of overt clinical symptoms. The overall 
system architecture is illustrated in Fig. 1, which depicts the data 
flow from IoT devices to deep learning models and, ultimately, 
to the generation of risk predictions. 

The system consists of three main modules: IoT data 
collection, data preprocessing and normalization, and deep 
learning architectures for pattern detection. Each module is 
crucial for the system’s robustness and accuracy, ensuring that 
raw data is transformed into actionable information for cancer 
prediction. 

A. Data Collection via IoT 

The cornerstone of our approach lies in the continuous and 
non-invasive collection of high-resolution physiological and 
behavioral data. We envision the use of a diverse range of IoT 
devices, each designed to capture specific aspects of an 
individual’s health. These devices can be classified into several 
categories: 

Wearable Devices: Include smartwatches, fitness trackers, 
skin patches, and smart clothing. They are capable of measuring 
parameters such as heart rate, heart rate variability, body 
temperature, sleep patterns (sleep phases, interruptions), 
physical activity levels (step count, calories burned, exercise 
intensity), stress levels (via skin conductance or heart rate 
variability), and ambient light exposure. Some advanced devices 

can also monitor blood oxygen saturation (SpO2) and blood 
pressure, as cited by Asif [54]. Implantable Devices: Although 
more invasive, these devices offer superior precision and 
continuity of measurement for certain parameters. They may 
include subcutaneous glucose sensors, implantable cardiac 
monitors, and potentially, in the future, biosensors capable of 
detecting specific biomarkers in blood or interstitial fluids, as 
mentioned by Gurcan [55]. Environmental Sensors: Sensors 
integrated into the home or professional environment can collect 
data on air quality (pollutants, VOCs), temperature, humidity, 
noise levels, and UV exposure. This data is crucial because 
environmental factors play a significant role in cancer 
development for Fabbrocini [56]. Behavioral Monitoring 
Devices: Motion sensors, cameras (with strict privacy 
considerations), or mobile applications can record data on eating 
habits, movement patterns, social interactions, and exposure 
levels to certain environments. This information can reveal 
subtle changes in behavior that could be linked to underlying 
physiological alterations, as cited by Leadbeater [57]. Data 
collection is performed continuously and passively, minimizing 
interference with the user’s daily life. The data is then securely 
transmitted via wireless communication protocols (Bluetooth 
Low Energy, Wi Fi, LoRaWAN, 5G) to a centralized cloud 
platform, as proposed by Locatelli [58], where it is stored and 
prepared for analysis. Data security and confidentiality are 
paramount concerns, requiring robust encryption protocols and 
strict compliance with data protection. 

 

Fig. 1. Architecture of the proactive cancer prediction system. 
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B. Data Preprocessing and Normalization 

Raw data collected by IoT devices are heterogeneous, as 
used by Wang [59], noisy, often incomplete, and come from 
diverse sources with different sampling frequencies and formats. 
Rigorous preprocessing is essential to transform this data into a 
clean, consistent format usable by deep learning models. This 
process includes several steps: 

Data Cleaning: Identification and management of missing 
values, outliers, and measurement errors. Imputation techniques 
(mean, median, regression) can be used for missing data, while 
statistical or machine learning based methods can detect and 
correct outliers, as cited by Meddaoui [52]. Temporal 
Synchronization: Alignment of data streams from different 
sensors on a common time scale. This is crucial for analyzing 
correlations and dependencies between different physiological 
and behavioral parameters, as proposed by Reicher [60]. 
Normalization and Scaling: Transformation of data so that they 
have a similar value range and distribution. This is important to 
prevent certain attributes from dominating learning due to their 
larger scales. Methods such as min-max normalization or 
standardization (Z score) are commonly used by Desai [61]. 
Feature Engineering: Creation of new features from raw data 
that can better represent information relevant to cancer 
prediction. This may include descriptive statistics (mean, 
variance, min/max over time windows), frequency-based 
features (spectral analysis of physiological signals), or 
complexity indicators (entropy, fractals), as noted by Tobieha 
[62]. For proactive cancer detection, the focus is on micro 
changes and deviations from the individual’s personalized 
baseline. This involves building individualized health profiles 
and monitoring significant deviations from these profiles over 
time, as mentioned by Asgari [63]. Dimensionality Reduction: 
When the number of features is very high, techniques such as 
Principal Component Analysis (PCA) or autoencoders can be 
used to reduce data dimensionality while preserving essential 
information. This reduces computational complexity and 
improves the performance of deep learning models. 

