
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

230 | P a g e

www.ijacsa.thesai.org

Comparative Analysis of Machine Learning and Deep

Learning Models for Handwritten Digit Recognition

Soukaina Chekki, Boutaina Hdioud, Rachid Oulad Haj Thami, Sanaa El Fkihi

Advanced Digital Enterprise Modeling and Information Retrieval (ADMIR) Laboratory-Rabat IT Center, Information Retrieval

and Data Analytics Team (IRDA), ENSIAS, Mohammed V University in Rabat, Rabat, Morocco

Abstract—Handwritten digit recognition (HDR) forms a key

component of computer vision systems, especially in optical

character recognition (OCR). This study presents a comparative

analysis of Machine Learning (ML) algorithms and Deep

Learning (DL) models for HDR tasks. A contour-based

segmentation technique was applied in preprocessing to enhance

feature extraction by detecting digit boundaries and reducing

noise. ML models, including K-Nearest Neighbors (KNN) and

Support Vector Machine (SVM), and DL architectures, such as

Artificial Neural Networks (ANNs), Convolutional Neural

Networks (CNNs), and Recurrent Neural Networks (RNNs), were

evaluated on the Modified National Institute of Standards and

Technology (MNIST) and the National Institute of Standards and

Technology (NIST) datasets. The results demonstrate that DL

models significantly outperform ML algorithms in terms of

accuracy and robustness, while the KNN model achieved

acceptable results. The results underline the importance of

contour-based preprocessing in boosting deep learning techniques

for HDR.

Keywords—Handwritten digit recognition (HDR); Optical

Character Recognition (OCR); Machine Learning (ML); Deep

Learning (DL); segmentation

I. INTRODUCTION

Handwritten text recognition has long been a challenging
and active research field, particularly due to the reliance on
handcrafted features and prior knowledge in traditional optical
character recognition (OCR) systems. Handwritten digit
recognition (HDR) has attracted continuous attention over the
decades, with advances in computing, artificial intelligence, and
imaging since the 1960s driving progress [1], [2], [3], [4].
Although recent developments in deep learning have
significantly improved recognition accuracy, the growing
demand for large datasets and computational resources
continues to motivate research toward more efficient solutions.
Robust methods exist for several languages such as English,
Chinese, and Japanese [5], [6], [7], [8], [9]; however,
recognition of highly variable handwritten digits remains a
significant challenge.

This study focuses on offline HDR, where variability in
handwriting, overlapping digits, and noise make segmentation a
critical step. In particular, separating connected digits remains a
difficult problem that directly impacts recognition performance.
To address these challenges, we propose a contour-based
segmentation approach combined with machine learning and
deep learning models. Five models were evaluated: Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial
Neural Network (ANN), Recurrent Neural Network (RNN), and

Convolutional Neural Network (CNN), all widely used in
supervised learning and image-based pattern recognition.

Our system was trained on the MNIST dataset and tested on
the NIST dataset, which contains numerous complex examples
with challenging segmentation cases, making it a particularly
suitable benchmark for evaluation. Morphological and
geometric operations were integrated to enhance robustness
against noisy handwritten images. The proposed approach
achieved high recognition accuracy, demonstrating the
effectiveness of combining contour-based segmentation with
ML and DL techniques.

This work contributes to HDR research by providing a
comparative evaluation of machine learning and deep learning
approaches while highlighting the critical role of segmentation
in offline recognition systems.

The study is organized as follows: Section II reviews related
work. Section III presents the proposed methodology. Section
IV describes the approaches used for recognizing handwritten
digits, including details of all models employed. Section V
presents experimental results, and Section VI concludes the
study and outlines future work.

II. RELATED WORK

HDR remains a central topic in machine learning due to its
practical relevance and the inherent variability of human
handwriting. Recent approaches increasingly rely on data-driven
methods that integrate traditional algorithms with deep neural
networks to enhance recognition performance. Achieving
accurate character recognition from image inputs requires
effective techniques, particularly in segmentation-based
methods [10], [11].

HDR has been extensively investigated using both
traditional ML and modern DL techniques. Early and recent
studies have explored handcrafted feature extraction methods
for HDR. Techniques such as Histogram of Oriented Gradients
(HOG), Local Binary Patterns (LBP), and Gabor filters were
widely used to extract discriminative image features. Classifiers
including K-Nearest Neighbor (KNN), Support Vector Machine
(SVM), Random Forest (RF), and Gradient-Boosted Decision
Trees (GBDT) were then applied. For instance, combining HOG
features with SVM achieved an accuracy of 93.32% on the
NumtaDB dataset [12], highlighting the moderate yet consistent
performance of feature-based ML approaches.

Transfer learning using pre-trained CNNs has also been
applied, particularly for non-Latin scripts such as Bengali digits.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

231 | P a g e

www.ijacsa.thesai.org

Networks including ResNet-50, Inception-v3, and
EfficientNetB0 were fine-tuned on the NumtaDB dataset
containing 17,000 instances across ten classes. These models
achieved 97% accuracy, demonstrating the benefits of
leveraging pre-trained representations to manage handwriting
variability and limited data scenarios [13].

However, more recent studies have reported slightly lower
accuracy, reflecting ongoing challenges in HDR. For example,
one study reported 97% accuracy on the NumtaDB dataset for
Bangla handwritten digits using a pre-trained CNN model [14],
[15], while another study achieved 96.9% accuracy with the
YOLOv8x model for digit detection [16].

