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Abstract—Handwritten digit recognition (HDR) forms a key 

component of computer vision systems, especially in optical 

character recognition (OCR). This study presents a comparative 

analysis of Machine Learning (ML) algorithms and Deep 

Learning (DL) models for HDR tasks. A contour-based 

segmentation technique was applied in preprocessing to enhance 

feature extraction by detecting digit boundaries and reducing 

noise. ML models, including K-Nearest Neighbors (KNN) and 

Support Vector Machine (SVM), and DL architectures, such as 

Artificial Neural Networks (ANNs), Convolutional Neural 

Networks (CNNs), and Recurrent Neural Networks (RNNs), were 

evaluated on the Modified National Institute of Standards and 

Technology (MNIST) and the National Institute of Standards and 

Technology (NIST) datasets. The results demonstrate that DL 

models significantly outperform ML algorithms in terms of 

accuracy and robustness, while the KNN model achieved 

acceptable results. The results underline the importance of 

contour-based preprocessing in boosting deep learning techniques 

for HDR. 
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I. INTRODUCTION 

Handwritten text recognition has long been a challenging 
and active research field, particularly due to the reliance on 
handcrafted features and prior knowledge in traditional optical 
character recognition (OCR) systems. Handwritten digit 
recognition (HDR) has attracted continuous attention over the 
decades, with advances in computing, artificial intelligence, and 
imaging since the 1960s driving progress [1], [2], [3], [4]. 
Although recent developments in deep learning have 
significantly improved recognition accuracy, the growing 
demand for large datasets and computational resources 
continues to motivate research toward more efficient solutions. 
Robust methods exist for several languages such as English, 
Chinese, and Japanese [5], [6], [7], [8], [9]; however, 
recognition of highly variable handwritten digits remains a 
significant challenge. 

This study focuses on offline HDR, where variability in 
handwriting, overlapping digits, and noise make segmentation a 
critical step. In particular, separating connected digits remains a 
difficult problem that directly impacts recognition performance. 
To address these challenges, we propose a contour-based 
segmentation approach combined with machine learning and 
deep learning models. Five models were evaluated: Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial 
Neural Network (ANN), Recurrent Neural Network (RNN), and 

Convolutional Neural Network (CNN), all widely used in 
supervised learning and image-based pattern recognition. 

Our system was trained on the MNIST dataset and tested on 
the NIST dataset, which contains numerous complex examples 
with challenging segmentation cases, making it a particularly 
suitable benchmark for evaluation. Morphological and 
geometric operations were integrated to enhance robustness 
against noisy handwritten images. The proposed approach 
achieved high recognition accuracy, demonstrating the 
effectiveness of combining contour-based segmentation with 
ML and DL techniques. 

This work contributes to HDR research by providing a 
comparative evaluation of machine learning and deep learning 
approaches while highlighting the critical role of segmentation 
in offline recognition systems. 

The study is organized as follows: Section II reviews related 
work. Section III presents the proposed methodology. Section 
IV describes the approaches used for recognizing handwritten 
digits, including details of all models employed. Section V 
presents experimental results, and Section VI concludes the 
study and outlines future work. 

II. RELATED WORK 

HDR remains a central topic in machine learning due to its 
practical relevance and the inherent variability of human 
handwriting. Recent approaches increasingly rely on data-driven 
methods that integrate traditional algorithms with deep neural 
networks to enhance recognition performance. Achieving 
accurate character recognition from image inputs requires 
effective techniques, particularly in segmentation-based 
methods [10], [11]. 

HDR has been extensively investigated using both 
traditional ML and modern DL techniques. Early and recent 
studies have explored handcrafted feature extraction methods 
for HDR. Techniques such as Histogram of Oriented Gradients 
(HOG), Local Binary Patterns (LBP), and Gabor filters were 
widely used to extract discriminative image features. Classifiers 
including K-Nearest Neighbor (KNN), Support Vector Machine 
(SVM), Random Forest (RF), and Gradient-Boosted Decision 
Trees (GBDT) were then applied. For instance, combining HOG 
features with SVM achieved an accuracy of 93.32% on the 
NumtaDB dataset [12], highlighting the moderate yet consistent 
performance of feature-based ML approaches. 