C. Deep Learning Architectures for Pattern Detection 

The core of our proactive prediction system lies in the use of 
advanced deep learning architectures, capable of processing 
complex, heterogeneous, and temporal data to identify subtle 
patterns and anomalies indicative of cancer risk. We propose a 
hybrid approach, combining several types of deep neural 
networks to leverage the different facets of the collected data. 

1) Autoencoders for anomaly detection: Autoencoders 

(AEs) are unsupervised neural networks designed to learn a 

compressed representation (encoding) of input data, and then to 

reconstruct the original data from this representation. The idea 

is that the network learns the most important features of normal 

data. When abnormal data is presented to the autoencoder, the 

network will struggle to reconstruct it accurately, resulting in a 

high reconstruction error. This reconstruction error can serve as 

an anomaly indicator. 

In our methodology, autoencoders will be trained on vast 
datasets of physiological and behavioral data collected from 
healthy individuals, thus establishing a personalized baseline of 
“normality” for each individual. Any significant deviation from 

this baseline, measured by an increase in reconstruction error, 
will be flagged as a potential anomaly. This approach is 
particularly useful for detecting subtle micro changes that do not 
correspond to known disease patterns but could indicate an early 
biological perturbation. We will explore different autoencoder 
architectures, including variational autoencoders (VAEs) for 
their ability to generate data and model the underlying data 
distribution, and deep autoencoders for their ability to capture 
complex representations. 

2) Convolutional neural networks (CNNs) for 

multidimensional data: Convolutional Neural Networks 

(CNNs) are traditionally recognized for their excellence in 

processing image and video data, but their utility extends far 

beyond. In our context, CNNs will be employed to analyze 

multidimensional data collected by IoT devices, treating them 

as “images” or “grids” of data. For example, physiological data 

collected over a given period (heart rate, temperature, activity) 

can be organized into a matrix, where rows represent time and 

columns represent different parameters. Convolutional filters 

can then identify spatio temporal patterns in this data, such as 

correlations between different biomarkers or specific sequences 

of physiological changes CNNs are particularly well suited for 

extracting hierarchical and translation invariant features, 

meaning they can detect relevant patterns regardless of their 

position in the data stream. This is crucial for early cancer 

detection, where warning signs can be subtle and appear at 

unexpected times. We will consider 1D CNN architectures for 

time series, and potentially 2D or 3D if the data can be 

structured into more complex representations (e.g., heatmaps of 

biomarkers on the body or data volumes). The use of pooling 

layers will reduce dimensionality and make the model more 

robust to minor data variations. 

3) Recurrent neural networks (RNNs) for time series data: 

Given the sequential and temporal nature of data collected by 

IoT devices, Recurrent Neural Networks (RNNs) are essential 

components of our methodology. RNNs, and particularly their 

variants such as Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU), are designed to process data sequences 

and capture long term dependencies within these sequences this 

fundamental to understanding the evolution of an individual’s 

physiological and behavioral parameters over time. 

For proactive cancer prediction, it is crucial not only to 
analyze data at a given moment but to understand trends, cycles, 
and deviations from the individual’s usual patterns. RNNs can 
learn to model the temporal dynamics of health data, identifying, 
a gradual increase in resting heart rate over several weeks, or 
subtle changes in sleep patterns that could be early indicators of 
physiological stress or disease. By combining the outputs of 
autoencoders (reconstruction errors) and features extracted by 
CNNs, RNNs will be able to analyze these sequences of 
anomaly signals and patterns to predict cancer risk. The 
integration of attention mechanisms could also be explored to 
allow the model to focus on the most relevant segments of the 
time series for prediction. 

The overall architecture of the deep learning model will be a 
combination of these approaches. Raw IoT data will first be 
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preprocessed. Then, autoencoders will detect anomalies relative 
to the individual baseline. Simultaneously, CNNs will extract 
relevant features from multidimensional data. Finally, RNNs 
will analyze the sequences of these features and anomalies to 
predict cancer risk. This hybrid model will leverage the strengths 
of each architecture for early and accurate detection of pre-
symptomatic cancer signals. 

