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Abstract—This study investigates a hybrid residual control 

framework combining Deep Deterministic Policy Gradient 

(DDPG) and a Proportional–Integral–Derivative (PID) based 

correction module for active suspension (AS) systems, aiming to 

improve ride performance and generalization under complex 

road excitations. The DDPG controller is trained on sinewave 

inputs, while the PID module compensates for residual errors to 

enhance robustness. To further guide policy optimization, an 

error-aware reward rescaling strategy is introduced during 

training, adaptively shaping the reward signal based on 

acceleration deviation. The controller is tested under five typical 

road conditions. These include sinewave inputs and step inputs, 

and ISO 8608 Level B random profiles. Simulation results show 

that the residual DDPG (RDDPG) controller works better than 

both DDPG alone and the PID controller. It reduces vertical 

acceleration RMS by 50.35% under a 0.05 m sinewave input. 

This shows that using reinforcement learning (RL) with fast 

correction and reward adjustment is a useful and stable way to 

control AS in different driving conditions. 

Keywords—Deep deterministic policy gradient; active 

suspension; reward function; generalization 

I. INTRODUCTION 

In recent years, data-driven control methods such as RL 
have developed quickly. These methods have demonstrated 
strong adaptability and robustness in uncertain conditions [1]. 
At the same time, active anti-roll bar systems have shown 
strong potential in improving vehicle lateral stability [2]. Body 
roll can be reduced a lot during sharp turns or on rough roads 
[3], [4], [5]. These improvements show a new method to 
develop smart AS control. At the same time, more advanced 
methods are being tried in AS systems to better handle 
changing and unseen driving situations. 

To enhance adaptability, Nguyen [6] developed a fuzzy 
logic PI controller that adjusts its gains in real-time, leading to 
improved ride comfort and stability in a quarter-car model 
under varying conditions. Similarly, Zhou et al. [7] introduced 
a machine learning model that incorporates fuzzy logic to 
mitigate vertical vibrations in a two degree of freedom (2-DOF) 
suspension setup. The method lowered body acceleration well 
and stayed simple to compute, so it could be used in real-time. 

As the vehicle systems become more nonlinear and 
sophisticated, conventional controllers don't always guarantee 
good performance. For this reason, researchers look into neural 

networks (NN) and deep learning for better suspension force 
control. Bongain and Jamett [8] developed a hybrid fuzzy logic 
NN controller tailored to the nonlinear dynamics of electro-
hydraulic actuators. They compared this development with the 
PID-ANN controller and showed that they achieved superior 
tracking performance in input variations. Konoiko et al. [9] 
introduced a feedforward deep NN trained using supervised 
learning. The data were acquired from the optimal PID 
controller by full state feedback. An automatic structure 
optimization procedure was performed to improve 
generalization. 

AS control has improved a lot in recent years as more 
people use RL [10]. RL helps create control strategies by 
letting the system learn from the environment. This means it 
does not need a set system model. Liang and Wei [11] applied 
the DDPG algorithm to both active and semi-AS systems. The 
controller gives continuous force signals to the actuators and 
uses a reward function that punishes large vertical acceleration 
and too much suspension movement. Their results showed that 
the DDPG method worked well and made the ride more 
comfortable in different driving situations. Yong et al. [12] 
made a switching learning system based on the Soft Actor-
Critic (SAC) framework. The system was able to recognize 
various types of road disturbances in real-time and adjust its 
control strategy accordingly. The method was first tested in 
simulation, then applied to real road situation. It showed that it 
could handle different driving conditions well. 

Researchers have used actor-critic (AC) setups to better 
deal with uncertainty and changes in the system. Fares and 
Bani Younes [13] implemented a Time-Difference Advantage 
Actor Critic (TD-A2C) algorithm in a model-free setup. Their 
controller worked without knowing the environment before. It 
used an actor network to make actions, and a critic to check 
them. This setup helped keep a good balance between control 
force and ride comfort. Chen and Chang [14] applied a similar 
AC framework to control uncertain discrete-time systems. By 
using an NN to estimate the value function, their method kept 
the policy stable and made control more accurate. In parallel, 
Li and Kalabic [15] introduced a safety RL approach was 
introduced, integrating model free learning with a safety 
monitoring component. Penalty functions were used to reduce 
unsafe behavior during training which helped the controller 
explore effectively within safety limits. 
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Robustness and real-time adaptability remain key 
challenges in AS applications. To address this, Radac and Lala 
[16] formulated the suspension control task as a zero sum 
differential game between the controller and a worst case 
disturbance. Their game theoretic approach ensured robustness 
during learning by explicitly modeling adversarial conditions. 
Complementing this, Wang, Tian, and Zhang [17] developed a 
two layer control architecture based on a vehicle model. They 
combined incremental PID control with a deep RL adaptive 
(DRLA) strategy to enable online tuning of suspension forces 
in response to heave, pitch, and roll motions. Their method 
improved both ride stability and road handling. Wang, Zhuang, 
and Yin [18] applied DRL techniques to a quarter-car model 
under bump disturbances, confirming the controller’s 
effectiveness in managing transient shocks. 

