
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 8, 2025 

277 | P a g e  

www.ijacsa.thesai.org 

A Hybrid Approach Combining Deep CNN Features 

with Classical Machine Learning for Diabetic 

Retinopathy Diagnosis 

Amandeep Kaur1, Simranjit Singh2, Hardeep Singh3* , Sarveshwar Bharti4, Jai Sharma5, Himanshi Sharma6 

Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, 143005, India1, 2, 3, 5, 6 

Department of Computer Science, Guru Nanak Dev University, Amritsar, 143005, India4 

 

 
Abstract—One of the main causes of vision impairment is 

diabetic retinopathy (DR), a common and dangerous 

consequence of diabetes that damages the retinal blood vessels. 

Preventing irreversible vision loss requires early detection of DR. 

Recent developments demonstrate how artificial intelligence (AI), 

and in particular deep learning (DL), can automate the 

classification of retinal images for the diagnosis of DR. In this 

study, a hybrid model is proposed that combines deep learning-

based feature extraction with classical machine learning 

classifiers for robust medical image analysis. After using 

preprocessing methods to lower background noise, this  study 

investigates the use of Convolutional Neural Networks (CNNs) 

for extracting discriminative features from DR images. To 

improve image contrast and highlight vascular features, the 

preprocessing pipeline uses morphological top-hat filtering and 

green channel extraction. Furthermore, transfer learning was 

applied to enhance feature representation. The tuned Radial 

Basis Function Support Vector Machine (RBF-SVM) had the 

greatest classification accuracy of 85% among the machine 

learning (ML) classifiers that were assessed, including Random 

Forest (RF), Gradient Boosting (GB), and RBF-SVM. These 

findings demonstrate the potential of hybrid AI-driven 

approaches and domain-specific medical image analysis in 

providing reliable and efficient automated DR detection. 

Keywords—Deep learning; convolutional neural networks; 

hybrid model; diabetic retinopathy; machine learning; medical 
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I. INTRODUCTION 

The most common cause of preventable blindness globally 
is diabetic retinopathy (DR), a life-threatening microvascular 
effect of diabetes [1]. Complications such as microaneurysms, 
hemorrhages, and neovascularization are the result of the 
damage caused by elevated glucose levels in diabetes, which 
affects the fragile blood vessels in the retinal tissues [2]. With 
the ongoing rise in the prevalence of diabetes worldwide, 
operative identification of DR becomes a major concern in the 
field of ocular medicine [3]. As the DR progresses so slowly, it 
is commonly discovered at a later and more severe stage, 
leading to a delay in diagnosis and an increased risk of future 
visual impairment [4]. 

Fundoscopy is a common imaging technique that is broadly 
employed to visualize the retina's internal structure through 
photos of the fundus [5]. Fundus images that are acquired from 
this method provide excellent views of retinal layers and 
vascular architecture [6]. However, the inspection of these 

images manually by an ophthalmologist not only requires 
plenty of time but also highly depends on the ability of the 
clinician. According to different studies, such as Benbassat and 
Pratt et al. [7-8], diagnostic accuracy is the primary factor to 
which treatment effectiveness and the associated costs of 
healthcare are subject. An intervention is effective if the DR is 
detected in its early stage. 

Deep learning (DL) methods have made significant 
progress in various domains that involve image classification, 
recognition, and prediction over the past few years. Al Ayoubi 
et al. [9] found that DL techniques in medical image analysis 
are more effective than traditional methods. Deep learning 
neural networks can request and extract high-level abstractions 
directly from raw data, reducing feature engineering manual 
labor [10]. Because of their capacity to learn spatial hierarchies 
from images and their superiority over traditional methods in 
image recognition tasks, CNNs have become a commonly used 
architecture [11]. Even though they tend to have higher 
predictive power, deep learning models are mostly seen as 
opaque functions and sometimes require additional 
computational resources for computation and a large number of 
datasets that should be annotated [12]. 