Transfer learning using pre-trained CNNs has also been 
applied, particularly for non-Latin scripts such as Bengali digits. 
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Networks including ResNet-50, Inception-v3, and 
EfficientNetB0 were fine-tuned on the NumtaDB dataset 
containing 17,000 instances across ten classes. These models 
achieved 97% accuracy, demonstrating the benefits of 
leveraging pre-trained representations to manage handwriting 
variability and limited data scenarios [13]. 

However, more recent studies have reported slightly lower 
accuracy, reflecting ongoing challenges in HDR. For example, 
one study reported 97% accuracy on the NumtaDB dataset for 
Bangla handwritten digits using a pre-trained CNN model [14], 
[15], while another study achieved 96.9% accuracy with the 
YOLOv8x model for digit detection [16]. 

Recent work has further investigated hybrid and ensemble 
approaches. Hybrid models combining CNN-based feature 
extraction with SVM classification, as well as ensembles 
integrating CNNs with traditional ML classifiers, have achieved 
higher accuracy, up to 99.30%, on benchmark datasets such as 
MNIST [17], [18]. Additionally, optimization strategies, 
including mini-batch and Hessian-free training techniques, have 
been employed to enhance computational efficiency and 
generalization [19]. 

In comparison, limited work has been conducted on 
recognizing handwritten Farsi digits because of their cursive 
structure and variation in shape, which differ considerably from 
Latin-based scripts [20], [21]. A key distinction between the 
Farsi and Arabic languages is the right-to-left writing 
orientation, which introduces further complexity to the 
segmentation and recognition tasks [22], [23], [24]. 

Despite these advances, limitations remain, particularly 
regarding segmentation robustness and the handling of complex 
scripts. These challenges motivate the proposed contour-based 
segmentation approach, which integrates both machine learning 
and deep learning models. By addressing overlapping and noisy 
digits, the system aims to improve recognition accuracy on 
challenging datasets, including MNIST for training and the more 
complex NIST dataset for testing. Consequently, this work 
contributes to overcoming current HDR limitations and 
strengthening offline recognition capabilities. 

III. METHODOLOGY 

HDR systems rely on preprocessing, feature extraction, and 
classification. This study assesses SVM, KNN, ANN, RNN, and 
CNN within a contour-based pipeline to identify the best model. 

A. General Architecture 

Handwritten digit recognition systems are generally based 
on the following steps, as shown in Fig. 1. 

B. Image Acquisition 

The acquisition phase captures handwritten text using 
devices like scanners or digital cameras, converting it into digital 
images (e.g., JPEG, PNG) with minimal information loss. These 
images are then preprocessed to improve quality, correct 
distortions, and remove noise, preparing them for reliable 
analysis in tasks such as optical character recognition (OCR). 

C. Image Preprocessing 

Preprocessing prepares images for recognition by applying 
binarization, noise reduction, normalization, and slant/skew 

correction [25]. It may also extract handwritten fields and 
remove backgrounds to isolate the target content. 

1) Binarization (Thresholding): Applies either global or 

adaptive thresholding based on pixel intensity. 

2) Noise reduction and normalization: Uses filtering and 

morphological operations. Normalization corrects slant, skew, 

and size to reduce variability and improve accuracy [26], [27]. 

3) Mathematical morphology: Employs operations like 

erosion, dilation, opening, closing, and morphological 

gradients for noise removal and contour enhancement. 

D. Segmentation 

This phase aims to separate graphemes, words, or numerical 
strings. Segmenting handwritten characters is one of the most 
challenging tasks in text recognition. A typical application is the 
recognition of numerical amounts in bank checks, which is 
particularly difficult because of the presence of noise, 
overlapping digits, and even the fragmentation of digits into 
multiple disconnected components, making them difficult to 
identify [28], [29]. 

E. Feature Extraction 

Feature extraction is vital in character recognition, as 
classifiers cannot compensate for poor features. It captures 
relevant information to reduce within-class variability and 
enhance class separability, yielding numerical feature vectors 
[30]. Extracted features are generally classified as structural, 
statistical, global (e.g., transformations), or topological/metric 
features [31], [32]. 

F. Classification 

After segmentation and feature extraction, classification 
assigns inputs to classes based on feature vectors, typically 
through supervised learning involving training and recognition 
stages. Outcomes include successful classification, confusion 
between similar classes, or rejection when no adequate match 
exists. Classifiers vary in performance and robustness, with 
main types including shape matching, structural methods, neural 
networks, and statistical classifiers [33]. 