The main contribution of this study is the use of error-
aware reward rescaling method to make the training of the 
DDPG controller faster and more stable. The residual 
framework is combined with DDPG and PID to reduce vertical 
acceleration under different unseen road conditions. 

II. METHODOLOGY 

This study employs a classic quarter car model 2-DOF, 
representing the vertical motions of the sprung and unsprung 
masses. To guide the learning process, an Error-Aware Reward 
Rescaling mechanism is designed, where vertical acceleration 
minimization is set as the primary objective, and suspension 
deflection and control effort are treated as secondary 
considerations. 

A. Quarter-Car Model and Parameters 

The quarter-car model with 2-DOF represents the vertical 
motions of the sprung mass and the unsprung mass, 
respectively. The system dynamic equations and schematic 
diagram are given as follows, in Fig. 1: 

 

Fig. 1. Schematic diagram of the quarter-car AS system. 

Sprung mass dynamics: 

msz̈s=-ks(zs-zw)-cs(zṡ-żw)+Fa                  (1) 

Unsprung mass (wheel) dynamics: 

muz̈u=-ks(zs-zu)-cs(zṡ-żu)-kt(zu-zr)-Fa   

where, ms and mw denote the sprung and unsprung masses, 
respectively; ks and cs represent the suspension stiffness and 
damping coefficient; kw is the tire stiffness; zs, zu, and zr denote 
the vertical displacements of the vehicle body, wheel, and road 
surface, respectively; and Fa is the control force generated by 
the AS actuator. 

B. Control Framework and DDPG Controller 

The control system developed in this study consists of a 
PID controller combined with an RL controller based on the 
DDPG algorithm. The DDPG controller generates the primary 
control force for the AS, while the PID controller learns to 
produce a residual correction term. The final suspension 
control force is the sum of the outputs from both controllers. 
This hybrid residual structure enhances the stability and 
responsiveness of the system during training as well as under 
unseen operating conditions. The overall control framework of 
the proposed AS system is illustrated in Fig. 2. 

 
Fig. 2. Overall control framework of the AS system based on RDDPG. 

The DDPG algorithm is a model-free RL method tailored 
for continuous control tasks. It integrates a deterministic policy 
gradient framework with an actor–critic architecture. The critic 

approximates the action-value function Q (s, a;θ
Q

) , which is 
updated by minimizing the temporal-difference loss between 
the estimated and target Q-values: 

L(θQ) = E[(yt − Q(st, at; θQ))2]               

The target value 𝑦𝑡  is computed using delayed versions of 
the actor and critic networks: 

y
t
=rt+γ∙Q'(st+1,μ'(st+1))                   

where, γϵ[0,1]  is the discount factor, and μ′ , Q′  are the 
target actor and critic networks respectively. These targets are 
held fixed for stability during mini-batch updates. 

The actor represents the policy μ(s; θμ), which is updated 
by maximizing the critic’s evaluation of the current policy. The 
gradient of the objective with respect to the actor’s parameters 
is given by: 

∇θ
μJ≈E [∇aQ(s,a;θ

Q)|
a=μ(s)

∙∇θ
μμ(s) ]              (5) 

This update encourages the actor to select actions that yield 
higher predicted Q-values, as determined by the critic. To 
mitigate oscillations during learning, the algorithm employs 
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target networks that are updated gradually using a soft update 
rule: 

θQ′
← τθQ + (1 − τ)θQ′

, θμ′
← τθQμ + (1 − τ)θμ′

  

A small update coefficient τ ensures that target networks 
evolve slowly, thus smoothing the learning process. To 
promote exploration in a deterministic policy framework, 
temporally correlated noise is added to the actor's output: 

𝑎𝑡 = 𝜇(𝑠𝑡) + 𝑁𝑡                                

where, Nt typically follows an Ornstein–Uhlenbeck (OU) 
process, which models physical systems more realistically than 
uncorrelated noise and helps prevent premature convergence. 