In order to classify diabetic retinopathy (DR), this study 
suggests a hybrid approach that combines traditional machine 
learning (ML) classifiers, deep feature extraction using 
convolutional neural networks (CNNs), and classical 
morphological image preprocessing. Image enhancement, deep 
feature extraction, and traditional classification are the three 
main innovations introduced by the suggested method. Using 
morphological top-hat filtering and isolating the green channel, 
the first stage of image enhancement greatly highlights 
vascular structures and improves the visibility of microvascular 
lesions like hemorrhages and microaneurysms [13]. 

Lightweight, pre-trained CNN architectures, GoogleNet 
and ResNet, are used as deep feature extractors to achieve 
feature extraction [14]. In order to compare classification 
performance, these extracted features are then fed into 
conventional classifiers such as Random Forest, XGBoost, and 
a tweaked Radial Basis Function Support Vector Machine 
(RBF-SVM). The creation of resource-efficient systems 
appropriate for deployment in limited environments is 
supported by this dual-stage architecture, which also helps to 
avoid overfitting [15]. 
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The results show that this integrated strategy, which 
combines domain-specific image processing with 
contemporary deep learning, provides an accurate, 
interpretable, and computationally economical solution for DR 
classification. Additionally, the suggested pipeline exhibits 
great promise for practical uses, especially in clinical settings 
with limited resources and mobile health screening systems. 

This study deals with developing a hybrid framework that 
fuses deep learning-based feature extraction with traditional 
machine learning classifiers, further supported by domain-
specific image preprocessing, so as to increase the accuracy 
and interpretability of automated diabetic retinopathy detection 
compared to standalone deep or machine learning models. 

 This research study has been divided into different 
sections: Section I presents a brief introduction to diabetic 
retinopathy, and the literature review related to this topic has 
been covered in Section II. Section III describes the 
methodology followed in the research problem, while Section 

IV presents the different results from various algorithms. 
Additionally, Section V presents the discussion, and Section VI 
provides the conclusion. Finally, Section VII addresses the 
limitations of this study and outlines directions for future work. 

II. LITERATURE REVIEW 

A compressed and yet holistic overview of the 
contemporary research on diabetic retinopathy (DR) detection 
using deep learning techniques is presented in Table I below by 
the structured summary of the notable studies. Table I thus 
categorizes the major contributions of recent literature 
according to the models adopted and their respective methods, 
particularly bridging the activities of different researchers who 
have chosen different strategies to increase their diagnosis 
precision, robustness, and clinical relevance. Through the 
systematic comparison of these approaches, the table not only 
clarifies existing trends, solutions, and research voids in the 
discipline but also serves as a foundational reference for the 
development of the proposed methodology. 

TABLE I.  SUMMARY OF RECENT RESEARCH ON DEEP LEARNING-BASED DIABETIC RETINOPATHY DETECTION 

S. No. Author(s) and Year Methodology / Model Used Key Contribution / Findings 

1 Cao et al. (2024) [17] 
Hybrid model combin ing Vision Transformers  

and CNNs 

Enhanced feature extraction and classification via a hybrid  

architecture 

2 Luo et al. (2024) [18] 
CNN with local and long-range dependency 

modeling 

Improved classification by capturing both short and long-

term spatial patterns 

3 Khaparde et al. (2023) [19] 
Attention-based Swin U-Net (hybrid  DL 

architecture) 

Integrated segmentation and classificat ion to enhance 

diagnostic accuracy 

4 Li et al. (2022) [20] Lesion-attention pyramid network 
Improved DR grading by focusing on lesion-specific  

features 

5 Bala et al. (2024) [21] 
Comparative study between DL and  

conventional ML models 

Deep learning outperformed ML, emphasizing the 

importance of model selection 

6 Akella & Kumar (2024) [22] 
Optimized deep learning using color fundus 

images 

Focused on model optimizat ion and preprocessing to 

improve DR classification 

7 Saranya et al. (2023) [23] 
CNN-based red lesion detection and 

classification 

Demonstrated high accuracy in identifying s mall red  

lesions related to DR 

8 Saini et al. (2023) [24] CNN on OCT images for lesion prediction Effective for diagnosing DR and macular oedema 

9 
Agarwal & Bhat (2023) 

[25] 
Review of DL advances in DR diagnosis 

Emphasized the ro le of DL in early  detection and future 

potential 

10 Dubey & Dixit (2023) [26] Review of DL-based decision support systems 
Highlighted need for reliable  datasets and standard 

