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Abstract—Ship detection in optical remote sensing imagery 

plays a vital role in maritime surveillance and environmental 

monitoring. However, existing deep learning models often 

struggle to generalize effectively in complex marine environments 

due to challenges such as noise interference, small object sizes, 

and diverse weather conditions. To address these issues, this 

study proposes an Edge-Guided Multi-Scale YOLO algorithm 

(YOLOv11n-EGM). The approach introduces multi-scale deep 

convolutional branches with varying kernel sizes to perform 

parallel feature extraction, enhancing the model’s ability to 

detect objects of different scales. Additionally, the classic Sobel 

operator is incorporated for edge-aware feature extraction, 

improving the model’s sensitivity to object boundaries. Finally, 

1×1 convolutions are employed for feature fusion, reducing 

computational complexity. Experimental results on the 

ShipRSImageNet V1.0 dataset demonstrate that the improved 

model achieves notable gains in precision, recall, mAP@0.5, and 

mAP@0.5:0.95 compared to the baseline, highlighting its 

superior performance in challenging maritime scenarios. 

Qualitative analysis further shows that YOLOv11n-EGM can 

accurately detect both large and extremely small ships in 

cluttered scenes, with precise boundary localization. However, 

occasional misclassification in fine-grained categories (e.g., 

motorboat vs. hovercraft) highlights the challenge of small-

instance recognition. Overall, the proposed method exhibits 

strong robustness and practical applicability in real-world 

maritime scenarios, offering a promising solution for edge-aware, 

multi-scale ship detection in remote sensing imagery. 
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I. INTRODUCTION 

Maritime transportation plays a crucial role in global trade, 
accounting for over 80% of total international trade volume. 
According to the International Maritime Organization (IMO), 
there are approximately 108,789 commercial vessels 
worldwide as of 2024. As the core carrier of marine economic 
activities, the operational efficiency of ships directly impacts 
the stability of international logistics systems [1]. Ship 
detection in optical remote sensing imagery has emerged as a 
critical research area due to its wide-ranging applications in 
maritime surveillance, port management, and marine traffic 
control. The task, commonly referred to as optical remote 
sensing ship detection, involves the automatic localization and 

classification of ship targets within high-resolution optical 
satellite images, and serves as a foundational technique for 
intelligent maritime monitoring systems [2]. 

However, the unique characteristics of ship targets in nadir-
view remote sensing imagery—such as significant scale 
variation, complex backgrounds, and prominent edge 
structures—have posed substantial challenges to detection 
models. In recent years, models such as R-CNN, Fast R-CNN, 
and the YOLO series have gained attention for their 
effectiveness in visual target identification [2], [3], [4]. Among 
them, the YOLO series has demonstrated particular advantages 
in optical remote sensing applications due to its high detection 
speed and competitive accuracy [2]. 

Nevertheless, despite the general success of YOLO-based 
detectors in object detection tasks, their direct application to 
ship detection in optical remote sensing imagery—e.g., 
YOLOv11n—reveals several domain-specific limitations. 
These include difficulty in handling ships of drastically varying 
sizes, insufficient exploitation of edge and contour features 
critical for distinguishing ships from complex backgrounds, 
and degraded performance in fine-grained classification tasks 
such as differentiating 49 ship types and docks. YOLOv11n’s 
baseline architecture lacks specialized modules to address the 
unique challenges posed by maritime scenes [2]. These 
limitations indicate a clear research gap in designing 
lightweight yet accurate detectors that can effectively capture 
multi-scale and edge-sensitive features in complex maritime 
scenes. 

To address this gap, this study proposes an enhanced 
YOLOv11-based approach with the following key 
contributions: 

A novel multi-scale deep convolutional module, 
EGM_Block, is introduced, employing parallel convolutional 
kernels of sizes 3, 5, and 7 to capture features at multiple 
scales. 

1) A Sobel edge extraction module is incorporated to 

improve the model’s sensitivity to edge features of ship 

targets. 

2) An efficient feature fusion strategy is proposed to 

reduce computational complexity while maintaining high 

detection accuracy. 
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3) Extensive experiments are conducted on the publicly 

available ShipRSImageNet V1.0 dataset, which provides a 

comprehensive benchmark for evaluating ship detection 

performance in remote sensing imagery. The results validate 

the effectiveness and robustness of the proposed method. 