 

Fig. 1. General diagram of a handwritten digit recognition system. 
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G. Post-Processing 

Post-processing refining recognition results through 
linguistic, contextual, and structural analysis. It includes: 

1) Lexical verification: Checks recognized words against a 

dictionary, often with edit distance metrics. 

2) Orthographic correction: uses n-gram models to correct 

likely letter sequence errors, such as “tble” to “table”. 

3) Syntactic validation: Ensures grammatical correctness 

and suggests corrections [34]. 

4) Semantic adaptation: Validates word meaning based on 

context. 

5) Pragmatic adaptation: Detects anomalies by comparing 

recognized words to expected formats. 

Post-processing is essential for handling recognition 
failures, especially those caused by upstream errors or limited 
training data [35]. 

IV. APPROACHES USED IN RECOGNIZING HANDWRITTEN 

DIGITS 

Various classifiers are used in OCR development, including 
parametric, non-parametric statistical, and hybrid methods. In 
this study, after segmenting the relevant images, we applied ML 
and DL models such as SVM, KNN, ANN, RNN, and CNN on 
segmented images from the NIST dataset to recognize 
handwritten digits. Each model was selected for its strengths in 
handling different data aspects. Performance was evaluated 
using accuracy, precision, recall, F1-score, confusion matrix, 
and ROC/AUC, allowing clear comparison to identify the best 
model. 

A. Machine Learning 

ML allows computers to learn from data without explicit 
programming [36]. In handwritten digit recognition, ML 
typically requires feature extraction before classification. 
Traditional algorithms such as SVM, decision trees, and 
Bayesian networks are flat models that depend heavily on 
feature quality. 

1) Support Vector Machine (SVM): SVMs are effective 

classifiers in HDR, achieving up to 93,32 % accuracy using 

projection histograms and HOG [37]. As illustrated in Fig. 2, 

HDR has posed a significant challenge since the 1970s. Its 

importance lies in applications, such as writer identification, 

automated data extraction from scanned documents, and 

various other domains that require reliable character 

interpretation. 

 
Fig. 2. Digits to recognize [38]. 

This study aims to accurately identify digits amid symbols 
and noise, despite overlapping class boundaries caused by 
similar digit shapes. 

Formally, the objective function to be minimized in the 
context of SVM is computed, as shown in Eq. (1): 

       𝑓(ɛ, 𝑤) =  
1

2
 ‖𝑤‖2 + 𝐶 ∑ ɛ𝑖

𝑛
𝑖=1 

where, 

 ɛ𝒊  represents the slack variables for misclassified 
samples (i.e., points located on the incorrect side of the 
separating hyperplane). 

 𝑪 is a regularization parameter that balances the trade-off 
between maximizing the margin and minimizing 
classification error. 

 𝒘 denotes the weight vector that defines the hyperplane 
orientation. 

In such cases, margin-based methods that maximize the 
distance between the support vectors and the hyperplane are 
preferred. As illustrated in Fig. 3, this involves optimizing two 
margin boundaries (e.g., defined by vectors 𝑤1 and 𝑤2  ) to 
ensure robust separation, even in the presence of overlapping 
classes. 

 
Fig. 3. Feature space accompanied by the margin of error [38]. 

 
Fig. 4. Confusion matrix of our SVM model. 

Fig. 4 shows the SVM confusion matrix on the MNIST 
dataset, with 93.48% accuracy. High diagonal values indicate 
strong overall performance, though some misclassifications 
occur, notably for digit ‘4’. Performance improvements can be 
achieved via data augmentation, hyperparameter tuning, feature 
engineering, or hybrid classifiers. The following sections 
compare these results with deep learning models on the same 
dataset. 

2) K-Nearest Neighbors (KNN): Among the various 

classification methods, the KNN is notable for its simplicity and 

effectiveness. It classifies new observations by identifying the 

closest instances in the training dataset and assigning the most 

common class to them [39]. 
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KNN retains all available training examples and uses a 
distance-based similarity metric to perform classification. It is 
widely recognized as a non-parametric lazy learning algorithm 
[40] (see Algorithm 1). 