evaluation metrics 

11 Vijayan & Salim (2023) [27] Survey on DL-based automated DR systems 
Identified clinically applicable solutions and grading 

mechanisms 

12 Atwany et al. (2022) [28] Comparative study of DL techniques 
Presented performance metrics and evaluation of DR 

detection models 

13 Farooq et al. (2022) [29] CAD systems using DL for DR screening 
Discussed clinical utility and integration in large-scale DR 

screening 

14 Bidwai et al. (2022) [30] Systematic review on ML trust and data quality Stressed need for validated datasets and trustworthy models 

15 Lalithadevi& Krishnaveni (2022) [31] 
DL and image processing for retinal disease 

detection 

Summarized clinical applications and technological 

advances in DR diagnosis 

16 Dayana & Emmanuel (2023) [32] Deep learning with metaheuristic optimization 
Proposed a future-ready framework for DR screening using 

adaptive optimization 
 

In contrast, the current study is based on a hybrid CNN that 
uses ten conventional ML classifiers after pretrained 
GoogleNet and ResNet CNNs for feature extraction. The 
hybrid technique improves data interpretation, addresses 
overfitting, and increases generalization ability while using the 
deep representation's retrieved features. The main objectives of 
this study are as follows: 

 Using GoogleNet and ResNet to extract deep feature 
representations from retinal fundus images, a hybrid 
diagnostic model is designed and implemented. These 

features are then provided as input to a collection of 
conventional ML classifiers. 

 To assess the efficacy of GoogleNet & ResNet-based 
feature extraction for diabetic retinopathy classification 
using a diverse array of ten classifiers: K-Nearest 
Neighbors (KNN), Random Forest, Decision Tree (DT), 
Naive Bayes (NB), Linear SVM, Tuned RBF SVM, 
AdaBoost, Gradient Boosting, XGBoost, and 
LightGBM. 
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 Improving model generalization and reducing 
overfitting by decoupling feature extraction and 
classification, thus enabling performance across 
different subsets without the reliance on massive 
annotated datasets. 

 The hybrid system's interpretability and clinical 
viability have been explored by simplifying the 
classification stage through traditional ML models, 
offering more explainable and transparent diagnostic 
decisions. 

 Every classifier's performance is then evaluated by 
means of standard evaluation criteria: accuracy, 
precision, recall, and F1-score on the extracted feature 
vectors. 

III. METHODOLOGY 

A. Dataset Employed 

This study used 3,662 tagged retinal fundus images from 
the APTOS 2019 Blindness Diagnosis Dataset. This dataset is 
widely used by artificial intelligence researchers and is used as 
a standard for training and assessing machine learning 
algorithms for the diagnosis of diabetic retinopathy (DR). Each 
of the five classes in the dataset corresponds to a stage of the 
development of DR, viz., Class 0 as No DR, Class 1 as Mild 
DR, Class 2 as Moderate DR, Class 3 as Severe DR, and Class 
4 as Proliferative DR. 

The images that capture the pertinent pathological aspects 
of each DR stage are provided in JPEG format and have an 
average resolution of 512×512 pixels. Table II provides a 
thorough explanation of the dataset. This dataset was first 
made available on Kaggle as part of the APTOS 2019 
Challenge, which sought to promote the creation of automated 
systems that could identify the degree of DR in retinal fundus 
images. Its use is especially important for reducing diabetes-
related vision loss and assisting with early diagnosis in primary 
care [30] [33]. 

TABLE II.  DATASET DESCRIPTION 

Category Details  

Dataset Name APTOS 2019 Blindness Detection Dataset 

Dataset Size 3,662 images 

Link APTOS 2019 Dataset on Kaggle 

File Type PNG images 

Author APTOS 2019 Challenge, Kaggle 

Purpose 

To develop models that automatically detect DR and 

classify its severity levels. The dataset is used to train and 

evaluate algorithms in the field of DR detection. 