The remainder of this study is organized as follows: Section 
II reviews related work; Section III details the proposed 
method; Section IV presents experimental results and analysis; 
Section V provides a discussion of the findings; and Section VI 
concludes the study and discusses future work. 

II. RELATED WORK 

A. Traditional Methods for Ship Detection 

Early approaches to ship detection in remote sensing 
imagery primarily relied on handcrafted features and classical 
machine learning algorithms. Techniques such as edge 
detection, texture analysis, and morphological operations were 
commonly employed to extract candidate regions, followed by 
classifiers like Support Vector Machines (SVM) or AdaBoost 
for final decision-making. While these methods offered a 
degree of interpretability, they were limited in their ability to 
handle variations in scale, orientation, and complex 
backgrounds, resulting in suboptimal performance in real-
world maritime environments [2].  

B. Deep Learning-Based Ship Detection 

The emergence of deep learning has significantly advanced 
the field of object detection. Two-stage detectors, such as R-
CNN, Faster R-CNN [3], and Mask R-CNN [4], introduced 
region proposal mechanisms that substantially improved 
detection accuracy, particularly for small and densely packed 
objects. After thorough experimental analysis and engineering-
level testing, the two-stage model proved highly effective for 
ship detection in remote sensing imagery. However, in 
practical engineering applications, the two-stage model is 
difficult to apply due to real-time or resource-constrained 
environments, such as satellite-attached equipment or 
unmanned aerial vehicles [5]. 

To address the aforementioned challenges, researchers have 
developed single-stage detectors, such as SSD [6] and the 
YOLO ("You Only Look Once") series [7], etc. The single-
stage detection architecture eliminates the step of region 
proposal and directly predicts bounding boxes and class 
probabilities. This design achieves a good balance between 
speed and accuracy. The YOLO series has been widely used in 
industry applications due to its real-time performance and 
continuous architectural improvements [8]. 

C. Evolution of the YOLO Series 

With the joint efforts of researchers and engineers, the 
YOLO series has undergone multiple efficient iterations in a 
short period of time. Strictly speaking, each new version 
surpasses its predecessor in terms of accuracy, speed, and 
feature representation. YOLOv3 introduced multi-scale 
detection and residual connections [9], while YOLOv4 [10] 
and YOLOv5 [11] adopted techniques such as CSPNet, PANet, 
and data augmentation strategies. YOLOv5 has shown 
practical effectiveness in agricultural applications, including 

crop detection and maturity classification under real-world 
conditions [12]. Recent versions, including YOLOv7 and 
YOLOv8, have focused on optimizing the backbone network 
and introducing lightweight variants suitable for edge 
deployment [13]. 

YOLOv11 is one of the latest advancements in the YOLO 
object detection series. Not only has its backbone architecture 
been optimized, but its feature extraction modules have also 
been enhanced, resulting in improved detection accuracy and 
computational efficiency [14] [15]. Therefore, YOLOv11 
generally performs better than previous versions in various 
general object detection tasks, and it is especially suitable for 
scenarios requiring real-time inference. 

Nonetheless, when applied to ship detection in high-
resolution optical remote sensing images, there are still some 
domain-specific challenges. Compared with conventional 
datasets, optical remote sensing images are captured from 
different viewing angles, resulting in large variations in ship 
scales, orientations, and arrangement densities. In particular, 
ships may appear in various environments such as ports, 
coastal areas, and open seas. These background conditions lead 
to significant changes in the overall appearance and spatial 
distribution of the images, which may reduce the effectiveness 
of standard detection procedures. 

In addition, experimental results show that YOLO models 
may struggle to capture fine edge details and the contextual 
cues necessary to distinguish ships from background elements 
such as waves, docks, and infrastructure. Therefore, accurately 
identifying ships that are slender, small in size, and densely 
arranged in images remains a key challenge. Moreover, in real-
world engineering scenarios where resources are limited and 
inference speed is critical—such as onboard or satellite 
systems—balancing detection accuracy and computational 
efficiency is also of great importance [16]. 