Algorithm 1 KNN Algorithm (K-Nearest Neighbors) 

Input: A labeled training set 𝐿 = {(𝑥′, 𝑐) }, and a new instance 𝑥 

Output:  Predicted class label for 𝑥 

1. For each example (𝑥′, 𝑐) 𝜖 𝐿   

     Calculate the distance 𝐷(𝑥, 𝑥′) 

           End for 

2. Select the 𝑘 nearest neighbors of 𝑥, denoted as 𝑘𝑁𝑁(𝑥), based 

on the smallest distances 

3. For each 𝑥′ 𝜖 𝑘𝑁𝑁(𝑥)  

  count the occurrences of each class 

      End for 

4. Assign 𝑥  the class with the highest frequency among 

neighbors 

This approach measures similarity between test samples and 
training data, classifying based on a threshold from the k-nearest 
neighbors. KNN’s performance depends on the number of 
neighbors, similarity metric, threshold, and data 
representativeness [41]. Trained and tested on MNIST, the 
Scikit-learn implementation used six neighbors with uniform 
weights. 

B. Deep Learning 

1) Artificial Neural Networks (ANN): Fig. 5 illustrates the 

architecture of the proposed ANN, which consists of an input 

layer, hidden layer, and output layer [42]. The input layer is 

connected to the hidden layer through weighted links, denoted 

by 𝑊𝑖𝑗, where 𝑖 refers to the input neuron and 𝑗 to the hidden 

neuron. Similarly, the connections between the hidden and 

output layers are represented by the weights 𝑊𝑗𝑘 , where 𝑘 

indicates the output neuron. 

A bias term of +1 was integrated into the network to enhance 
the flexibility of the parameter adjustment. The structure follows 
a multi-layer perceptron (MLP) configuration. 

In this model, the sigmoid activation function was applied to 
both hidden and output layers. As shown in Eq. (2), the sigmoid 
maps input values to the [0, 1] range, allowing smooth, bounded 
output transitions and supporting effective training. 

𝑔(𝑥) =
1

1+𝑒−𝑥                                   (2) 

In this context, 𝑔(𝑥)  denotes the sigmoid activation 
function, and 𝑥 represents the net input, that is the weighted sum 
of the inputs to a neuron. 

2) Réseaux De Neurones Récurrents (RNN) : Unlike MLPs, 

RNNs (Fig. 6) have cycles in their computational graphs, 

enabling memory retention [43]. Unrolled over time (Fig. 7), 

they form chains of MLPs with recurrent links, capturing 

temporal dependencies, which makes them well-suited for 

HDR tasks. 

 
Fig. 5. The suggested architecture for the neural network. 

 
Fig. 6. Compact representation of RNN. All arrows depict complete 

connections. The dashed arrow represents connections with a temporal shift (t 
− 1). 

 
Fig. 7. Unfolded representation of RNN [43]. 

According to this model, an RNN takes a sequence of events  
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇) as the input and defines the sequence of 
hidden states ℎ = (ℎ1, ℎ2, … , ℎ𝑇) to produce the sequence of 
output vectors 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑇) by iterating from t=1 to T : 

                     ℎ𝑡 = 𝐻(𝑊𝑥ℎ
𝑥𝑡 +  𝑊ℎℎ

ℎ𝑡−1𝑏ℎ 

                                   𝑦𝑡𝑊ℎ𝑦
ℎ𝑡 + 𝑏𝑦 

where, T is the total number of input vectors, 𝑊𝛼𝛽  is the 

weight matrix between layers 𝛼 and 𝛽, and 𝑏𝛽 is the bias vector 
in layer β. The activation function H used in RNNs is generally 
a hyperbolic tangent (tanh). 
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Traditional backpropagation, designed for non-sequential 
networks, cannot capture temporal dependencies, as shown in 
Eq. (3) and Eq. (4). RNNs address this limitation by unrolling 
over time, enabling Backpropagation Through Time (BPTT) to 
train the network effectively [44]. 

The distinctive feature of this representation, as opposed to 
a 'classic' non-recurrent neural network, is the presence of 
multiple shared parameters. For instance, a common weight 
matrix 𝑊ℎℎ

 conveys information through diagonal connections. 

Additionally, the weight matrices, 𝑊𝑥ℎ
 and 𝑊ℎ𝑦

 depicted by the 

vertical connections, are shared across time steps. 

3) Convolutional Neural Network (CNN): CNNs have 

gained popularity in recent years due to their effectiveness in 

image recognition. A typical CNN includes convolutional, 

pooling, and fully connected layers, often with ReLU 

activation. Training involves a feed-forward phase to extract 

features and a back-propagation phase for weight updates [45]. 