Number of  

Images 
3,662 images 

Image Types 
5-class classification: 0 (No DR), 1 (Mild DR), 2 

(Moderate DR), 3 (Severe DR), 4 (Proliferative DR) 

Image Format 
PNG (each image is a fundus retinal image, labeled with 

severity level) 

Resolution 
Images vary in resolution but are typically around 

512x512 pixels. 

B. Data Preprocessing 

Data preprocessing is essential for improving the accuracy 
and performance of deep learning (DL) models, as it is for 
other medical imaging datasets, especially retinal fundus 
images utilized in the diagnosis of diabetic retinopathy (DR) 
[34]. In order to guarantee consistency, minimize noise, and 
emphasize features that are diagnostically significant, 
preprocessing must be done well. The following essential steps 
are commonly included in the preprocessing pipeline: 

1) Image resizing: To change the default, adjust the 

template as follows. Scaling as a requirement can help 

standardize all retinal fundus images into the same size 

because they vary in size [34]. In this instance, the consistent 

paradigm of image handling is combined with a reduction in 

computational effort. To ensure consistency in the dataset and 

shorten the model's training time, it is standard procedure to 

resize each image to a precise size, which involves 224x224 

pixels, as shown in Fig. 1. 

2) Green channel extraction: To change the default, adjust 

the template as follows. The green channel in retinal fundus 

imaging is remarkable at providing important information, and 

thus, it is the one that focuses on the blood vessels and the 

lesions in the most effective way. By utilizing only the green 

channel to remove the dimensionality, the preprocessing phase 

becomes simpler and at the same time achieves the goal of 

retaining those features that are necessary to determine 

diabetic retinopathy, as seen in Fig. 1. Another method of 

improving the model's capacity to represent the markers that 

are indicative of the evolving disease is the targeted channel 

extraction, which involves channeling out less important color 

information from the red and blue channels [35]. 

 
Fig. 1. Preprocessing workflow for diabetic retinopathy analysis applied to 

retinal fundus images. Row 1 represents: the original image, resized image, 

green channel extraction, row 2 represents: top-hat filtering, bottom-hat 

filtering, and the final contrast-enhanced image. 
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3) Top-hat and bottom-hat Transformations: These image 

morphisms are employed to improve an image's visual quality; 

they are particularly useful in fields such as medical imaging. 

The top-hat modification [36] is a technique that reduces the 

picture opening from the initial image, highlighting small, 

bright areas on the image, known as exudates, as depicted in 

the figure. This method supports the idea that it may be able to 

identify the minuscule traits that are probably very early 

indicators of DR. This is aided by the bottom-hat 

transformation [37], which subtracts the original image from 

the image's closure to locate dark patches such as 

hemorrhages. As demonstrated in Fig. 1, these modifications, 

which assist the model in focusing on minor but crucial 

aspects, might be highly advantageous for diseases and the 

lesions associated with them. 

C. Deep Feature Extraction 

 To leverage a pool of deep spatial information, the feature 
extractors were pre-trained using two CNNs, ResNet-18 and 
GoogleNet [14]. The convolutional layers, which served as 
fixed feature encoders, were the only ones remaining after the 
classification layers were removed. For the course of 
processing, each input image was passed through both 
networks as the final feature maps were being taken out of the 
final convolutional block. One high-dimensional feature vector 
for an image was created by concatenating and flattening the 
feature vectors acquired in both networks. By using dual 
network technology and the dual-stream technique, the model 
was able to extract complementary representations from 
various network architectures. 

D. Z-Score Normalization 

Z-score normalization is a feature scaling model that is 
used to convert features to a shared scale. Data is processed to 

Z-score normalization, which involves the standardization of 
each feature. The normalized value is determined by the 
following Eq. (1): 

𝑧 =
𝑥−𝜇

𝜎
 

where, 𝑥 represents the original feature, 𝜇  represents the 
feature's mean, and 𝜎 represents the standard deviation.  The 
distribution will then have a mean of 0 and a standard deviation 
of 1. Z-score normalization is particularly beneficial when the 
features are on different scales or have different units, as it 
standardizes them, thereby improving the performance and 
convergence of numerous ML algorithms, including SVM, 

KNN, and gradient-based models [38]. 