Considering the above-mentioned practical technical 
difficulties, there is a clear need for specialized architectural 
improvements that can address issues such as multi-scale 
representation, edge-aware feature learning, and stable 
performance in complex environments. The YOLOv11n-EGM 
framework proposed in this study aims to tackle these 
challenges by integrating an edge-guided multi-scale module 
and an adaptive loss strategy, thereby enhancing the reliability 
of ship detection in remote sensing imagery. 

D. Challenges in Remote Sensing Ship Detection 

Remote sensing imagery presents unique challenges for 
object detection algorithms. With the growing application of 
remote sensing in coastal environment monitoring, recent 
studies have extended its practical relevance to broader 
maritime scenarios [17]. In complex maritime environments, 
such as freezing seas, remote sensing systems may produce 
erroneous object detection results without proper surface 
discrimination mechanisms [18]. These images are captured 
from nearly vertical viewing angles, which often results in 
limited visible features of objects. Additionally, due to the 
large coverage area, ships frequently appear in various sizes 
and orientations within the same image, and are often situated 
in complex environmental conditions, such as cluttered port 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

251 | P a g e  

www.ijacsa.thesai.org 

backgrounds, cloud cover, sea surface noise, and low contrast 
[19]. Moreover, ships typically exhibit distinct edge features 
that can be leveraged to improve detection accuracy; however, 
many existing models fail to fully utilize this information. 
Furthermore, for applications in real-time maritime monitoring 
systems, lightweight and computationally efficient models are 
essential [20] [21]. 

III. METHODOLOGY 

This study introduces a lightweight ship detection 
framework specifically designed for optical remote sensing 
imagery—Edge-Guided Multi-Scale YOLO. The framework 
integrates multi-scale perception and edge contour 
enhancement mechanisms. Its architecture is based on an 
improved YOLOv11n backbone and is further enhanced by a 
custom-designed Edge-Guided Multi-Scale block (EGM-
block), which improves the model’s ability to capture structural 
and edge-related features across different scales. 

A. Overall Network Architecture 

The proposed method adopts YOLOv11n as the base 
detection framework and integrates the Edge-Guided Multi-
Scale block (EGM-block) into the backbone network to 
enhance feature extraction capabilities. The backbone consists 
of multiple convolutional and residual layers, which 
progressively capture spatial and semantic representations from 
the input image. The EGM-Block is inserted at the fourth stage 
(P3/8) to enhance mid-level features in terms of edge 
awareness and multi-scale object perception. The C3k2 and 
C2PSA modules further refine deeper semantic features, while 
the SPPF module contributes to multi-scale contextual 
aggregation. 

B. Edge-Guided Multi-Scale Block (EGM-Block) 

As illustrated in Fig. 1, the proposed EGM-Block is 
composed of three functional components designed to enhance 
the model’s ability to capture structural and scale-aware 
features in remote sensing imagery. 

 

Fig. 1. Edge-Guided Multi-Scale Block. 

1) Multi-scale depthwise convolutional branches: This 

component utilizes parallel depthwise separable convolutions 

with fixed kernel sizes of 3×3, 5×5, and 7×7 to extract features 

across multiple spatial resolutions. Such a design enables the 

model to effectively perceive ships of varying sizes, thereby 

improving its adaptability to scale diversity in optical remote 

sensing scenes. 

2) Sobel-based edge enhancement branch: To reinforce 

contour sensitivity, fixed-weight Sobel filters are employed to 

extract directional edge information. Specifically, horizontal 

and vertical edge responses are obtained by convolving the 

input feature map with predefined Sobel kernels along the x 

and y axes. These directional responses are subsequently fused 

through a 1×1 convolution to generate an edge-enhanced 

feature representation. Here, ⅇ𝑑𝑔ⅇ𝑥 and ⅇ𝑑𝑔ⅇ𝑦 denote the 

horizontal and vertical edge responses, respectively, while 

edge represents the overall edge magnitude. A small constant 

varepsilon = 1 × 10−6 is added to ensure numerical stability 

during square root computation. The overall edge magnitude 

is then computed using the Euclidean norm, as formulated in 

Eq. (1): 

 ⅇ𝑑𝑔ⅇ = √ⅇ𝑑𝑔ⅇ𝑥
2 + ⅇ𝑑𝑔ⅇ𝑦

2 + 1 × 10−6 

3) Feature fusion module: The outputs from the multi-

scale and edge branches are concatenated along the channel 

dimension and integrated using a 1×1 convolution to produce 

the final enhanced representation. 