Recent work has further investigated hybrid and ensemble
approaches. Hybrid models combining CNN-based feature
extraction with SVM classification, as well as ensembles
integrating CNNs with traditional ML classifiers, have achieved
higher accuracy, up to 99.30%, on benchmark datasets such as
MNIST [17], [18]. Additionally, optimization strategies,
including mini-batch and Hessian-free training techniques, have
been employed to enhance computational efficiency and
generalization [19].

In comparison, limited work has been conducted on
recognizing handwritten Farsi digits because of their cursive
structure and variation in shape, which differ considerably from
Latin-based scripts [20], [21]. A key distinction between the
Farsi and Arabic languages is the right-to-left writing
orientation, which introduces further complexity to the
segmentation and recognition tasks [22], [23], [24].

Despite these advances, limitations remain, particularly
regarding segmentation robustness and the handling of complex
scripts. These challenges motivate the proposed contour-based
segmentation approach, which integrates both machine learning
and deep learning models. By addressing overlapping and noisy
digits, the system aims to improve recognition accuracy on
challenging datasets, including MNIST for training and the more
complex NIST dataset for testing. Consequently, this work
contributes to overcoming current HDR limitations and
strengthening offline recognition capabilities.

III. METHODOLOGY

HDR systems rely on preprocessing, feature extraction, and
classification. This study assesses SVM, KNN, ANN, RNN, and
CNN within a contour-based pipeline to identify the best model.

A. General Architecture

Handwritten digit recognition systems are generally based
on the following steps, as shown in Fig. 1.

B. Image Acquisition

The acquisition phase captures handwritten text using
devices like scanners or digital cameras, converting it into digital
images (e.g., JPEG, PNG) with minimal information loss. These
images are then preprocessed to improve quality, correct
distortions, and remove noise, preparing them for reliable
analysis in tasks such as optical character recognition (OCR).

C. Image Preprocessing

Preprocessing prepares images for recognition by applying
binarization, noise reduction, normalization, and slant/skew

correction [25]. It may also extract handwritten fields and
remove backgrounds to isolate the target content.

1) Binarization (Thresholding): Applies either global or

adaptive thresholding based on pixel intensity.

2) Noise reduction and normalization: Uses filtering and

morphological operations. Normalization corrects slant, skew,

and size to reduce variability and improve accuracy [26], [27].

3) Mathematical morphology: Employs operations like

erosion, dilation, opening, closing, and morphological

gradients for noise removal and contour enhancement.

D. Segmentation

This phase aims to separate graphemes, words, or numerical
strings. Segmenting handwritten characters is one of the most
challenging tasks in text recognition. A typical application is the
recognition of numerical amounts in bank checks, which is
particularly difficult because of the presence of noise,
overlapping digits, and even the fragmentation of digits into
multiple disconnected components, making them difficult to
identify [28], [29].

E. Feature Extraction

Feature extraction is vital in character recognition, as
classifiers cannot compensate for poor features. It captures
relevant information to reduce within-class variability and
enhance class separability, yielding numerical feature vectors
[30]. Extracted features are generally classified as structural,
statistical, global (e.g., transformations), or topological/metric
features [31], [32].

F. Classification

After segmentation and feature extraction, classification
assigns inputs to classes based on feature vectors, typically
through supervised learning involving training and recognition
stages. Outcomes include successful classification, confusion
between similar classes, or rejection when no adequate match
exists. Classifiers vary in performance and robustness, with
main types including shape matching, structural methods, neural
networks, and statistical classifiers [33].

Fig. 1. General diagram of a handwritten digit recognition system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

232 | P a g e

www.ijacsa.thesai.org

G. Post-Processing

Post-processing refining recognition results through
linguistic, contextual, and structural analysis. It includes:

1) Lexical verification: Checks recognized words against a

dictionary, often with edit distance metrics.

2) Orthographic correction: uses n-gram models to correct

likely letter sequence errors, such as “tble” to “table”.

3) Syntactic validation: Ensures grammatical correctness

and suggests corrections [34].

4) Semantic adaptation: Validates word meaning based on

context.

5) Pragmatic adaptation: Detects anomalies by comparing

recognized words to expected formats.

Post-processing is essential for handling recognition
failures, especially those caused by upstream errors or limited
training data [35].

IV. APPROACHES USED IN RECOGNIZING HANDWRITTEN

DIGITS

Various classifiers are used in OCR development, including
parametric, non-parametric statistical, and hybrid methods. In
this study, after segmenting the relevant images, we applied ML
and DL models such as SVM, KNN, ANN, RNN, and CNN on
segmented images from the NIST dataset to recognize
handwritten digits. Each model was selected for its strengths in
handling different data aspects. Performance was evaluated
using accuracy, precision, recall, F1-score, confusion matrix,
and ROC/AUC, allowing clear comparison to identify the best
model.

A. Machine Learning

ML allows computers to learn from data without explicit
programming [36]. In handwritten digit recognition, ML
typically requires feature extraction before classification.
Traditional algorithms such as SVM, decision trees, and
Bayesian networks are flat models that depend heavily on
feature quality.

1) Support Vector Machine (SVM): SVMs are effective

classifiers in HDR, achieving up to 93,32 % accuracy using

projection histograms and HOG [37]. As illustrated in Fig. 2,

HDR has posed a significant challenge since the 1970s. Its

importance lies in applications, such as writer identification,

automated data extraction from scanned documents, and

various other domains that require reliable character

interpretation.

Fig. 2. Digits to recognize [38].