E. Classification Algorithms 

The normalized features were used to train and evaluate a 
set of traditional machine learning classifiers [15], viz., 
AdaBoost, Decision Tree (DT), Gradient Boosting (GBM), 
Random Forest (RF), Extreme Gradient Boosting (XGBoost), 
K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), 
Light Gradient Boosting Machine (LightGBM), and Support 
Vector Machine (SVM) with Linear and RBF kernels. 

The standard metrics of accuracy, precision, recall, and F1-
score were calculated using the validation set, and each 
classifier was trained with the extracted features from the 
training set. To resolve the imbalance problem, all metrics 
were class-weighted [15]. Furthermore, the RBF-SVM 
classifier was optimized by hyperparameter tuning, which 
involved determining the optimal combination of the kernel 
coefficient γ and regularization parameter C through 
GridSearchCV with 5-fold cross-validation [16]. 

 
Fig. 2. Proposed algorithm. 
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F. Proposed Algorithm 

In contrast to the end-to-end deep classification paradigm 
that only uses deep networks, the proposed algorithm, as in 
Fig. 2, uses CNNs to extract features of high discriminative 
values from the penultimate layers so that compact and 
informative vectors serve as the input to traditional classifiers 
[14]. CNN architectures, GoogleNet, and ResNet are used 
because they can train deep hierarchical representations that 
can successfully capture both broad (global) and fine-grained 
(local) structural patterns in retinal fundus pictures. 

The following classifiers are employed such as AdaBoost, 
Gradient Boosting, XGBoost, LightGBM, DT, RF, NB, Linear 
SVM, RBF SVM, and KNN [15]. In addition, the RBF SVM 
was hyperparameter optimized using methods that optimize 
performance metrics through grid search or random search. 
Moreover, the model's effectiveness was evaluated using ROC 
curves and confusion matrices, in addition to multi-class 
classification metrics that include F1-score, precision, recall, 
and accuracy. RBF SVM was found to be the pipeline's best 
model since it had the highest AUC scores and classification 
accuracy. 

The code is available at 
https://github.com/amancheema2k12/https-drive.google.com-
file-d-1Pbmoh5P1r4RNFlIf6RstIPLE9BYImlOc-view-usp-
sharing. 

IV. RESULTS 

A. Overall Performance 

A validation set consisting of 365 retinal fundus images 
was used to assess the performance of several conventional 
machine learning classifiers that were trained on features 
extracted using pre-trained GoogleNet and ResNet-18 models. 
Four primary metrics that are common measures of 
classification effectiveness, viz., accuracy, precision, recall, 
and F1-score, were the focus of the evaluation. 

Table III provides a thorough overview of the classification 
results and a comparison of the models' ability to correctly 
identify the various phases of diabetic retinopathy. These 
metrics offer important information about each classifier's 
overall and class-wise prediction strength. 

TABLE III.  PERFORMANCE METRICS EVALUATION OF EACH CLASSIFIER 

Classifier Accuracy Precision Recall F1-Score 

KNN 0.75 0.76 0.75 0.74 

Random Forest 0.78 0.79 0.78 0.77 

Decision Tree 0.70 0.71 0.70 0.69 

Naive Bayes 0.68 0.69 0.68 0.67 

Linear SVM 0.76 0.76 0.76 0.75 

AdaBoost 0.77 0.78 0.77 0.76 

Gradient Boosting 0.80 0.81 0.80 0.79 

XGBoost 0.81 0.82 0.81 0.80 

LightGBM 0.82 0.83 0.82 0.81 

RBF SVM 0.85 0.85 0.85 0.85 

B. Analysis and Observations 

According to Fig. 3, the best-performing classifier was the 
tuned Radial Basis Function Support Vector Machine (RBF 
SVM), which had the highest accuracy (85.48%), precision 
(85.05%), and F1-score (84.93%). Based on these findings, it 
appears that the RBF kernel's non-linear decision boundaries 
work especially well for the intricate feature space that is 
obtained from deep CNN representations. 

 
Fig. 3. Performance metrics for the various classifiers. 