C. Attention Mechanism and Feature Enhancement 

To improve the model’s ability to focus on informative 
regions, the C2PSA (Parallel Spatial Attention) module—
originally integrated into the YOLO11 architecture—is 
retained in the upper layers of the backbone. This attention 
mechanism operates by applying parallel spatial attention 
across feature maps, enabling the network to suppress 
irrelevant background noise while enhancing the response of 
target-relevant regions. Although not proposed in this work, 
the inclusion of C2PSA contributes to improved detection 
accuracy, particularly in complex remote sensing environments 
such as ports and coastal zones. 

D. Loss Function and Training Strategy 

To address the challenges of complex maritime 
environments, YOLOv11n-EGM incorporates a tailored loss 
weighting strategy. This approach assigns greater importance 
to overlapping ship instances, enhancing the model’s 
responsiveness to occluded and densely packed targets, 
particularly in port areas. The edge-guided multi-scale 
enhancement mechanism further contributes to precise 
boundary localization. When combined with regression loss, it 
effectively reduces false detections caused by cluttered 
backgrounds. 

The training process adheres to the standard YOLOv11n 
framework, utilizing the Stochastic Gradient Descent (SGD) 
optimizer with an initial learning rate of 0.01, adjusted 
dynamically through cosine annealing. While the core training 
methodology remains consistent, the integration of the EGM-
Block and the customized loss scheme significantly improves 
the model’s robustness and generalization capabilities. Detailed 
implementation settings, including data augmentation 
techniques and hardware configurations, are provided in 
Section IV. 

E. Implementation Details 

The proposed model is implemented using the PyTorch 
deep learning framework, leveraging its modular design and 
GPU acceleration capabilities. Input images are uniformly 
resized to 640×640 pixels to maintain consistency across 
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training batches and to balance computational efficiency with 
spatial resolution. The model is trained with a batch size of 64, 
which allows for stable gradient updates while fully utilizing 
the memory capacity of high-performance GPUs. 

To address the substantial scale variation of ship targets—
ranging from small fishing boats to large cargo vessels—the 
architecture incorporates an Edge-Guided Multi-Scale (EGM) 
feature enhancement strategy. This mechanism enables the 
network to capture fine-grained details and contextual cues 
across different receptive fields, thereby improving detection 
accuracy for both small and large objects. In addition, the 
EGM-Block, embedded within the backbone, helps suppress 
irrelevant background features such as waves, docks, and 
coastal infrastructure, which often lead to false alarms in 
remote sensing imagery. 

All experiments are conducted on the publicly available 
ShipRSImageNet V1.0 dataset, which provides a 
comprehensive benchmark for ship detection. The dataset 
includes 3,435 high-resolution images annotated with 
horizontal bounding boxes (HBB), oriented bounding boxes 
(OBB), and polygon masks. It is designed with a hierarchical 
classification structure across four task levels (Level 0 to Level 
3), covering 50 distinct ship categories [5]. A detailed 
overview of the dataset and training configuration is presented 
in Section IV. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

To validate the effectiveness of the proposed YOLOv11n-
EGM framework, a series of experiments is conducted on the 
ShipRSImageNet V1.0 dataset. This section presents the 
dataset characteristics, training configuration, evaluation 
metrics, and comparative results against baseline models. The 
experiments are designed to assess the model’s performance 
across varying task complexities and ship categories. 

A. Dataset Overview 

This study utilizes the ShipRSImageNet V1.0 dataset, a 
large-scale, fine-grained benchmark designed for ship detection 
in high-resolution optical remote sensing imagery. The dataset 
comprises 3,435 images sourced from diverse satellite 
platforms and sensors, spanning various geographic regions 
and weather conditions. Each image measures approximately 
930×930 pixels and contains ships of varying scales, 
orientations, and aspect ratios. A total of 17,573 ship instances 
are annotated using horizontal bounding boxes (HBB), oriented 
bounding boxes (OBB), and polygon masks, offering rich 
spatial and contextual information. 

ShipRSImageNet V1.0 introduces a hierarchical 
classification structure across four levels (Level 0 to Level 3), 
encompassing 50 distinct ship types. The updated version 
includes a standardized test set to facilitate fair benchmarking 
and reproducibility in ship detection research [5]. 