This study aims to accurately identify digits amid symbols
and noise, despite overlapping class boundaries caused by
similar digit shapes.

Formally, the objective function to be minimized in the
context of SVM is computed, as shown in Eq. (1):

 𝑓(ɛ, 𝑤) =
1

2
 ‖𝑤‖2 + 𝐶 ∑ ɛ𝑖

𝑛
𝑖=1 

where,

 ɛ𝒊 represents the slack variables for misclassified
samples (i.e., points located on the incorrect side of the
separating hyperplane).

 𝑪 is a regularization parameter that balances the trade-off
between maximizing the margin and minimizing
classification error.

 𝒘 denotes the weight vector that defines the hyperplane
orientation.

In such cases, margin-based methods that maximize the
distance between the support vectors and the hyperplane are
preferred. As illustrated in Fig. 3, this involves optimizing two
margin boundaries (e.g., defined by vectors 𝑤1 and 𝑤2) to
ensure robust separation, even in the presence of overlapping
classes.

Fig. 3. Feature space accompanied by the margin of error [38].

Fig. 4. Confusion matrix of our SVM model.

Fig. 4 shows the SVM confusion matrix on the MNIST
dataset, with 93.48% accuracy. High diagonal values indicate
strong overall performance, though some misclassifications
occur, notably for digit ‘4’. Performance improvements can be
achieved via data augmentation, hyperparameter tuning, feature
engineering, or hybrid classifiers. The following sections
compare these results with deep learning models on the same
dataset.

2) K-Nearest Neighbors (KNN): Among the various

classification methods, the KNN is notable for its simplicity and

effectiveness. It classifies new observations by identifying the

closest instances in the training dataset and assigning the most

common class to them [39].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

233 | P a g e

www.ijacsa.thesai.org

KNN retains all available training examples and uses a
distance-based similarity metric to perform classification. It is
widely recognized as a non-parametric lazy learning algorithm
[40] (see Algorithm 1).

Algorithm 1 KNN Algorithm (K-Nearest Neighbors)

Input: A labeled training set 𝐿 = {(𝑥′, 𝑐) }, and a new instance 𝑥

Output: Predicted class label for 𝑥

1. For each example (𝑥′, 𝑐) 𝜖 𝐿

 Calculate the distance 𝐷(𝑥, 𝑥′)

 End for

2. Select the 𝑘 nearest neighbors of 𝑥, denoted as 𝑘𝑁𝑁(𝑥), based

on the smallest distances

3. For each 𝑥′ 𝜖 𝑘𝑁𝑁(𝑥)

 count the occurrences of each class

 End for

4. Assign 𝑥 the class with the highest frequency among

neighbors

This approach measures similarity between test samples and
training data, classifying based on a threshold from the k-nearest
neighbors. KNN’s performance depends on the number of
neighbors, similarity metric, threshold, and data
representativeness [41]. Trained and tested on MNIST, the
Scikit-learn implementation used six neighbors with uniform
weights.

B. Deep Learning

1) Artificial Neural Networks (ANN): Fig. 5 illustrates the

architecture of the proposed ANN, which consists of an input

layer, hidden layer, and output layer [42]. The input layer is

connected to the hidden layer through weighted links, denoted

by 𝑊𝑖𝑗, where 𝑖 refers to the input neuron and 𝑗 to the hidden

neuron. Similarly, the connections between the hidden and

output layers are represented by the weights 𝑊𝑗𝑘 , where 𝑘

indicates the output neuron.

A bias term of +1 was integrated into the network to enhance
the flexibility of the parameter adjustment. The structure follows
a multi-layer perceptron (MLP) configuration.

In this model, the sigmoid activation function was applied to
both hidden and output layers. As shown in Eq. (2), the sigmoid
maps input values to the [0, 1] range, allowing smooth, bounded
output transitions and supporting effective training.

𝑔(𝑥) =
1

1+𝑒−𝑥 (2)

In this context, 𝑔(𝑥) denotes the sigmoid activation
function, and 𝑥 represents the net input, that is the weighted sum
of the inputs to a neuron.

2) Réseaux De Neurones Récurrents (RNN) : Unlike MLPs,

RNNs (Fig. 6) have cycles in their computational graphs,

enabling memory retention [43]. Unrolled over time (Fig. 7),

they form chains of MLPs with recurrent links, capturing

temporal dependencies, which makes them well-suited for

HDR tasks.

Fig. 5. The suggested architecture for the neural network.

Fig. 6. Compact representation of RNN. All arrows depict complete

connections. The dashed arrow represents connections with a temporal shift (t
− 1).

Fig. 7. Unfolded representation of RNN [43].

According to this model, an RNN takes a sequence of events
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇) as the input and defines the sequence of
hidden states ℎ = (ℎ1, ℎ2, … , ℎ𝑇) to produce the sequence of
output vectors 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑇) by iterating from t=1 to T :

 ℎ𝑡 = 𝐻(𝑊𝑥ℎ
𝑥𝑡 + 𝑊ℎℎ

ℎ𝑡−1𝑏ℎ 

 𝑦𝑡𝑊ℎ𝑦
ℎ𝑡 + 𝑏𝑦 

where, T is the total number of input vectors, 𝑊𝛼𝛽 is the

weight matrix between layers 𝛼 and 𝛽, and 𝑏𝛽 is the bias vector
in layer β. The activation function H used in RNNs is generally
a hyperbolic tangent (tanh).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

234 | P a g e

www.ijacsa.thesai.org

Traditional backpropagation, designed for non-sequential
networks, cannot capture temporal dependencies, as shown in
Eq. (3) and Eq. (4). RNNs address this limitation by unrolling
over time, enabling Backpropagation Through Time (BPTT) to
train the network effectively [44].