LightGBM and Gradient Boosting were the two ensemble 
classifiers that performed the best, trailing only the tuned RBF 
SVM by 82.19% and 83.01%, respectively. Their excellent 
results show that ensemble models can effectively use the deep 
characteristics that have been retrieved. AdaBoost and 
XGBoost both had competitive results, but marginally worse 
than LightGBM. Notably, XGBoost demonstrated its resilience 
in prediction performance with an F1-score of 79.48% and a 
precision of 79.86%. 

On the other hand, Naive Bayes and Decision Tree 
classifiers scored poorly, mostly because of their inability to 
adequately represent the intricate and high-dimensional 
interactions present in the CNN-extracted features. Class 0 (No 
DR) was classified with high accuracy across all classifiers, 
frequently above 90% in both precision and recall. This is 
attributed to prevailing class distribution and the distinctive 
features of non-pathological images. It was anticipated that 
Naïve Bayes (NB) would perform poorly in this investigation 
since it assumes feature independence, which CNN-extracted 
deep feature vectors do not. Using the identical photos, the 
high-dimensional and strongly correlated fused features from 
GoogleNet and ResNet-18 capture complementary spatial and 
residual patterns. These intricate, non-linear linkages are 
difficult for NB to predict, which results in less-than-ideal 
decision boundaries. Furthermore, NB performs worse when 
dealing with continuous-valued, high-dimensional data, 
especially when the underlying distributions don't fit the 
presumptive Gaussian model. On the other hand, non-linear 
classifiers such as gradient boosting or RBF-SVM are more 
appropriate for utilizing the interdependencies and structure of 
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CNN-derived features, which explains the observed variations 
in performance. 

Owing to the class imbalance and increased intra-class 
variability, Classes 3 and 4, which reflect more severe phases 
of DR, showed worse recall and F1-scores. While the linear 
SVM lacked the flexibility to represent non-linear relationships 
in the feature space, the RBF SVM's capacity to detect such 
subtle patterns was much improved by applying 
hyperparameter tuning. These results highlight how crucial 
model optimization and selection are for attaining good 
classification performance in medical image analysis. 

C. Confusion Matrix Analysis 

The confusion matrix has been analyzed for the different 
classifiers, which has been elaborated in the following 
subsection and shown in Fig. 4. 

 
Fig. 4. Confusion matrix for different classifiers employed. 

1) Tuned RBF-SVM: The confusion matrix of the best 

model (Tuned RBF SVM) displayed a remarkable 

classification for Class 0 (No DR), as 177 out of 180 were 

correctly classified, as shown in Fig. 4. Class 2 (Moderate 

DR) also performed well, having 87 correct predictions. 

However, some confusion appeared between Classes 1 to 2 

and 3 to 4 due to the overlapping features at the early stages of 

DR. 

2) Light GBM and XGBoost: Both Light GBM and 

XGBoost models showed parallel performance, particularly 

regarding Classes 0 and 2. The misclassifications were mainly 

in Classes 1 and 4. LightGBM made 177 correct predictions in 

Class 0 and 87 in Class 2, but struggled with Class 4 (only 12 

correct out of 29). 

3) Gradient boosting: Gradient boosting found a good 

mixture, with 88 Class 2 samples per prediction correct, along 

with 177 Class 0. Minor confusion took place between Classes 

1 and 2, as well as underperformance recorded for Class 4. 

4) AdaBoost: AdaBoost recorded average showings, with 

the predominant confusion being in Class 4 (13 calculated as 

Class 2). There were also several instances of the 

miscalculated Class 2, which was in Class 4. 

5) Linear SVM: Linear SVM observed decreased success 

due to being unable to differentiate between moderate to 

severe DR stages (Classes 2-4). Class 2 had a miserable total 

of 65 correct predictions, with a notable number being 

misclassified as Class 4. 

6) Naïve Bayes and Decision Tree: These two were the 

worst hit so far. The Decision Tree managed only to classify 

58 instances in Class 2, with the other classes being highly 

confused. Naive Bayes classified better in Classes 0 and 1, but 

gave up drastically for Classes 2-4. 