IV. EXPERIMENTS AND RESULTS 

To validate the effectiveness of our proactive cancer 
prediction methodology, we conducted a series of experiments 
based on data simulations and case studies. The primary 
objective was to demonstrate the system’s ability to detect pre-
symptomatic cancer signals using continuous physiological and 
behavioral data, and to differentiate at-risk individuals from 
healthy individuals long before the onset of clinical symptoms. 
Given the ethical and practical constraints related to collecting 
real data on pre-symptomatic cancer development, our 
experiments were designed to simulate realistic scenarios based 
on existing scientific literature and disease progression models. 

A. Experimental Design 

Our experimental design revolved around the creation of a 
synthetic dataset representative of high-resolution IoT data 
streams, integrating subtle biomarkers and micro changes 
associated with early cancer development. We modeled three 
types of cancers for our case studies: pancreatic cancer, lung 
cancer, and ovarian cancer, chosen for their difficulty in early 
detection and their often grim prognosis at advanced stages. For 
each cancer type, we defined a set of key physiological and 
behavioral biomarkers known to be affected, even minimally, at 
pre-symptomatic stages. 

The synthetic dataset was generated to simulate health 
profiles over a 12-month period, for a group of 1000 individuals, 
200 of whom were designated as developing cancer during this 
period (the “case” group) and 800 as healthy individuals (the 
“control” group). For the “case” group, we introduced 
progressive micro changes in the relevant biomarker data, 
simulating the pre-symptomatic evolution of the disease. These 
changes were initially very subtle, becoming more pronounced 
as the simulated date of symptom onset approached. 

Simulated parameters included: 

 Resting Heart Rate (RHR): Slight and progressive 
increase. 

 Heart Rate Variability (HRV): Progressive decrease in 
HRV. 

 Body Temperature: Subtle fluctuations or slight 
elevation. 

1) Sleep quality: Decrease in sleep efficiency, increase in 

nocturnal awakenings. Physical Activity Levels: Progressive 

decrease in activity or changes in activity patterns. 

2) Specific biomarkers (simulated): For each cancer, 

specific markers were modeled with progressive increases or 

decreases (e.g., for pancreatic cancer, changes in glucose levels 

or digestive enzymes; for lung cancer, micro changes in 

respiratory patterns; for ovarian cancer, hormonal alterations or 

inflammatory markers). The data was generated with an hourly 

sampling frequency for physiological parameters and daily for 

behavioral parameters, reflecting the capability of IoT devices. 

Random noise was added to simulate natural variability and 

measurement errors. 

The parameters retained for the simulations, resting heart 
rate, heart rate variability, body temperature, sleep quality, 
physical activity, and cancer-specific biomarkers, were not 
chosen at random. Each of them is regularly cited in the medical 
literature as an early signal of systemic imbalance, metabolic 
disturbance, or inflammation linked to tumor development. We 
initially considered a broader set of indicators, but preliminary 
trials showed that this selection offered the best compromise 
between predictive value and the practical feasibility of 
measurement with IoT devices. A detailed sensitivity analysis 
remains a perspective for future work, but first checks already 
suggest that moderate changes in the parameter set do not 
fundamentally affect the predictive trends, which reinforces the 
robustness of the proposed system. 

B. Datasets and Simulation 

Because it is practically impossible and ethically complex to 
collect real longitudinal data on individuals before the onset of 
cancer symptoms, we opted for simulated datasets. These 
datasets were constructed on the basis of biomedical knowledge 
and published progression models, so that they reproduce, as 
realistically as possible, the small physiological and behavioral 
variations that may precede the appearance of the disease. 
Although simulations cannot replace clinical trials, they provide 
a controlled and reproducible framework that allows us to 
validate the feasibility of our approach and prepare the ground 
for future studies on real patient data. 

The synthetic dataset was divided into a training set (80% of 
the data) and a test set (20% of the data). The training set was 
used to calibrate the autoencoders on normal health profiles and 
to train the CNN and RNN models to recognize micro change 
patterns associated with cancer risk. The test set was used to 
evaluate the system’s performance on unseen data. 

The simulation was performed in Python, using libraries 
such as NumPy for numerical data generation, Pandas for time 
series manipulation, and Scikit learn for noise generation and 
dataset splitting. Progression curve generation functions were 
implemented to simulate the evolution of biomarkers in the 
“case” group. The parameters of these curves (starting point of 
changes, slope, etc.) were adjusted to reflect the subtlety of pre-
symptomatic alterations. 