In this study, a residual structure is employed to improve 
the robustness of the DDPG controller. The RL agent is 
designed to fine-tune the output of the traditional controller 
rather than replace it entirely. The final control signal is 
obtained by combining the baseline controller's action with the 
correction learned by the agent, formulated as: 

ut=uPID(t)+uDDPG(t)                     

where, uPID denotes the output of a conventional PID 
controller, and uDDPG is the corrective term learned by the 
DDPG agent. This structure enables the RL component to 
focus on modeling deviations or nonlinearities that are difficult 
to capture with classical methods. 

C. Error-Aware Reward Rescaling and Training Setup 

This study introduces an Error-Aware Reward Rescaling 
mechanism that improves ride comfort by reducing vertical 
acceleration while accounting for suspension travel and control 
effort. The approach sets vertical acceleration as the primary 
objective and treats suspension deflection and actuator force as 
supporting factors. By adaptively shifting focus to the variable 
with the largest deviation at any given moment, it helps to 
guide the learning process more effectively, leading to better 
convergence and improved control reliability. 

The instantaneous reward is composed of three terms: 
vertical comfort score Rcomfort, suspension travel score Rtravel, 
and control effort penalty Paction. The first two terms are 
modeled using exponential decay functions to penalize large 
deviations from ideal states: 

Rcomfort=exp (- (
|z̈b|

z̈lim
)

2

)                        

Rtravel=exp (- (
|xs|

xlim
)

2

)                    

The control penalty is implemented using a hyperbolic 
tangent function to suppress excessively large control actions: 

Paction=tanh ((
|F|

Fmax
)

2

)                     

where, 𝑧̈𝑏  denotes the vertical acceleration of the vehicle 
body. 𝑥𝑠 denotes the suspension travel. F denotes the actuator 
control force. 𝑧̈𝑙𝑖𝑚 denotes the predefined upper limit for ideal 
vertical acceleration. 𝑥𝑙𝑖𝑚  is defined as the maximum desired 
suspension travel range. 𝐹𝑚𝑎𝑥  denotes the maximum control 
force amplitude. 𝜆 refers to the control force penalty coefficient. 

Instead of applying fixed weights to the comfort and travel 
terms, the proposed method adaptively rescales their 
importance based on the normalized error magnitude of each 
state component. Specifically, the dynamic weights are 
computed as: 

wc=
min(1,

|z̈b|

z̈lim
)

min(1,
|z̈b|

z̈lim
)+min(1,

|xs|

xlim
)

, wt=1-wc                 

This formulation enables the controller to dynamically 
assign greater attention to the more critical performance 
objective at each moment, based purely on state error levels, 
without requiring access to prior reward outputs. As a result, 
the reward function guides the policy to minimize the dominant 
deviation and improve adaptability across varying conditions. 

The final reward expression is given by: 

rt=wc∙Rcomfort+wt∙Rtravel-λ∙Paction                    

An additional bonus of 0.5 is granted when all normalized 
indicators fall below 0.5, encouraging convergence toward 
ideal operational zones. Numerical safety measures, including 
reward clipping and invalid value checks, are implemented to 
ensure stable learning. While the current reward function 
effectively guides the training process, the investigation into 
alternative reward shaping strategies lies outside the primary 
scope of this work and is reserved for future research. 

The DDPG agent receives three state variables as input: 
suspension deflection, the corresponding vertical velocity of 
the sprung mass, and the vertical acceleration of the vehicle 
body. The output is a one-dimensional continuous control force 
ranging from −1000 N to 1000 N, which is applied to the AS 
system. Both the Actor and Critic networks adopt a single 
hidden layer architecture with 256 neurons. To enhance 
exploration, OU noise with a standard deviation of 0.5 is 
introduced. Detailed parameters are provided in the 
corresponding Table I. 