In the feed-forward phase, an input image passes through the 
network, undergoing convolutional operations where neurons 
apply learned filters to extract features. This process transforms 
the input through successive layers until the final output is 
produced [46], [47]. 

As shown in Fig. 8, a CNN consists of an input layer, an 
output layer, and multiple hidden layers, including 
convolutional, pooling (e.g., max and average pooling), 
normalization, and fully connected layers. Filters extract spatial 
features, while non-linear activations add complexity. As data 
flows through the network, spatial dimensions shrink and feature 
channels grow, leading to the final prediction. 

 
Fig. 8. CNN architecture for handwritten amount digit recognition [47]. 

V. IMPLEMENTATION AND RESULTS 

The primary objective of this study was to implement and 
evaluate various models and architectures for HDR. Initially, 
contour-based segmentation was applied to extract the digit 
regions from the input images. Subsequently, a range of machine 
learning and deep learning models, namely, SVM, KNN, ANN, 
CNN, and RNN, were employed to assess their performance and 
determine the most effective approach for this recognition task. 

In this study, the models were trained on the MNIST dataset 
and tested on the NIST dataset, since NIST contains handwritten 
digits that are more challenging to classify. This setup was 
designed to evaluate the cross-dataset generalization capability 
of the proposed approach. The differences in style and noise 
between the two datasets represent a real challenge, and our 
methodology highlights the robustness of the proposed solution 

under such conditions. Furthermore, we discuss the potential of 
applying domain adaptation techniques to further enhance 
performance on the NIST dataset. 

A. Dataset Description 

1) MNIST dataset: Fig. 9 presents the MNIST dataset, a 

benchmark collection of 70,000 grayscale images of 

handwritten digits compiled by NIST. Each 28×28 image 

represents one of ten digit classes (0 to 9). The dataset is split 

into 60,000 training and 10,000 testing samples, each labeled 

accordingly. 

MNIST was selected for this study due to its standardized 
format, broad use in literature, and relevance for offline HDR. 
Its consistency, ease of use, and compatibility with various 
machine learning models make it ideal for performance 
evaluation. 

 
Fig. 9. Handwritten digits from the MNIST database. 

2) NIST dataset: The specialized database illustrated in 

Fig. 10 encompasses the complete training dataset used by 

NIST for the recognition of handwritten text and characters in 

printed documents. It contains handwritten samples contributed 

by 3,600 writers and includes 810,000 isolated character images 

extracted from these forms. The dataset also provides ground-

truth classifications for each image, reference templates to 

support future data-collection efforts, and a suite of software 

tools for image processing and annotation. 

 
Fig. 10. Handwritten digits from the NIST database. 

B. Contour Segmentation 

Contour-based segmentation proposed in this study is more 
effective than classical methods. Our approach implements 
multiple specific steps for digit segmentation, which allows 
better isolation of each character, reduces noise impact, and 
improves the quality of segmented regions. Unlike standard 
methods that use simple binarization or contour detection, our 
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multi-step process preserves digit integrity and enhances 
performance, particularly in cross-dataset generalization trained 
on MNIST and tested on NIST. 

This section presents handwritten digit recognition using 
ML and DL models, including KNN, SVM, ANN, RNN, and 
CNN. MNIST was used for training, NIST for testing, and 
OpenCV for preprocessing the digit images. 

Steps in the Handwritten Digit Recognition Pipeline Using 
Contour Segmentation: 

1) Image acquisition: Handwritten digit images were 

collected from the MNIST dataset. 

2) Dataset splitting: The data were separated into a training 

set (MNIST) and a testing set (NIST). 

3) Preprocessing: Contour-based segmentation techniques 

were applied to clean and prepare the images. 

4) Normalization: Pixel intensity values were scaled to a 

range between 0 and 1. 

5) Batching: The training dataset was divided into mini-

batches to enhance training efficiency. 

6) Model training: ML and DL models were trained using 

labeled data. 

7) Classification: The trained models were used to classify 

digits in the testing dataset. 

8) Performance evaluation: Recognition accuracy and 

processing time were evaluated for each model variant. 

C. Implementations 

1) Image preprocessing: Fig. 11 illustrates a sample image 

from the NIST database, which may exhibit noise, spots, or 

other unwanted artifacts. To mitigate these imperfections, a 

Gaussian filter was applied to reduce the noise, followed by a 

derivative filter for edge detection. A sharpening technique 

based on a blur mask was employed to enhance image clarity, 

as shown in Fig. 12. 