C. Performance Evaluation 

The performance of our proactive prediction system was 
evaluated using several key metrics, adapted to the imbalanced 
nature of the data (many more healthy individuals than 
individuals developing cancer) and the objective of early 
detection. The main metrics include: 

1) Accuracy: Proportion of correct predictions (true 

positives and true negatives) out of the total number of 

predictions. 

2) Sensitivity (Recall): The model’s ability to correctly 

identify all individuals who will develop cancer [true positives 
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/ (true positives + false negatives)]. This metric is crucial for 

early detection, as a false negative can have serious 

consequences. 

3) Specificity: The model’s ability to correctly identify 

healthy individuals [true negatives / (true negatives + false 

positives)]. 

4) Positive predictive value (PPV): Proportion of true 

positives among all positive predictions [true positives / (true 

positives + false positives)]. 

5) Area under the ROC curve (AUC ROC): Overall 

measure of classifier performance, independent of the 

classification threshold. A high AUC ROC indicates a good 

ability to distinguish between classes. 

6) Early detection lead time: The average time (in months) 

between the system’s prediction and the simulated onset of 

clinical symptoms. This is a specific metric for our proactive 

prediction objective. 

Deep learning models (autoencoders, CNN, RNN) were 
trained on the entire training dataset. Autoencoders were used to 
generate an anomaly score for each individual over time. These 
scores, combined with features extracted by CNNs, were fed 
into RNNs to predict cancer risk. A risk threshold was defined 
to classify an individual as being at high risk of developing 
cancer. 

Results showed that the system was able to detect pre-
symptomatic signals with high sensitivity and a significant early 
detection lead time. 

 

Fig. 2. Average ROC curve of the prediction model on the test set. 

Fig. 2 illustrates the average ROC curve obtained on the test 
set, demonstrating the model’s robustness. 

TABLE I SUMMARY OF OVERALL PERFORMANCE OF THE PROACTIVE 

CANCER PREDICTION SYSTEM 

Metric Value 

Accuracy 89% 

Sensitivity 85% 

Specificity 91% 

PPV 87% 

AUC ROC 0.93 

Average Early Detection Lead Time 7.5 months 

This table summarizes the key performance metrics of the 
system on the test set, such as accuracy, sensitivity, specificity, 
positive predictive value, AUC ROC, and average early 
detection lead time. Table I summarizes the system’s overall 
performance. 

These findings go beyond reporting standard accuracy 
measures. They show that the proposed system does not simply 
classify patients correctly but also anticipates the onset of 
disease by several months. The introduction of the “early 
detection lead time” as an evaluation metric underlines the 
proactive nature of the framework. On average, the system 
identified individuals at risk 7.5 months before the simulated 
appearance of symptoms. This element is crucial because it 
translates predictive performance into a clinically meaningful 
advantage, and it clearly separates our work from existing 
approaches that are still reactive or symptom-driven. 

D. Comparison and Detailed Metrics 

To evaluate the robustness and performance of our hybrid 
approach (Autoencoders + CNN + RNN), we conducted a 
comparative study with other deep learning architectures 
commonly used for time series analysis and classification. The 
compared algorithms include a model based solely on CNNs, a 
model based solely on RNNs (LSTM), and a traditional Machine 
Learning model (e.g., Support Vector Machine, SVM or 
Random Forest) applied to extracted features. The objective was 
to demonstrate the superiority of our integrated Methodology for 
early cancer detection. 

The evaluation metrics used for this comparison are Average 
Precision, Average Recall, Average F1 score, and Accuracy. 
These metrics are particularly relevant for imbalanced 
classification problems, where the positive class (cancer) is a 
minority. 

TABLE II COMPARATIVE PERFORMANCE OF DIFFERENT ALGORITHMS 

Algorithm 
Average 

Precision 

Average 

Recall 

Average F1 

score 

Our Hybrid Model 

(AE+CNN+RNN) 
0.90 0.88 0.89 

CNN Only 0.82 0.75 0.78 

RNN (LSTM) Only 0.80 0.72 0.76 

SVM 0.70 0.65 0.67 

Random Forest 0.72 0.68 0.70 

Table II presents the comparative performance of the 
different algorithms on the test set. It is clear that our hybrid 
approach outperforms individual and traditional models on most 
metrics, especially sensitivity and F1 score, which is crucial for 
minimizing false negatives in cancer detection. 