TABLE I.  DETAILED PARAMETERS OF DDPG CONTROLLER 

DDPG Training Parameters 

Description Value 

Number of Hidden Neurons 256 

Learning Rate (Actor & Critic) 0.001 

Target Network Soft Update Factor 0.001 

Exploration Noise Type OU 

Noise Standard Deviation 0.5 

Experience Replay Buffer Size 1e6 

The control input of the AS system is the suspension force 
generated by the RDDPG controller. This control structure 
consists of two components: a primary controller based on 
DDPG, which is trained under smooth road conditions, and a 
residual correction module based on a PID controller that 
compensates for the DDPG output. The controller receives 
system state variables as input, including the vertical 
acceleration of the vehicle body. The DDPG module outputs an 
initial control force, while the PID module learns the residual 
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component to refine the control output. This hybrid 
architecture enhances adaptability and robustness under 
previously unseen scenarios. 

 
Fig. 3. Episode reward of Error-Aware Rescaling DDPG and Fixed Weight 

DDPG. 

As shown in the training reward curve in Fig. 3, the DDPG 
agent utilizing the proposed Error-Aware Rescaling reward 
function demonstrates significantly superior learning 
performance compared to the baseline with fixed-weight 
rewards. Specifically, the rescaling-based agent achieves rapid 
convergence within the first 50 episodes and maintains 
consistently higher episode rewards with minimal fluctuations 
throughout the training process. In contrast, the fixed-weight 
reward agent exhibits unstable learning behavior, with 
prolonged periods of near-zero rewards and considerable 
oscillations even in later stages. This indicates that the fixed-
weight design is prone to suboptimal policy learning and lacks 
robustness. Overall, the Error-Aware Rescaling approach 
enhances both convergence speed and policy stability, leading 
to improved final performance and demonstrating strong 
potential for guiding RL in suspension control tasks. 

 
Fig. 4. Comparison of Error Aware Rescaling DDPG and Fixed Weight 

DDPG. 

During training, a sinewave road excitation with a 
frequency of 1.5 Hz and amplitudes of 0.05m is used to 

simulate typical smooth driving conditions. The DDPG 
controller is trained until the policy converges, as indicated by 
a stable reward trend and a continuous reduction in the root 
mean square (RMS) of vertical acceleration. 

TABLE II.  SIMULATION RESULTS OF ERROR-AWARE RESCALING DDPG 

AND FIXED-WEIGHT DDPG 

Controller 

Compare DDPG at Sinewave 0.05m 

Road Input Condition 

RMS RMS Reduction 

Passive 7.11 m/s² - 

Error-Aware Rescaling DDPG 4.62 m/s² 35.02% 

Fixed-Weight DDPG 5.05 m/s² 28.94% 

The results are shown in Fig. 4 and Table II. The passive 
suspension system produces an RMS value of 7.11 m/s², 
indicating significant vibration and poor ride comfort. When 
using the DDPG controller trained with the proposed error-
aware rescaling reward, the RMS is reduced to 4.62 m/s², 
achieving a 35.02% improvement over the passive case. In 
comparison, the controller trained with fixed reward weights 
yields an RMS of 5.05 m/s², corresponding to a 28.94% 
reduction. The improved reward structure demonstrates a more 
pronounced effect in enhancing the vehicle’s vertical stability 
and ride comfort. 

III. SIMULATION SETUP 

To evaluate the control performance and generalization 
capability of the proposed RDDPG control strategy in AS 
systems, this study conducts simulation research based on a 
quarter-car suspension model. The entire simulation 
environment is established within the MATLAB/Simulink 
platform. Both the training and testing procedures are carried 
out using a representative 2-DOF quarter AS model, which 
comprises the sprung mass, unsprung mass, suspension spring, 
damper, and active actuator. The system dynamics take into 
account the vertical motions of the vehicle body and wheel, 
aiming to characterize the suspension’s response under various 
road excitations. Table III presents the detailed parameters of 
the vehicle. 

TABLE III.  DETAILED PARAMETERS OF VEHICLE 

Vehicle Parameters 

Value Description 

1400 kg Sprung mass (full car) 

45 kg Unsprung mass 

25800 N/m Suspension spring stiffness 

1200Ns/m Suspension damping coefficient 

198000N/m Tire stiffness 

To evaluate the generalization capability of the proposed 
controller, three types of unseen road excitation profiles are 
introduced during the testing phase. The first type is a step road 
excitation, which includes step inputs of 0.03 m (unseen) and 
0.05 m (trained) in amplitude. This test is designed to simulate 
sudden road height changes, such as speed bumps or curbs. 
The corresponding profile is illustrated in Fig. 5. 
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Fig. 5. Step 0.03m and step 0.05m road input profiles. 