The distinctive feature of this representation, as opposed to
a 'classic' non-recurrent neural network, is the presence of
multiple shared parameters. For instance, a common weight
matrix 𝑊ℎℎ

 conveys information through diagonal connections.

Additionally, the weight matrices, 𝑊𝑥ℎ
 and 𝑊ℎ𝑦

 depicted by the

vertical connections, are shared across time steps.

3) Convolutional Neural Network (CNN): CNNs have

gained popularity in recent years due to their effectiveness in

image recognition. A typical CNN includes convolutional,

pooling, and fully connected layers, often with ReLU

activation. Training involves a feed-forward phase to extract

features and a back-propagation phase for weight updates [45].

In the feed-forward phase, an input image passes through the
network, undergoing convolutional operations where neurons
apply learned filters to extract features. This process transforms
the input through successive layers until the final output is
produced [46], [47].

As shown in Fig. 8, a CNN consists of an input layer, an
output layer, and multiple hidden layers, including
convolutional, pooling (e.g., max and average pooling),
normalization, and fully connected layers. Filters extract spatial
features, while non-linear activations add complexity. As data
flows through the network, spatial dimensions shrink and feature
channels grow, leading to the final prediction.

Fig. 8. CNN architecture for handwritten amount digit recognition [47].

V. IMPLEMENTATION AND RESULTS

The primary objective of this study was to implement and
evaluate various models and architectures for HDR. Initially,
contour-based segmentation was applied to extract the digit
regions from the input images. Subsequently, a range of machine
learning and deep learning models, namely, SVM, KNN, ANN,
CNN, and RNN, were employed to assess their performance and
determine the most effective approach for this recognition task.

In this study, the models were trained on the MNIST dataset
and tested on the NIST dataset, since NIST contains handwritten
digits that are more challenging to classify. This setup was
designed to evaluate the cross-dataset generalization capability
of the proposed approach. The differences in style and noise
between the two datasets represent a real challenge, and our
methodology highlights the robustness of the proposed solution

under such conditions. Furthermore, we discuss the potential of
applying domain adaptation techniques to further enhance
performance on the NIST dataset.

A. Dataset Description

1) MNIST dataset: Fig. 9 presents the MNIST dataset, a

benchmark collection of 70,000 grayscale images of

handwritten digits compiled by NIST. Each 28×28 image

represents one of ten digit classes (0 to 9). The dataset is split

into 60,000 training and 10,000 testing samples, each labeled

accordingly.

MNIST was selected for this study due to its standardized
format, broad use in literature, and relevance for offline HDR.
Its consistency, ease of use, and compatibility with various
machine learning models make it ideal for performance
evaluation.

Fig. 9. Handwritten digits from the MNIST database.

2) NIST dataset: The specialized database illustrated in

Fig. 10 encompasses the complete training dataset used by

NIST for the recognition of handwritten text and characters in

printed documents. It contains handwritten samples contributed

by 3,600 writers and includes 810,000 isolated character images

extracted from these forms. The dataset also provides ground-

truth classifications for each image, reference templates to

support future data-collection efforts, and a suite of software

tools for image processing and annotation.

Fig. 10. Handwritten digits from the NIST database.

B. Contour Segmentation

Contour-based segmentation proposed in this study is more
effective than classical methods. Our approach implements
multiple specific steps for digit segmentation, which allows
better isolation of each character, reduces noise impact, and
improves the quality of segmented regions. Unlike standard
methods that use simple binarization or contour detection, our

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

235 | P a g e

www.ijacsa.thesai.org

multi-step process preserves digit integrity and enhances
performance, particularly in cross-dataset generalization trained
on MNIST and tested on NIST.

This section presents handwritten digit recognition using
ML and DL models, including KNN, SVM, ANN, RNN, and
CNN. MNIST was used for training, NIST for testing, and
OpenCV for preprocessing the digit images.

Steps in the Handwritten Digit Recognition Pipeline Using
Contour Segmentation:

1) Image acquisition: Handwritten digit images were

collected from the MNIST dataset.

2) Dataset splitting: The data were separated into a training

set (MNIST) and a testing set (NIST).

3) Preprocessing: Contour-based segmentation techniques

were applied to clean and prepare the images.

4) Normalization: Pixel intensity values were scaled to a

range between 0 and 1.

5) Batching: The training dataset was divided into mini-

batches to enhance training efficiency.

6) Model training: ML and DL models were trained using

labeled data.

7) Classification: The trained models were used to classify

digits in the testing dataset.

8) Performance evaluation: Recognition accuracy and

processing time were evaluated for each model variant.

C. Implementations

1) Image preprocessing: Fig. 11 illustrates a sample image

from the NIST database, which may exhibit noise, spots, or

other unwanted artifacts. To mitigate these imperfections, a

Gaussian filter was applied to reduce the noise, followed by a

derivative filter for edge detection. A sharpening technique

based on a blur mask was employed to enhance image clarity,

as shown in Fig. 12.

Fig. 11. Initial image.

Fig. 12. Gaussian smoothing on the image.

Fig. 13. Thresholding "seuillage" application.

Fig. 14. Applying dilation to the image.