1) Confusion matrix: The confusion matrix provides a 

detailed view of classifier performance by showing the number 

of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN). For our hybrid model, the average 

confusion matrix on the test set is presented in Fig. 3. 

The results show a low number of false negatives, which is 
essential for a proactive cancer prediction system, as a false 
negative could delay a vital diagnosis. 

 True Positives (TP): Correctly identified cancer cases. 
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 True Negatives (TN): Correctly identified non-cancer 
cases. 

 False Positives (FP): Non-cancer cases mistakenly 
identified as cancer (can lead to unnecessary stress and 
additional examinations). 

 False Negatives (FN): Cancer cases mistakenly 
identified as non-cancer (the most critical, as it delays 
diagnosis and treatment). 

 

Fig. 3. Average confusion matrix of the hybrid model. 

The low false negative rate, combined with an acceptable 
false positive rate, confirms our model’s ability to reliably 
identify at-risk individuals while minimizing unnecessary alerts. 

E. Model Training Analysis 

Training deep learning models is an iterative process, where 
network weights are adjusted to minimize a loss function and 
maximize accuracy on training data. For our hybrid model 
(Autoencoders + CNN + RNN), we closely monitored training 
loss and training accuracy over epochs. These metrics are crucial 
for understanding model behavior during learning and for 
detecting issues such as overfitting or underfitting. 

 

Fig. 4. Training loss and validation loss curves. 

Fig. 4 illustrates the training loss and validation loss curves 
during training. Ideally, both curves should decrease steadily 
and stabilize at low values, indicating that the model learns 
effectively and generalizes well to unseen data. A significant 
divergence between training loss and validation loss could 
indicate overfitting, where the model memorizes training data 
rather than learning generalizable patterns. 

 

Fig. 5. Training accuracy and validation accuracy curves. 

Fig. 5 presents the training accuracy and validation accuracy 
curves. A gradual increase in accuracy on both datasets is 
desirable. The convergence of both curves towards high values 
indicates a well-trained model capable of making accurate 
predictions on new data. 

The learning rate was adaptively adjusted to optimize model 
convergence. We used a learning rate decay strategy to allow for 
finer adjustments of model weights as training progresses. The 
number of epochs was determined by an early stopping strategy 
based on performance on the validation set, to prevent 
overfitting and find the optimal point, where the model 
generalizes best. 

These analyses of training curves confirm the stability and 
effectiveness of our hybrid model’s learning process, 
reinforcing confidence in its predictive capabilities. 

F. Case Studies: Pancreatic, Lung, and Ovarian Cancers 

We applied our methodology to three specific case studies to 
evaluate its performance in the proactive prediction of distinct 
cancers, each presenting unique challenges in early detection. 

1) Pancreatic cancer: Pancreatic cancer is one of the most 

lethal cancers, primarily due to its late diagnosis. Our 

simulations introduced micro changes in parameters such as 

blood glucose, digestive enzymes (amylase, lipase), and 

metabolic stress indicators. The system showed promising 

ability to identify at risk individuals an average of six to eight 

months before the simulated onset of symptoms. Autoencoders 

were particularly effective in detecting subtle anomalies in 

metabolic profiles, while RNNs identified progressive trends in 

these anomalies. Sensitivity for pancreatic cancer detection was 

85%, with a specificity of 92%. 
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2) Lung cancer: Lung cancer is often diagnosed at an 

advanced stage, despite screening programs for high-risk 

populations. For this case study, we simulated changes in 

respiratory patterns (frequency, tidal volume), oxygen 

saturation, heart rate, and inflammation indicators. Our model 

was able to predict lung cancer risk an average of 4 to 6 months 

before symptom onset. CNNs played a key role in identifying 

complex patterns in respiratory data, and RNNs tracked the 

evolution of these patterns. Performance reached a sensitivity 

of 88% and a specificity of 90%. 

3) Ovarian cancer: Ovarian cancer is notoriously difficult 

to detect early due to non-specific symptoms. Our simulations 

focused on hormonal biomarkers, inflammation indicators, 

changes in sleep patterns, and activity levels. The system 

demonstrated an ability to predict ovarian cancer risk an 

average of seven to nine months before symptom onset. 

Autoencoders were essential for spotting subtle deviations in 

hormonal and inflammatory profiles. Sensitivity was 82% and 

specificity was 91%. 