The second type is a random road excitation, constructed 
according to the ISO 8608 standard for road roughness 
classification. Specifically, Level B profiles are employed to 
represent medium and poor road conditions, respectively. 
These excitations are shown in Fig. 6. 

 
Fig. 6. Level B random road input profiles. 

 

Fig. 7. Sinewave 0.05m and Sinewave 0.03m road input profiles. 

The third type is a sinewave excitation, which is identical to 
the road profile used in the training phase. This sinewave 

0.05m scenario serves as a baseline to validate the controller’s 
fundamental performance under familiar conditions. This 
sinewave 0.03m is an unseen condition to validate the 
controller’s performance. The excitation waveform is presented 
in Fig. 7. 

IV. SIMULATION RESULTS 

To comprehensively assess the effectiveness and 
generalization ability of the proposed RDDPG control strategy 
under varying road conditions, three representative test 
scenarios were constructed: sinewave 0.05m input excitation 
(training condition), sinewave 0.03m input excitation (unseen 
condition), step 0.03m and 0.05m input (unseen condition), and 
ISO 8608 Level B random road profiles (unseen conditions). 
The figures present the vertical acceleration responses of the 
vehicle body under different control strategies, including 
passive suspension, PID control, standalone DDPG control, 
and the proposed RDDPG controller, when subjected to these 
road excitations. 

A. Sinewave 0.05m Road Input Condition Simulation Results 

The simulation results under the sinewave 0.05m road input 
condition are shown below: 

 
Fig. 8. Sinewave 0.05m road input simulation results. 

During the training phase, a sinewave road excitation with 
an amplitude of 0.05 m was employed. Fig. 8 illustrates the 
vertical acceleration responses of the vehicle body under 
different control strategies. As shown, all three active control 
methods significantly reduce the fluctuation amplitude of 
vertical acceleration compared to the passive suspension, with 
the proposed RDDPG controller delivering the most 
pronounced improvement. According to the data summarized 
in Table IV, the passive suspension system RMS vertical 
acceleration of 7.11 m/s². The DDPG-based controller reduces 
this value to 4.62 m/s², corresponding to a 35.02% decrease, 
while the conventional PID controller achieves an RMS of 5.24 
m/s², reflecting a 26.30% reduction. Notably, the RDDPG 
approach further lowers the RMS to 3.53 m/s², achieving a 
50.35% reduction over the passive baseline and demonstrating 
the best overall performance in vibration attenuation. These 
results confirm the effectiveness and superiority of the RDDPG 
strategy under 0.05m sinewave excitation conditions. 
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TABLE IV.  SIMULATION RESULTS OF SINEWAVE 0.05M ROAD INPUT 

CONDITION 

Controller 
Sinewave 0.05m Road Input Condition 

RMS RMS Reduction 

Passive 7.11 m/s² - 

DDPG 4.62 m/s² 35.02% 

RDDPG 3.53 m/s² 50.35% 

PID 5.24 m/s² 26.30% 

B. Sinewave 0.03m Road Input Condition Simulation Results 

The simulation results under the sinewave 0.03m road input 
condition are shown below: 

 
Fig. 9. Sinewave 0.03m road input simulation results. 

To assess the vibration isolation performance under 
moderate road disturbances, a sinewave input with an 
amplitude of 0.03 m was applied in the simulation. The 
corresponding vertical acceleration responses for each control 
method are presented in Fig. 9. As observed, all AS strategies 
provide improved performance over the passive system, with 
the RDDPG controller demonstrating the most notable 
attenuation. According to the results summarized in Table V, 
the passive suspension yields an RMS vertical acceleration of 
4.26 m/s². The DDPG controller reduces this to 2.84 m/s², 
indicating a 33.33% improvement, while the PID controller 
achieves 3.14 m/s², corresponding to a 26.29% reduction. The 
RDDPG strategy achieves the lowest RMS value of 2.14 m/s², 
marking a 49.77% decrease relative to the passive 
configuration. Overall, the results highlight the RDDPG 
controller’s robust adaptability and its superior vibration 
suppression performance under reduced excitation amplitudes. 