Thresholding was applied, as illustrated in Fig. 13, using
Otsu’s method to determine the optimal global threshold based
on the image histogram. This binary thresholding approach
enhances the contrast between foreground and background. As
shown in Fig. 14, dilation was selectively applied to images
containing small handwritings to capture their contours more
effectively. In addition, the Canny edge detector, known for its
effectiveness in edge detection, was employed in the
preprocessing phase, as illustrated in Fig. 15.

Fig. 15. Application of Canny Edge Detection.

2) Contour segmentation application: In the segmentation

phase, we applied a contour detection algorithm to isolate

individual digits within the image. A contour is defined as a

closed curve that connects all the continuous points along the

boundary of an object, representing its shape, as illustrated in

Fig. 16. To accomplish this, one function was used to locate the

contours, and the other was used to draw them.

Subsequently, as shown in Fig. 17, we combined contour-
based segmentation with vertical segmentation. The latter
divides the image into vertical slices to separate connected
digits, thereby facilitating more accurate digit recognition.

Fig. 16. Contour segmentation on the NIST dataset image digits.

Fig. 17. Vertical segmentation application.

D. Model hyperparameters

The CNN model includes a convolutional layer with 32
filters and ReLU activation, followed by a flattening layer, and
then two dense layers: the first with 100 units and ReLU
activation, and the second with 10 units and softmax activation.
We used the SGD optimizer (learning rate of 0.01, momentum
of 0.9) and the 'categorical_crossentropy' loss function, as
shown in Table III.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

236 | P a g e

www.ijacsa.thesai.org

TABLE I. ANN HYPERPARAMETERS

Number of epochs 100

Batch size 1000

Activation function Softmax & Sigmoid

Optimizer Adam

Loss sparse_categorical_crossentropy

TABLE II. RNN HYPERPARAMETERS

Number of epochs 50

Batch size 128

Units 256

Dropout 0.2

Activation function Softmax

Optimizer SGD

Loss categorical_crossentropy

TABLE III. CNN HYPERPARAMETERS

Number of epochs 100

Batch size 1000

Activation function Relu & Softmax

Optimizer Adam

Loss categorical_crossentropy

As illustrated in Table I, the ANN model was trained for 100
epochs with a batch size of 1000 using Softmax and Sigmoid
activation functions and the Adam optimizer, with
'sparse_categorical_crossentropy' as the loss function.

To prevent overfitting, the RNN model, which includes 256
units and a dropout rate of 0.2 to prevent overfitting, uses
Softmax activation and is optimized with SGD, as shown in
Table II. The loss function used is also
'categorical_crossentropy', which is optimized for multi-class
classification tasks.

The hyperparameters for all models were selected based on
experimental validation to ensure stable convergence, prevent
overfitting, and achieve optimal performance on both MNIST
and NIST datasets. Ablation studies were performed to evaluate
the impact of varying key parameters (e.g., number of units,
activation functions, learning rate, dropout), confirming that the
chosen configuration consistently provides robust and
reproducible results.

E. Analysis of Results

During testing, this study proposes a comprehensive method
to evaluate all digit cases from the NIST dataset across multiple
models. A structured framework was developed to facilitate
testing on different models by grouping each test case within a
structure that consolidates the results of all applied models.
Unlike previous studies, which performed tests on the entire
dataset without a method allowing an easy linkage of each
model to its corresponding test, this approach ensures clear,
systematic, and robust performance comparisons, as illustrated
below. This methodology confirms the relevance of the
observed improvements.

We performed handwritten digit recognition using five
different models (KNN, SVM, CNN, RNN, and ANN) to
identify the most accurate model. As shown in Fig. 18, the deep
learning models (ANN, RNN, and CNN) outperformed the
others in both test cases. Similarly, Fig. 19 shows that the RNN
and CNN achieved the best results across all the digits in the test
case. Furthermore, Fig. 20 illustrates that the RNN consistently
outperformed the CNN and other models across all three test
scenarios.

Fig. 18. In both test cases, Deep Learning models {ANN, RNN, CNN}

showed superior performance.

Fig. 19. RNN and CNN models achieved the best results for all digits in this

test.

Fig. 20. RNN models outperformed CNN and other models across all digits in

these three tests.

Fig. 21. CNN models performed better than other models for all digits in these

examples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

237 | P a g e

www.ijacsa.thesai.org

Fig. 22. In this test example, KNN models outperform others and correctly

identify at least 3 out of 4 digits in other tests.

In the test examples shown in Fig. 21, the CNN models
outperformed the other models for all the digits. As shown in
Fig. 22, the KNN models also demonstrated superior
performance for all the digits. In addition, in other test examples,
the KNN models provided acceptable results, correctly
identifying at least three of the four handwritten digits.

TABLE IV. RESULTS TABLE DISPLAYING THE ACCURACY OF EACH

MODEL

Models Accuracy (%)

SVM 93.48

KNN 92.9

ANN 99.56

RNN 98.74

CNN 98.53

Table IV lists the accuracy results for each model on the
MNIST image dataset. In our handwritten digit recognition
project using the MNIST dataset, we evaluated several ML and
DL models: SVM, KNN, ANN, CNN, and RNN. The results
showed that the DL models outperformed the traditional
machine learning models. In particular, ANN achieved the
highest accuracy of 99.56%, followed by RNN at 98.74% and
CNN at 98.53%. SVM and KNN achieved accuracies of 93.48%
and 92.9%, respectively. Prediction analysis for the digit
sequence '1852' highlighted KNN's strength in certain specific
cases, whereas other models had variable prediction accuracies.
Overall, the DL models proved to be more effective for this task.