B. Experimental Setup and Evaluation Metrics 

All models are implemented using the PyTorch framework. 
Input images are resized to 640×640 pixels, with a batch size 
of 64. Training is conducted over 300 epochs on an NVIDIA 
RTX 4090 GPU with 24GB of memory. Data augmentation 

techniques such as random rotation and scale variation are 
applied to enhance generalization. 

To assess detection performance, the following metrics are 
employed: 

1) mAP@0.5 and mAP@0.5:0.95: Mean Average 

Precision at fixed and varying IoU thresholds. 

2) HBB mAP: Detection accuracy using horizontal 

bounding boxes. 

3) Precision, Recall, and F1 Score: Standard metrics for 

evaluating classification and localization quality. 

Performance is further analyzed across different object 
sizes (small, medium, large) and classification levels. 

C. Comparative Methods and Baseline Models 

To rigorously assess the effectiveness of the proposed 
YOLOv11n-EGM architecture, a series of representative object 
detection frameworks are selected as baselines. These models 
encompass diverse backbone networks and detection 
paradigms. Comparative experiments are conducted across all 
four hierarchical levels (Level 0 to Level 3) defined in the 
ShipRSImageNet dataset, enabling evaluation from coarse-
grained classification (ship vs. non-ship) to fine-grained ship 
type recognition. 

D. Visual Results and Quantitative Analysis 

To validate the effectiveness of the proposed YOLOv11n-
EGM model, we conducted comparative experiments against 
several mainstream object detectors. All models were trained 
under identical conditions to ensure a fair and unbiased 
evaluation. The visual and quantitative results of these 
comparisons are summarized in Table I. 

TABLE I.  EXPERIMENTAL COMPARISON RESULTS OF DIFFERENT 

ALGORITHMS 

Task 

Level 
Method 𝒎𝑨𝑷𝟓𝟎:𝟗𝟓 𝒎𝑨𝑷𝟓𝟎 𝒎𝑨𝑷𝟕𝟓 

Level 0: 

1 ships and 

dock 

Faster R-CNN 0.432 0.674 0.487 

Deformable DETR 0.505 0.763 0.596 

YOLOv9 0.447 0.662 0.523 

YOLOv10 0.594 0.760 0.656 

YOLOv11n-EGM 0. 606 0. 775 0.691 

Level 1: 
3 ship and 

dock 

Faster R-CNN 0.372 0.566 0.421 

Deformable DETR 0.431 0.609 0.512 

YOLOv9 0.404 0.551 0.455 

YOLOv10 0.496 0.625 0.551 

YOLOv11n-EGM 0.519 0.649 0.606 

Level 2: 

24 ships 
and dock 

Faster R-CNN 0.368 0.527 0.421 

Deformable DETR 0.509 0.635 0.583 

YOLOv9 0.399 0.497 0.464 

YOLOv10 0.505 0.608 0.557 

YOLOv11n-EGM 0. 511 0. 618 0.565 

Level 3: 

49 ships 

and dock 

Faster R-CNN 0.381 0.529 0.438 

Deformable DETR 0.585 0.701 0.760 

YOLOv9 0.433 0.525 0.493 

YOLOv10 0.584 0.668 0.650 

YOLOv11n-EGM 0.610 0.703 0.656 
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1) Overall performance trends: YOLOv11n-EGM 

consistently demonstrates superior performance across all 

Task Levels and evaluation metrics. Notably, in Level 0 and 

Level 3 scenarios, its results in mAP(50:95) and mAP_75 

significantly outperform other methods, validating the 

effectiveness of the proposed EGM-Block in enhancing multi-

scale and edge-level feature representation. YOLOv10 ranks 

closely behind, indicating that the YOLO series achieves a 

commendable balance between model efficiency and detection 

accuracy. In contrast, Faster R-CNN and YOLOv9 exhibit 

noticeable performance degradation in more complex scenes 

(Level 2 and Level 3), suggesting limited adaptability to dense 

object distributions and occlusions. 