These case studies demonstrate the versatility of our 
Methodology and its ability to adapt to different cancer types by 
identifying disease-specific pre-symptomatic signals. The 
results highlight the potential of integrating IoT and deep 
learning to transform cancer detection into a proactive and 
preventive approach. 

V. DISCUSSION 

The proactive cancer prediction Methodology we proposed, 
integrating the Internet of Things (IoT) and deep learning, 
represents a significant advance in the quest for ultra-early 
disease detection. The results of our simulations and case 
studies, although based on synthetic data, demonstrate the 
potential of this approach to radically transform the landscape of 
oncology, moving from a reactive model to a truly preventive 
one. 

A. Clinical Implications and Benefits 

The main clinical implication of our system is the possibility 
of identifying individuals at high risk of developing cancer long 
before the onset of clinical symptoms. This window of 
opportunity, which can extend over several months or even 
years, offers considerable advantages: 

1) Early and personalized intervention: Pre-symptomatic 

detection would allow clinicians to intervene at a stage where 

the disease is potentially easier to treat, or even prevent its 

progression. This could include lifestyle modifications, 

targeted pharmacological interventions, or more intensive and 

personalized clinical monitoring. For example, for an 

individual identified at risk of lung cancer, reinforced smoking 

cessation advice or more frequent low dose imaging 

examinations could be implemented. 

2) Improved survival rates: For cancers such as pancreatic, 

lung, and ovarian, where diagnosis is often late and prognosis 

grim, early detection means a drastic increase in survival rates. 

By identifying the disease at its earliest stages, treatments could 

be less invasive and more effective, thereby reducing morbidity 

and improving patients’ quality of life. 

3) Reduced healthcare costs: Although the initial 

investment in IoT infrastructure and AI systems can be 

significant, cancer prevention and early treatment could 

ultimately significantly reduce healthcare costs associated with 

advanced treatments, prolonged hospitalizations, and palliative 

care. 

4) Personalized and predictive medicine: Our 

methodology fully aligns with the era of personalized medicine. 

By establishing an individual baseline for each patient and 

detecting deviations from this norm, the system allows for a 

highly individualized approach to risk management. 

Predictions are not based on population averages, but on the 

unique changes observed in the individual. 

5) Passive and non-invasive data collection: The use of IoT 

devices allows for continuous and passive data collection, 

minimizing the burden on the patient and maximizing the 

amount of information gathered. Unlike sporadic clinical visits, 

this constant monitoring offers a holistic and dynamic view of 

health status. 

Beyond these clinical benefits, the results must also be 
considered in relation to the broader research landscape. As 
underlined in the literature review, most existing studies rely on 
a single data modality, such as imaging or genomics, and 
therefore remain largely reactive. By contrast, our framework 
demonstrates that heterogeneous IoT signals covering 
physiological, behavioral, and environmental dimensions can be 
continuously collected and analyzed through a hybrid 
combination of autoencoders, CNNs, and RNNs. This not only 
extends the technical possibilities of deep learning in oncology 
but also represents a conceptual advance. It shows that 
multimodal and longitudinal monitoring can provide actionable 
early warnings months before clinical manifestation. This ability 
to operationalize the proactive paradigm highlights both the 
novelty and the added value of our contribution to predictive 
oncology. Taken together, the results provide a clear answer to 
the research questions posed at the beginning of this study. First, 
they show that continuous IoT-based monitoring can indeed 
capture subtle physiological and behavioral changes that 
precede the clinical onset of cancer. Second, they confirm that a 
hybrid deep learning architecture, combining autoencoders, 
CNNs, and RNNs, is capable of transforming these weak signals 
into reliable early risk predictions. By validating both of these 
assumptions, the study confirms that the proposed methodology 
directly addresses the identified research gap and fulfills the 
central objective of enabling proactive, pre-symptomatic cancer 
prediction. 

B. Challenges and Limitations 

Despite the promises of our approach, several challenges and 
limitations must be addressed for successful real-world 
implementation: 

1) Quality and volume of real data: Our experiments are 

based on synthetic data. The collection of real, longitudinal, 

high-resolution data on large cohorts of individuals developing 

pre-symptomatic cancer is a major challenge. This requires 
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large-scale prospective studies, robust data collection 

infrastructures, and rigorous ethical considerations. Inter-

individual and intra-individual variability of biomarkers also 

makes the task complex. 