TABLE V. COMPARISON OF RESULTS WITH RECENT WORKS

Models Our Result (%)
Previous

Results (%)

References of

Previous Works

SVM 93.48 92.3- 93
[48]

KNN 92.9 91.8- 92.3 [49]

ANN 99.56 97 - 97.4 [50]

RNN 98.74 97 - 98 [51]

CNN 98.53 98 – 98.12 [52]

Our model outperformed previous approaches across all
tested algorithms, as shown in Table V, with significant
improvements in the ANN (99.56%) and RNN (98.74%). These
enhancements suggest effective optimization of the architecture
and hyperparameters. Slight increases were also observed for
SVM, KNN, and CNN, confirming the robustness of our
approach compared to previous works.

VI. CONCLUSION AND FUTURE WORK

This study developed an offline handwritten digit
recognition system and compared various ML and DL models
to identify the most effective. After preprocessing, a contour-
based segmentation method was implemented and evaluated
across multiple classifiers. The study assessed features and
models to determine the best HDR approach.

Segmentation is challenging. Our system uses
morphological and geometric operations with contour detection
to isolate digits and reduce noise, producing segmented images
of single digits for training.

We performed experiments on the NIST dataset using
contour-based segmentation and a range of algorithms: KNN,
SVM, ANN, CNN, and RNN. The results showed that CNN and
RNN delivered the best recognition performance, with high
accuracy and consistency. Among the ML methods, KNN
achieved acceptable results despite the difficulty in recognizing
unclear digits in the NIST dataset.

SVM demonstrated the fastest training time and achieved the
highest training accuracy among the models evaluated.
However, its simplicity limits its ability to classify ambiguous
or complex inputs compared with DL models. By contrast, the
DL models (CNN, RNN, and ANN) provided significantly
better results, reaching up to 99% accuracy during both training
and testing.

Overall, nearly all the algorithms yielded acceptable results
on the NIST test set, confirming their suitability for HDR tasks.
While the SVM had the shortest execution time, the CNN
required the longest execution time.

In future work, we plan to enhance recognition accuracy by
focusing entirely on deep learning techniques, exploring
alternative architectures, and optimizing learning strategies. Our
approach will be applied to more complex, real-world datasets,
such as handwritten digits from bank checks. Furthermore, we
aim to investigate adaptive segmentation methods to better
handle overlapping digits and challenging handwriting styles,
providing a clear roadmap for advancing offline handwritten
digit recognition systems.

REFERENCES

[1] M. Islam, A. Rahman, and S. Khan, “Pre-trained CNN Models for Bengali
Handwritten Digit Recognition,” arXiv preprint arXiv:2209.13005, 2022.

[2] A. Fateh, R. Singh, and P. Sharma, “Handwritten Digits Recognition
Using Transfer Learning with Attention Mechanisms,” ResearchGate,
2024.

[3] S. Keshari, P. Jain, and R. Kumar, “Transfer Learning for Handwritten
Character Classification with Limited Training Data,” Journal of Image
and Graphics, vol. 11, no. 1, 2023. [Online]. Available:
https://www.joig.net/uploadfile/2023/JOIG-V11N1-21.pdf.

[4] M. Ullah, A. Khan, S. Ali, and J. Kim, “Hybrid CNN-SVM Model for
Handwritten Digit Recognition on MNIST Dataset,” arXiv preprint
arXiv:2503.06104, 2025.

[5] A. Fateh, R. T. Birgani, M. Fateh, and V. Abolghasemi, “Advancing
Multilingual Handwritten Numeral Recognition With Attention-Driven
Transfer Learning,” IEEE Access, vol. 12, pp. 41381–41395, 2024, doi:
10.1109/ACCESS.2024.3245678.

[6] D. Ghosh, D. Chaurasia, S. Mondal, and A. Mahajan, “Handwritten
Documents Text Recognition with Novel Pre-processing and Deep
Learning,” in Proc. 2021 Grace Hopper Celebration India (GHCI), IEEE,
2021, pp. 1–5, doi: 10.1109/GHCI.2021.00012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

238 | P a g e

www.ijacsa.thesai.org

[7] D. Gupta and S. Bag, “CNN-Based Multilingual Handwritten Numeral
Recognition: A Fusion-Free Approach,” Expert Systems with
Applications, vol. 165, 113784, 2021, doi: 10.1016/j.eswa.2020.113784.

[8] B. Vidhale, G. Khekare, C. Dhule, P. Chandankhede, A. Titarmare, and
M. Tayade, “Multilingual Text & Handwritten Digit Recognition and
Conversion of Regional Languages into Universal Language Using
Neural Networks,” in Proc. 2021 6th International Conference for
Convergence in Technology (I2CT), IEEE, 2021, pp. 1–5, doi:
10.1109/I2CT51072.2021.9413545.

[9] A. Fateh, M. Fateh, and V. Abolghasemi, “Multilingual Handwritten
Numeral Recognition Using a Robust Deep Network Joint with Transfer
Learning,” Information Sciences, vol. 581, pp. 479–494, 2021, doi:
10.1016/j.ins.2021.01.097.

[10] S. Alghyaline, “Arabic optical character recognition: A review,”
Computer Modeling in Engineering & Sciences, vol. 135, no. 3, pp. 1825–
1861, 2023, doi: 10.32604/cmes.2022.024555.

[11] H. Kusetogullari, A. Yavariabdi, J. Hall, and N. Lavesson, “DIGITNET:
A deep handwritten digit detection and recognition method using a new
historical handwritten digit dataset,” Big Data Research, vol. 23, p.
100182, Feb. 2021, doi: 10.1016/j.bdr.2020.100182.