TABLE V.  SIMULATION RESULTS OF SINEWAVE 0.03M ROAD INPUT 

CONDITION 

Controller 
Sinewave 0.03m Road Input Condition 

RMS RMS Reduction 

Passive 4.26 m/s² - 

DDPG 2.84 m/s² 33.33% 

RDDPG 2.14 m/s² 49.77% 

PID 3.14 m/s² 26.29% 

C. Step 0.05m Road Input Condition Simulation Results 

The simulation results under the step 0.05m road input 
condition are shown below: 

 
Fig. 10. Step 0.05m road input simulation results. 

To evaluate the generalization performance of each control 
strategy under previously unseen conditions, a step road 
disturbance with a height of 0.05 m was introduced, simulating 
an abrupt change in road profile. The resulting vertical 
acceleration responses are illustrated in Fig. 10. Compared to 
the passive suspension, all three active control strategies 
clearly mitigate the initial impact and help the system stabilize 
more rapidly. The magnified section highlights the 
effectiveness of each controller in suppressing peak 
acceleration. The corresponding RMS values are listed in 
Table VI. The passive system yields an RMS vertical 
acceleration of 0.99 m/s². The DDPG controller reduces it to 
0.82 m/s², resulting in a 17.17% decrease. The PID controller 
achieves 0.84 m/s², reducing the RMS by 15.15%. The 
RDDPG controller attains the best result with 0.79 m/s², 
representing a 20.20% reduction compared to the passive 
baseline. These findings demonstrate that the RDDPG strategy 
not only performs well under trained periodic conditions but 
also retains strong robustness and adaptability when facing 
sudden road disturbances. 

TABLE VI.  SIMULATION RESULTS OF STEP 0.05M ROAD INPUT 

CONDITION 

Controller 
Step 0.05m Road Input Condition 

RMS RMS Reduction 

Passive 0.99 m/s² - 

DDPG 0.82 m/s² 17.17% 

RDDPG 0.79 m/s² 20.20% 

PID 0.84 m/s² 15.15% 

D. Step 0.03m Road Input Condition Simulation Results 

The simulation results under the step 0.03m road input 
condition shown below: 

Fig. 11 illustrates the vertical acceleration responses of the 
vehicle body under different control strategies. Compared to 
the passive suspension, the active controllers effectively 
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suppress the initial impact peak and accelerate the system’s 
convergence. The magnified section in the figure provides a 
detailed comparison of the overshoot behavior across 
controllers. Table VII summarizes the corresponding RMS 
values. The passive system yields an RMS vertical acceleration 
of 0.58 m/s². The DDPG controller reduces this to 0.48 m/s², 
representing a 15.79% improvement. The PID controller 
achieves 0.50 m/s², which corresponds to a 13.79% reduction. 
The RDDPG controller achieves the lowest RMS at 0.45 m/s², 
yielding a 21.05% decrease compared to the passive baseline. 
These results further demonstrate that the proposed RDDPG 
control strategy maintains reliable performance and strong 
generalization capability even under mild, abrupt disturbances. 

 
Fig. 11. Step 0.03m road input simulation results. 

TABLE VII.  SIMULATION RESULTS OF STEP 0.03M ROAD INPUT 

CONDITION 

Controller 
Step 0.03m Road Input Condition 

RMS RMS Reduction 

Passive 0.58 m/s² - 

DDPG 0.48 m/s² 15.79% 

RDDPG 0.45 m/s² 21.05% 

PID 0.50 m/s² 13.79% 

E. Level B Road Input Condition Simulation Results 

The simulation results under the ISO 8608 Level B random 
road input condition are shown below: 

The ISO 8608 Class B random road profile was introduced 
to examine how well each control strategy adapts to irregular 
and complex surface disturbances. Fig. 12 displays the 
resulting vertical acceleration responses. As shown, the passive 
suspension experiences pronounced high-frequency 
oscillations, whereas the active control strategies noticeably 
suppress these fluctuations, indicating their improved ride 
comfort capabilities. Table VIII reports the corresponding 
RMS values. The passive configuration results in an RMS of 
0.76 m/s². The DDPG strategy improves this to 0.63 m/s², 
yielding a 17.11% reduction, while the PID controller achieves 
0.66 m/s², reflecting a 13.16% decrease. RDDPG again 
provides the best result, further lowering the RMS to 0.62 m/s², 
an 18.42% improvement over the passive baseline. These 

findings suggest that the RDDPG approach retains a high level 
of performance even under stochastic mid-grade excitations, 
demonstrating greater resilience and adaptability than the other 
methods tested. 