 
Fig. 11. Initial image. 

 
Fig. 12. Gaussian smoothing on the image. 

 
Fig. 13. Thresholding "seuillage" application. 

 
Fig. 14. Applying dilation to the image. 

Thresholding was applied, as illustrated in Fig. 13, using 
Otsu’s method to determine the optimal global threshold based 
on the image histogram. This binary thresholding approach 
enhances the contrast between foreground and background. As 
shown in Fig. 14, dilation was selectively applied to images 
containing small handwritings to capture their contours more 
effectively. In addition, the Canny edge detector, known for its 
effectiveness in edge detection, was employed in the 
preprocessing phase, as illustrated in Fig. 15. 

 
Fig. 15. Application of Canny Edge Detection. 

2) Contour segmentation application: In the segmentation 

phase, we applied a contour detection algorithm to isolate 

individual digits within the image. A contour is defined as a 

closed curve that connects all the continuous points along the 

boundary of an object, representing its shape, as illustrated in 

Fig. 16. To accomplish this, one function was used to locate the 

contours, and the other was used to draw them. 

Subsequently, as shown in Fig. 17, we combined contour-
based segmentation with vertical segmentation. The latter 
divides the image into vertical slices to separate connected 
digits, thereby facilitating more accurate digit recognition. 

 
Fig. 16. Contour segmentation on the NIST dataset image digits. 

      
Fig. 17. Vertical segmentation application. 

D. Model hyperparameters 

The CNN model includes a convolutional layer with 32 
filters and ReLU activation, followed by a flattening layer, and 
then two dense layers: the first with 100 units and ReLU 
activation, and the second with 10 units and softmax activation. 
We used the SGD optimizer (learning rate of 0.01, momentum 
of 0.9) and the 'categorical_crossentropy' loss function, as 
shown in Table III. 
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TABLE I.  ANN HYPERPARAMETERS 

Number of epochs 100 

Batch size 1000 

Activation function Softmax & Sigmoid 

Optimizer Adam 

Loss sparse_categorical_crossentropy 

TABLE II.  RNN HYPERPARAMETERS 

Number of epochs 50 

Batch size 128 

Units 256 

Dropout 0.2 

Activation function Softmax 

Optimizer SGD 

Loss categorical_crossentropy 

TABLE III.  CNN HYPERPARAMETERS 

Number of epochs 100 

Batch size 1000 

Activation function Relu & Softmax 

Optimizer Adam 

Loss categorical_crossentropy 

As illustrated in Table I, the ANN model was trained for 100 
epochs with a batch size of 1000 using Softmax and Sigmoid 
activation functions and the Adam optimizer, with 
'sparse_categorical_crossentropy' as the loss function. 

To prevent overfitting, the RNN model, which includes 256 
units and a dropout rate of 0.2 to prevent overfitting, uses 
Softmax activation and is optimized with SGD, as shown in 
Table II. The loss function used is also 
'categorical_crossentropy', which is optimized for multi-class 
classification tasks. 

The hyperparameters for all models were selected based on 
experimental validation to ensure stable convergence, prevent 
overfitting, and achieve optimal performance on both MNIST 
and NIST datasets. Ablation studies were performed to evaluate 
the impact of varying key parameters (e.g., number of units, 
activation functions, learning rate, dropout), confirming that the 
chosen configuration consistently provides robust and 
reproducible results. 

E. Analysis of Results 

During testing, this study proposes a comprehensive method 
to evaluate all digit cases from the NIST dataset across multiple 
models. A structured framework was developed to facilitate 
testing on different models by grouping each test case within a 
structure that consolidates the results of all applied models. 
Unlike previous studies, which performed tests on the entire 
dataset without a method allowing an easy linkage of each 
model to its corresponding test, this approach ensures clear, 
systematic, and robust performance comparisons, as illustrated 
below. This methodology confirms the relevance of the 
observed improvements. 

We performed handwritten digit recognition using five 
different models (KNN, SVM, CNN, RNN, and ANN) to 
identify the most accurate model. As shown in Fig. 18, the deep 
learning models (ANN, RNN, and CNN) outperformed the 
others in both test cases. Similarly, Fig. 19 shows that the RNN 
and CNN achieved the best results across all the digits in the test 
case. Furthermore, Fig. 20 illustrates that the RNN consistently 
outperformed the CNN and other models across all three test 
scenarios. 