[12] M. Rahman et al., “Handwritten Digit Recognition Using Feature-Based
Machine Learning Approaches,” arXiv preprint arXiv:2201.10102, 2022.

[13] S. Chakraborty et al., “Bengali Handwritten Digit Recognition Using Pre-
trained Deep Learning Models,” arXiv preprint arXiv:2209.13005, 2022.

[14] M. Islam, S. A. Shuvo, M. S. Nipun, R. B. Sulaiman, J. Nayeem, Z.
Haque, M. M. Shaikh, and M. S. Ullah Sourav, “Efficient approach of
using CNN based pretrained model in Bangla handwritten digit
recognition,” arXiv preprint arXiv:2209.13005, 2022.

[15] A. Choudhary and S. Ahlawat, “Hybrid CNN-SVM Classifier for
Handwritten Digit Recognition,” ResearchGate, 2025.

[16] D. O. I. Effendi, "Handwritten Digits Detection Using Convolutional
Neural Network," Jurnal Ilmiah Teknik Elektro Komputer dan
Informatika (JITEKI), vol. 11, no. 2, pp. 346–356, Jun. 2025.

[17] A. Kumar et al., “Hybrid CNN-SVM Approach for Handwritten Digit
Recognition with Data Augmentation,” arXiv preprint arXiv:2503.06104,
2025.

[18] J. Smith et al., “Ensemble Methods for Handwritten Digit Recognition:
Combining CNN and Traditional ML Classifiers,” arXiv preprint
arXiv:2503.06105, 2025.

[19] L. Zhang et al., “Optimization of CNN Models for Handwritten Digit
Recognition Using Mini-batch and Hessian-Free Techniques,” arXiv
preprint arXiv:2311.01022, 2023.

[20] H. Noori, “Improving Persian Handwritten Digit Recognition using
Convolutional Neural Network,” Journal of Algorithms and Computation,
vol. 56, no. 1, pp. 55–72, 2024, doi: 10.22059/jac.2024.374614.1213.

[21] F. Jawad and N. R. Hamza, “Farsi Digit Recognition Using GAN-
Generated Data and Convolutional Neural Networks,” Journal of Kufa for
Mathematics and Computer, vol. 12, no. 1, pp. 6–11, May 2025, doi:
10.31642/JoKMC/2018/120102.

[22] A. Nasr-Esfahani, M. Bekrani, and R. Rajabi, “Robust Persian Digit
Recognition in Noisy Environments Using Hybrid CNN-BiGRU Model,”
arXiv preprint arXiv:2412.10857, Dec. 2024.

[23] A. Zohrevand, Z. Imani, J. Sadri, and C. Y. Suen, “Does color modalities
affect handwriting recognition? An empirical study on Persian
handwritings using convolutional neural networks,” arXiv preprint
arXiv:2307.12150, Jul. 2023.

[24] M. Bonyani, S. Jahangard, and M. Daneshmand, “Persian handwritten
digit, character and word recognition using deep learning,” International
Journal on Document Analysis and Recognition, vol. 24, no. 1–2, pp.
133–143, Apr. 2021, doi: 10.1007/s10032-021-00368-2.

[25] Machine Vision Inspection Systems: Image Processing, Concepts,
Methodologies, and Applications, dokumen.pub. [Online]. Available:
https://dokumen.pub/machine-vision-inspection-systems-image-
processing-concepts-methodologies-and-applications-1119681804-
9781119681809.html. Accessed: Nov. 20, 2023.

[26] S. Amiri, “Image Denoising to Enhance Character Recognition Using
Deep Learning,” ResearchGate, 2021. [Online]. Available:

https://www.researchgate.net/publication/352147349_Image_Denoising
_to_enhance_Character_Recognition_using_Deep_Learning.

[27] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization
Techniques in Training DNNs: Methodology, Analysis and Application,”
arXiv preprint arXiv:2009.12836, 2020.

[28] A. Chakraborty, R. De, S. Malakar, F. Schwenker, et R. Sarkar, Full
segmentation system for handwritten digit string recognition, 2021.

[29] D. Prabha Devi, R. Ramya, P. S. Dinesh, C. Palanisamy, and G. Sathish
Kumar, “Design and simulation of handwritten recognition system,”
Materials Today: Proceedings, vol. 45, pp. 626–629, Jan. 2021, doi:
10.1016/j.matpr.2020.02.720.

[30] Wang Chao, “Research on Features Extraction and Classification for
Images based on Transformer Learning,” Proc. 2024 International
Conference on Machine Learning and Intelligent Computing, PMLR, vol.
245, pp. 67–75, Apr. 2024.

[31] Rafal Ali Sameer, “A General Overview on the Categories of Image
Features Extraction Techniques: A Survey,” J. of Al-Qadisiyah for
Computer Science and Mathematics, vol. 15, no. 1, pp. 179–188, Apr.
2023.

[32] M. Ferdous Wahid, Md. Fahim Shahriar, and Md. Shohanur Islam Sobuj,
“A Classical Approach to Handcrafted Feature Extraction Techniques for
Bangla Handwritten Digit Recognition,” arXiv preprint
arXiv:2201.10102, Jan. 2022.

[33] A. Adhesh Garg et al., “An Efficient CNN-ELM Classifier for
Handwritten Digits Recognition and Classification,” Symmetry, vol. 12,
no. 10, Article 1742, 2020, doi: 10.3390/sym12101742.