 

Fig. 12. Level B random road input simulation results. 

TABLE VIII.  SIMULATION RESULTS OF LEVEL B RANDOM ROAD INPUT 

CONDITION 

Controller 
Level B Random Road Input Condition 

RMS RMS Reduction 

Passive 0.76 m/s² - 

DDPG 0.63 m/s² 17.11% 

RDDPG 0.62 m/s² 18.42% 

PID 0.66 m/s² 13.16% 

V. DISCUSSION 

Different from the residual control structure proposed by 
Hynes et al. [19], this study adopts an RL-centric architecture, 
where the DDPG controller serves as the primary decision-
making module, and a PID controller is employed as a residual 
correction mechanism to enhance robustness. In contrast to 
their design, which relies on a PID-based policy and uses 
DDPG as a supplementary component requiring careful pre-
tuning, this study approach eliminates the dependence on a 
well-tuned initial controller. Moreover, an Error-Aware 
Reward Rescaling mechanism is introduced to improve both 
training efficiency and policy convergence. The prior work 
reports results under a limited range of conditions. In contrast, 
this study tests the proposed method across five representative 
road scenarios, including both training and unseen cases, to 
provide a more complete assessment of its generalization and 
robustness. 

Compared to other RL suspension control studies [20], this 
study demonstrates clear advantages in control architecture, 
adaptability, and generalization capability. First, it uses a 
residual control setup that combines a DDPG controller with a 
PID correction model. The PID component adaptively adjusts 
the DDPG output to enhance the stability and robustness of the 
control strategy under complex road conditions. An Error-
Aware Reward Rescaling mechanism is introduced to adjust 
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reward weights based on acceleration errors during training, 
which improves adaptability and convergence efficiency. In 
terms of validation, this study evaluates the controller under 
five representative road profiles that include sinewaves, step 
disturbances, and ISO 8608 Level B random inputs. This study 
provides a more comprehensive assessment of generalization 
compared to previous work. 

Simulation results consistently show that RDDPG 
outperforms standalone DDPG and traditional PID controllers. 
Under the 0.05 m sinewave excitation used as the training 
condition, RDDPG achieves a 50.35% reduction in RMS 
vertical acceleration compared to the passive baseline, 
exceeding the performance of DDPG at 35.02% and PID at 
26.30%. Under the 0.05 m step input as an unseen condition, 
RDDPG still delivers the best result, reducing RMS by 
20.20%, while DDPG achieves 17.17% and PID achieves 
15.15%. Even in stochastic and unstructured conditions such as 
ISO 8608 Level B random road condition, RDDPG maintains 
reliable performance with the lowest RMS value of 0.62 m/s², 
indicating strong resilience. 

Overall, by combining the long-term policy optimization 
ability of RL with the short-term corrective precision of PID 
control, the RDDPG strategy achieves a balanced performance 
in both stability and generalization. Its consistent effectiveness 
across a wide range of scenarios underscores its reliability and 
practical value for AS systems. 

VI. CONCLUSION 

This study adopts a hybrid control strategy for AS systems 
based on a residual DDPG framework. The method uses a 
DDPG controller together with a PID controller in a residual 
setup. The PID part adjusts the DDPG output to make the 
system more stable and robust. To further improve training 
efficiency and convergence, an Error-Aware Reward Rescaling 
strategy is introduced during the learning process. The 
mechanism adjusts the reward signal based on vertical 
acceleration deviation to guide the agent toward better control 
behavior. The proposed method is tested under five typical 
road excitations, including both training scenarios and several 
unseen cases. This work makes the method better by adding a 
way to change the reward during training. This assists to keep 
training stable and improves control. The results show that the 
better RDDPG works well in both tested and new situations, 
and gives a useful way to control active suspension. 

VII. FUTURE WORK 

Future work will try using the RDDPG method on full-
vehicle suspension models to test how well it works with more 
axles and connected movements. Additionally, incorporating 
real-time implementation and validation will be considered to 
assess the controller’s practical feasibility and robustness in 
real-world scenarios. Further research on alternative residual 
structures and adaptive weighting mechanisms may also 
enhance the system more flexible and work better. 
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