 
Fig. 18. In both test cases, Deep Learning models {ANN, RNN, CNN} 

showed superior performance. 

 
Fig. 19. RNN and CNN models achieved the best results for all digits in this 

test. 

 

 
Fig. 20. RNN models outperformed CNN and other models across all digits in 

these three tests. 

 

 
Fig. 21. CNN models performed better than other models for all digits in these 

examples. 
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Fig. 22. In this test example, KNN models outperform others and correctly 

identify at least 3 out of 4 digits in other tests. 

In the test examples shown in Fig. 21, the CNN models 
outperformed the other models for all the digits. As shown in 
Fig. 22, the KNN models also demonstrated superior 
performance for all the digits. In addition, in other test examples, 
the KNN models provided acceptable results, correctly 
identifying at least three of the four handwritten digits. 

TABLE IV.  RESULTS TABLE DISPLAYING THE ACCURACY OF EACH 

MODEL 

Models Accuracy (%) 

SVM 93.48 

KNN 92.9 

ANN 99.56 

RNN 98.74 

CNN 98.53 

Table IV lists the accuracy results for each model on the 
MNIST image dataset. In our handwritten digit recognition 
project using the MNIST dataset, we evaluated several ML and 
DL models: SVM, KNN, ANN, CNN, and RNN. The results 
showed that the DL models outperformed the traditional 
machine learning models. In particular, ANN achieved the 
highest accuracy of 99.56%, followed by RNN at 98.74% and 
CNN at 98.53%. SVM and KNN achieved accuracies of 93.48% 
and 92.9%, respectively. Prediction analysis for the digit 
sequence '1852' highlighted KNN's strength in certain specific 
cases, whereas other models had variable prediction accuracies. 
Overall, the DL models proved to be more effective for this task. 

TABLE V.  COMPARISON OF RESULTS WITH RECENT WORKS 

Models Our Result (%) 
Previous 

Results (%) 

References of 

Previous Works 

SVM 93.48 92.3- 93 
[48] 
 

KNN 92.9 91.8- 92.3 [49] 

ANN 99.56 97 - 97.4 [50] 

RNN 98.74 97 - 98 [51] 

CNN 98.53 98 – 98.12 [52] 

Our model outperformed previous approaches across all 
tested algorithms, as shown in Table V, with significant 
improvements in the ANN (99.56%) and RNN (98.74%). These 
enhancements suggest effective optimization of the architecture 
and hyperparameters. Slight increases were also observed for 
SVM, KNN, and CNN, confirming the robustness of our 
approach compared to previous works. 

VI. CONCLUSION AND FUTURE WORK 

This study developed an offline handwritten digit 
recognition system and compared various ML and DL models 
to identify the most effective. After preprocessing, a contour-
based segmentation method was implemented and evaluated 
across multiple classifiers. The study assessed features and 
models to determine the best HDR approach. 

Segmentation is challenging. Our system uses 
morphological and geometric operations with contour detection 
to isolate digits and reduce noise, producing segmented images 
of single digits for training. 

We performed experiments on the NIST dataset using 
contour-based segmentation and a range of algorithms: KNN, 
SVM, ANN, CNN, and RNN. The results showed that CNN and 
RNN delivered the best recognition performance, with high 
accuracy and consistency. Among the ML methods, KNN 
achieved acceptable results despite the difficulty in recognizing 
unclear digits in the NIST dataset. 

SVM demonstrated the fastest training time and achieved the 
highest training accuracy among the models evaluated. 
However, its simplicity limits its ability to classify ambiguous 
or complex inputs compared with DL models. By contrast, the 
DL models (CNN, RNN, and ANN) provided significantly 
better results, reaching up to 99% accuracy during both training 
and testing. 

Overall, nearly all the algorithms yielded acceptable results 
on the NIST test set, confirming their suitability for HDR tasks. 
While the SVM had the shortest execution time, the CNN 
required the longest execution time. 

In future work, we plan to enhance recognition accuracy by 
focusing entirely on deep learning techniques, exploring 
alternative architectures, and optimizing learning strategies. Our 
approach will be applied to more complex, real-world datasets, 
such as handwritten digits from bank checks. Furthermore, we 
aim to investigate adaptive segmentation methods to better 
handle overlapping digits and challenging handwriting styles, 
providing a clear roadmap for advancing offline handwritten 
digit recognition systems. 
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