Notably, we observed different comparative results of 
YOLOv11n-EGM across Level 0 to Level 3 of the 
ShipRSImageNet V1.0 dataset. This discrepancy is primarily 
due to the substantial variation in classification granularity 
across the hierarchical levels. Specifically, Level 0 
distinguishes whether an object is a ship or not, involving only 
two classes. Level 1 further categorizes ship objects into four 
broad categories. Level 2 refines these categories into 24 
subcategories, while Level 3 provides the most detailed 
classification, identifying 49 specific ship types and one dock 
class, resulting in a total of 50 categories. As the classification 
becomes increasingly fine-grained from Level 0 to Level 3, the 
complexity of the detection task escalates, placing greater 
demands on the network's feature extraction and discrimination 
capabilities. Consequently, the performance of the proposed 
algorithm varies across levels, reflecting its sensitivity to the 
granularity of the classification task. 

To further illustrate the detection performance of the 
proposed YOLOv11n-EGM model under varying task 
complexities, Precision-Recall (PR) curves are plotted for 
Level 0 and Level 3 scenarios. These curves provide a 
comprehensive view of the trade-off between precision and 
recall across different confidence thresholds. 

As shown in Fig. 2, YOLOv11n-EGM achieves a mean 
average precision (mAP) of 0.772 at an IoU threshold of 0.5. 
The model maintains high precision and recall in Level 0, 
where the task involves binary classification (ship vs. non-ship). 
This indicates strong performance in relatively simple 
detection scenarios with clear object boundaries and low 
category granularity. The category-wise analysis further shows 
that Dock achieves an average precision of 0.797, 
outperforming Ship at 0.747, likely due to the more consistent 
structural features of docks. 

In contrast, Fig. 3 presents results from the more 
challenging Level 3 setting, where the model is required to 
distinguish among 49 ship types and docks, totaling 50 fine-
grained categories. The overall mAP drops to 0.702, and the 
PR curves exhibit greater dispersion across classes. Despite 
this, the model preserves a balanced PR profile, demonstrating 
robustness in dense and cluttered maritime environments. The 
performance degradation reflects the increased difficulty posed 
by fine-grained classification, small object sizes, and complex 

backgrounds. These findings reinforce the importance of edge-
aware feature extraction and multi-scale representation in 
enhancing detection accuracy under varying conditions. 

 
Fig. 2. Precision-Recall curve of YOLOv11n-EGM on Level 0 (lightweight 

scenario). 

 
Fig. 3. Precision-Recall curve of YOLOv11n-EGM on Level 3 (complex 

scenario). 

2) Performance variation across task levels: As the Task 

Level increases—corresponding to a higher number of ship 

and dock targets—all models experience a general decline in 

detection performance. However, YOLOv11n-EGM shows 

the least performance drop, highlighting its robustness in 

handling complex and cluttered environments. Specifically, in 

Level 3 (49 ship and dock), YOLOv11n-EGM achieves a 

mAP(50:95) of 0.610, surpassing both Deformable DETR 

(0.585) and YOLOv10 (0.584), thereby reinforcing its 

advantage in high-density scenarios. 

To evaluate the classification accuracy across multiple ship 
categories, the normalized confusion matrix for Level 3 is 
presented in Fig. 4. This visualization highlights the model’s 
ability to distinguish between fine-grained ship types under 
high-density conditions. The diagonal dominance in the matrix 
indicates strong classification performance, while off-diagonal 
elements reveal occasional misclassifications, which are 
primarily observed among visually similar ship classes. 
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Fig. 4. Normalized confusion matrix of YOLOv11n-EGM on Level 3, 

illustrating multi-class classification accuracy. 

The overall training dynamics of YOLOv11n-EGM are 
depicted in Fig. 5, which includes the evolution of key metrics 
such as loss, mAP, precision, and recall over 300 epochs. The 
smooth convergence and consistent improvement across 
metrics validate the stability and effectiveness of the training 
strategy. 

 
Fig. 5. Training performance of YOLOv11n-EGM over 300 epochs, 

including loss, mAP, precision, and recall curves. 

To qualitatively assess the detection capability of 
YOLOv11n-EGM, Fig. 6 and Fig. 7 present sample predictions 
and corresponding ground truth annotations from the Level 3 
validation set. The model accurately localizes and classifies 
multiple ship instances, even in densely packed scenes, 
demonstrating its practical applicability in real-world remote 
sensing tasks. 