عنابت -جامعت باجي مختار [34] , [Online]. Available:
https://docplayer.fr/120345916-Jm`t-bjy-mkhtr-`nbt.html. Accessed:
Nov. 20, 2023.

[35] A. Joshi, I. [surname missing], H. Pandey, and Y. R. Choudhary,
“Handwritten Character Recognition by Using Machine Learning: A
Review,” SSRN, 2023, [Online]. Available:
https://ssrn.com/abstract=4489054.

[36] Efficient Learning Machines: Theories, Concepts, and Applications for
Engineers and System Designers [PDF]. [Online]. Available:
https://www.researchgate.net/publication/277299933_Efficient_Learnin
g_Machines_Theories_Concepts_and_Applications_for_Engineers_and
_System_Designers. Accessed: Nov. 20, 2023.

[37] M. Wahid, M. M. Rahman, M. M. Hasan, et M. A. Hossain, “Handwritten
Digit Recognition Using Feature-Based Machine Learning Approaches,”
arXiv preprint arXiv:2201.10102, 2022. [Online]. Available:
https://arxiv.org/abs/2201.10102.

[38] W. Homenda, A. Jastrzebska, and W. Pedrycz, “Rejecting foreign
elements in pattern recognition problem — reinforced training of rejection
level,” in Proc. International Conference on Agents and Artificial
Intelligence, Lisbon, Portugal, 2015, pp. 90–99, doi:
10.5220/0005207900900099.

[39] S. Arya, “An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions.”

[40] R. Karakaya and S. Kazan, “Handwritten digit recognition using machine
learning,” Sakarya University Journal of Science, vol. 25, no. 1, pp. 65–
71, Feb. 2021, doi: 10.16984/saufenbilder.801684.

[41] S. Chauhan, S. Mahmood, and T. Poongodi, “Handwritten digit
recognition using deep neural networks,” Proc. [Nom de la conférence],
May 2023, pp. 1–6, doi: 10.1109/ICIEM59379.2023.10167391.

[42] S. Al-Mansoori, “Intelligent handwritten digit recognition using artificial
neural network,” 2015, doi: 10.13140/RG.2.1.2466.0649.

[43] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no.
2, pp. 179–211, Apr. 1990, doi: 10.1016/0364-0213(90)90002-E.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1, D. E. Rumelhart
and J. L. McClelland, Eds., Cambridge, MA, USA: MIT Press, 1988, pp.
399–421, doi: 10.1016/B978-1-4832-1446-7.50035-2.

[45] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A Survey of
the Recent Architectures of Deep Convolutional Neural Networks.
Artificial Intelligence Review, 53, 5455–5516.

https://dokumen.pub/machine-vision-inspection-systems-image-processing-concepts-methodologies-and-applications-1119681804-9781119681809.html
https://dokumen.pub/machine-vision-inspection-systems-image-processing-concepts-methodologies-and-applications-1119681804-9781119681809.html
https://dokumen.pub/machine-vision-inspection-systems-image-processing-concepts-methodologies-and-applications-1119681804-9781119681809.html
https://www.researchgate.net/publication/352147349_Image_Denoising_to_enhance_Character_Recognition_using_Deep_Learning
https://www.researchgate.net/publication/352147349_Image_Denoising_to_enhance_Character_Recognition_using_Deep_Learning
https://www.researchgate.net/publication/277299933_Efficient_Learning_Machines_Theories_Concepts_and_Applications_for_Engineers_and_System_Designers
https://www.researchgate.net/publication/277299933_Efficient_Learning_Machines_Theories_Concepts_and_Applications_for_Engineers_and_System_Designers
https://www.researchgate.net/publication/277299933_Efficient_Learning_Machines_Theories_Concepts_and_Applications_for_Engineers_and_System_Designers
https://arxiv.org/abs/2201.10102

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

239 | P a g e

www.ijacsa.thesai.org

[46] Nalluri, S. D., Thota, S. M., & Thota, A., "Handwritten Digit Recognition
Using CNN," International Journal of Innovative Research in Computer
and Communication Engineering, vol. 11, no. 1, pp. 8849–8855, 2023.

[47] P. Agrawal et al., “Automated bank check verification using image
processing and deep learning methods,” Multimedia Tools and
Applications, vol. 80, no. 4, pp. 5319–5350, Feb. 2021, doi:
10.1007/s11042-020-09818-1.

[48] S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved
handwritten digit recognition using convolutional neural networks
(CNN),” Sensors, vol. 20, no. 12, p. 3344, Jun. 2020, doi:
10.3390/s20123344.

[49] “Comparisons of KNN, SVM, BP and CNN for handwritten digit
recognition,” ResearchGate, doi: 10.1109/AEECA49918.2020.9213482.

[50] A. Ashiquzzaman and A. K. Tushar, “Handwritten Arabic numeral
recognition using deep learning neural networks,” arXiv preprint
arXiv:1702.04663, Feb. 15, 2017, doi: 10.48550/arXiv.1702.04663.

[51] S. Sarraf, “French word recognition through a quick survey on recurrent
neural networks using long-short term memory RNN-LSTM,” arXiv
preprint arXiv:1804.03683, Apr. 10, 2018, doi:
10.48550/arXiv.1804.03683.

[52] M. Husnain et al., “Recognition of Urdu handwritten characters using
convolutional neural network,” Applied Sciences, vol. 9, no. 13, Art. no.
132758, Jan. 2019, doi: 10.3390/app9132758.