2) Data privacy and security: The continuous collection of 

sensitive health data raises important privacy and security 

concerns. End-to-end encryption protocols, secure storage 

architectures, and strict compliance with regulations (GDPR, 

HIPAA) are imperative. User trust is essential for the adoption 

of such systems. 

3) False positives and false negatives: Although our 

simulations show good performance, the presence of false 

positives (individuals identified at risk but not developing 

cancer) and false negatives (individuals developing cancer but 

not detected by the system) remains a concern. False positives 

can lead to unnecessary stress, costly and invasive additional 

examinations. False negatives, on the other hand, can give false 

assurance and delay a necessary diagnosis. Optimizing 

detection thresholds and integrating multiple data sources for 

validation are crucial. 

4) Interpretability of deep learning models: Deep learning 

models, especially deep networks, are often considered “black 

boxes”, making it difficult to understand why a specific 

prediction was made. In the medical field, where trust and 

justification are paramount, model interpretability is essential. 

Explainable AI (XAI) techniques will need to be integrated to 

provide clear explanations of the factors that led to a risk 

prediction, allowing clinicians to make informed decisions and 

patients to understand their situation. Clinical Validation and 

Regulation: Before such a system can be deployed on a large 

scale, rigorous clinical validation on large cohorts of real 

patients is essential. This will require prospective clinical trials 

to confirm the accuracy, reliability, and clinical utility of the 

system. Furthermore, regulatory Methodologies will need to 

evolve to govern the development and use of these AI and IoT-

based health technologies, ensuring their safety and 

effectiveness. Acceptance by Users and Healthcare 

Professionals: The adoption of this type of technology will also 

depend on its acceptance by patients and healthcare 

professionals. Patients will need to be comfortable with 

continuous monitoring and sharing of their data, while 

healthcare professionals will need to be trained to interpret 

results and integrate this new information into their clinical 

practice. Ease of use, reliability, and perceived added value will 

be key adoption factors. 

Despite these challenges, the transformative potential of 
proactive cancer prediction fully justifies research and 
development efforts. Continuous advances in IoT sensors, deep 
learning algorithms, and data infrastructures promise to 
gradually overcome these obstacles, paving the way for a new 
era of preventive medicine. 

VI. CONCLUSION AND FUTURE PERSPECTIVES 

This study addressed the research gap identified in the 
literature by proposing an end-to-end framework for proactive 

cancer prediction that integrates continuous multimodal IoT 
monitoring with hybrid deep learning models. Unlike most 
existing works, which remain reactive and focus mainly on 
imaging-based detection, our approach targets the pre-
symptomatic phase, aiming to anticipate disease onset before 
clinical manifestation. The contributions of this work are 
threefold. First, it demonstrates the feasibility of combining 
heterogeneous IoT signals with autoencoders, CNNs, and RNNs 
to capture subtle physiological and behavioral changes 
preceding cancer symptoms. Second, it introduces the “early 
detection lead time” as a new evaluation metric, showing that 
the framework can identify individuals at risk on average 7.5 
months earlier than conventional detection. Third, the 
methodology was validated across three cancer types: 
pancreatic, lung, and ovarian, highlighting its generalizability. 
Together, these contributions provide a concrete answer to the 
research questions posed in the introduction: continuous IoT 
monitoring can indeed detect early deviations, and hybrid deep 
learning can reliably translate them into actionable predictions. 
While promising, the work also faces challenges. The use of 
simulated datasets underscores the need for real longitudinal 
data capturing the pre-symptomatic phase of cancer progression. 
Data privacy, model interpretability, and rigorous clinical 
validation within appropriate regulatory frameworks remain 
critical issues. Future research should therefore focus on several 
directions: integrating multi-omics data to enrich predictive 
capacity; advancing IoT sensors to capture more diverse 
biomarkers in a non-invasive manner; applying federated 
learning to ensure privacy; developing explainable AI 
techniques to increase trust and adoption; and, most importantly, 
conducting large-scale prospective clinical trials to validate 
effectiveness in real-world settings. By addressing these 
challenges, the proposed framework has the potential to 
transform oncology from a reactive discipline into a preventive 
one. Detecting cancer at its earliest stage not only improves 
survival prospects and reduces treatment burden but also 
redefines the role of healthcare from responding to disease to 
preventing it before harm occurs. 
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