Notably, in several examples, both large vessels and 
extremely small ships appear within the same image and are 
successfully detected, with no significant omission. The 
bounding boxes closely align with the actual contours of the 
ships, indicating that the model effectively captures edge 
features and adapts to multi-scale object variations. These 
observations validate the effectiveness of the edge-guided 
multi-scale module and confirm that YOLOv11n-EGM 
achieves its intended improvements in fine-grained maritime 
detection. 

However, we also observed a case where a very small ship 
instance (Motorboat) was misclassified as a Hovercraft. This 
confusion likely stems from the limited pixel-level detail 
available for extremely small targets, which poses a challenge 
for fine-grained classification. 

 
Fig. 6. Ground truth annotations on a Level 3 validation image. 

 
Fig. 7. YOLOv11n-EGM predictions on the same Level 3 validation image 

V. DISCUSSION 

The YOLOv11n-EGM model demonstrates strong 
performance in ship detection tasks, particularly in cluttered 
optical remote sensing scenes. However, we observed that very 
small vessels, while successfully detected, are sometimes 
misclassified as other ship types. This issue arises from 
insufficient fine-grained semantic representation, which limits 
the model’s ability to distinguish subtle intra-class variations. 
Addressing this challenge may require enhancing class-specific 
feature discrimination or introducing adaptive refinement 
mechanisms. Overall, the results affirm the potential of 
lightweight architectures for real-time maritime monitoring, 
though further improvements are needed for precise 
recognition of small and visually ambiguous targets. 
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VI. CONCLUSION 

This study presents Edge-Guided Multi-Scale YOLOv11n 
(YOLOv11n-EGM), an enhanced object detection framework 
tailored for ship detection in high-resolution remote sensing 
imagery. Built upon the YOLOv11n backbone, the proposed 
model integrates a novel EGM-Block, which simultaneously 
strengthens multi-scale feature extraction and edge-aware 
representation. 

Extensive experiments were conducted on the 
ShipRSImageNet V1.0 dataset, which includes a hierarchical 
structure of four task levels (Level 0 to Level 3), encompassing 
a wide range of ship types and scene complexities. The results 
demonstrate that YOLOv11n-EGM consistently outperforms 
several state-of-the-art detectors across all evaluation metrics, 
particularly in challenging scenarios with dense and small-
scale targets. 

The proposed EGM-Block significantly improves the 
model’s ability to detect fine-grained ship instances while 
maintaining robustness against background interference. 
Comparative studies further confirm the critical role of the 
multi-scale and edge-guided branches in enhancing detection 
accuracy and generalization. 

A. Limitations 

1) Sensitivity to small instances: Qualitative analysis 

reveals that the model struggles to detect extremely small 

ships (e.g., < 8 pixels in size), often resulting in lower recall 

rates. This limitation is particularly critical in high-resolution 

satellite imagery, where small vessels are common. 

2) Spectral and weather dependency: The current model 

relies exclusively on optical imagery, making it vulnerable to 

adverse weather conditions such as dense cloud cover, fog, or 

nighttime scenarios. This spectral dependency limits its 

applicability in all-weather or low-visibility environments. 

3) Computational overhead: The introduction of the edge-

guided multi-scale module increases the model’s complexity 

in terms of both parameter count and GFLOPs. This added 

computational burden may hinder real-time deployment on 

edge devices or UAVs with limited processing power. 

B. Future Work 

1) Enhancing small object detection: We aim to improve 

the detection of small ships by incorporating super-resolution 

pre-processing pipelines and exploring anchor-free dense 

prediction frameworks (e.g., keypoint-based detectors). These 

approaches may enhance the model’s ability to localize and 

classify tiny instances more effectively. 

2) SAR-Optical data fusion: To overcome the limitations 

of optical-only input, we plan to integrate Synthetic Aperture 

Radar (SAR) data with optical imagery. SAR’s all-weather, 

day-and-night imaging capabilities can complement optical 

data, enabling more robust detection under challenging 

environmental conditions. 

3) Model compression and acceleration: To reduce 

computational overhead, we will explore lightweight 

alternatives such as depthwise separable convolutions, Ghost 

modules, and neural architecture search (NAS). Additionally, 

knowledge distillation techniques will be investigated to 

transfer knowledge from the full model to a compact student 

model suitable for real-time inference. 
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