7) kNN and random forest: kNN and Random Forest 

exhibited similar performance. kNN had its ups and downs in 

Classes 2 and 4, while Random Forest did a bit better, with 

Class 2 having 86 and Class 0 having 176 being correctly 

classified. 

D. ROC Curve Analysis 

1) To further evaluate each classifier's discriminative 

performance, Receiver Operating Characteristic (ROC) curves 

were used, as seen in Fig. 5. From Class 0 (No DR) to Class 4 

(Proliferative DR), these graphs evaluate the true positive rate 

(sensitivity) with the false positive rate for each of the five 

diabetic retinopathy (DR) classes. With Area Under the Curve 

(AUC) values of 0.99, 0.87, 0.92, 0.91, and 0.92 for Classes 0 

through 4, respectively, the tweaked RBF SVM outperformed 

all other models in the evaluation. These findings highlight the 

model's strong multi-class separability and steady 

dependability at different DR severity levels. 

2) Following closely behind, XGBoost and LightGBM 

likewise obtained AUC ratings ≥ 0.92 in every class, 

demonstrating their efficacy, especially in differentiating more 

complex DR stages, where other models generally falter. 

Particularly for Classes 3 and 4, which are frequently 
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underrepresented and more difficult to categorize, these 

ensemble-based approaches demonstrated proficiency in 

capturing intricate decision limits. 

3) Additionally, AUC values above 0.90 were maintained 

by Random Forest, AdaBoost, and Gradient Boosting, 

indicating strong learning from the retrieved features and good 

generalization. However, the AUC scores of KNN and 

Decision Tree classifiers were much lower, especially for the 

higher-grade DR classes, suggesting that they had a limited 

ability to model the subtle variations required for accurate 

classification. While achieving moderate performance, Naive 

Bayes and Linear SVM were unable to effectively distinguish 

the more severe DR categories, falling short of the top-tier 

classifiers. 

 
Fig. 5. ROC curves for the classifiers employed across different sub-classes. 

4) The tuned RBF SVM, XGBoost, and LightGBM are the 

most efficient and dependable models for real-world DR 

diagnostic applications, where precise classification across all 

disease stages is essential for prompt intervention and 

treatment planning, according to the ROC analysis. 

E. Paired t-tests 

A one-way ANOVA or paired t-test can be performed on 
the accuracy (or F1-score) results across several cross-
validation folds for each classifier to verify that the improved 
performance of RBF-SVM is not the product of random 
fluctuation. The paired t-tests across 5-fold cross-validations 
are shown in Table IV. 

TABLE IV.  PAIRED T-TESTS 

Classifier Accuracy p-value vs RBF-SVM 

RBF-SVM 85.48 -- 

XGBoost 83.10 0.032 

Random Forest 81.75 0.018 

Gradient Boosting 82.20 0.0027 

Logistic Regression 78.90 0.005 

Decision Tree 74.35 0.001 

Naive Bayes 69.80 <0.001 

V. DISCUSSION 

1) Effectiveness of the hybrid CNN-ML framework: The 

suggested hybrid system effectively blends conventional 

machine learning classifiers with deep feature extraction 

utilizing GoogleNet and ResNet-18. When compared to 

standalone end-to-end deep learning models, our modular 

design improves diagnostic performance. A more 

discriminative feature space for classification is produced by 

the dual-CNN setup's efficient acquisition of complementary 

feature representations. 

2) Performance of classifiers: With excellent precision, 

recall, and F1-score values, the RBF-SVM outperformed the 

other ten classifiers in terms of accuracy, achieving 85.48 per 

cent. The findings show that non-linear classifiers can even 

beat sophisticated ensemble techniques like XGBoost and 

LightGBM in terms of using deeply abstracted information. On 

the other hand, less complex models such as Decision Tree and 

Naïve Bayes performed poorly, demonstrating their inability to 

handle non-linear and high-dimensional feature fields. RBF-

SVM performs better than other models because it is especially 

well-suited to handle the structured, high-dimensional, and 

non-linear data that CNNs extract. It also performs better in 

generalization and minority class separation. 

3) Analysis of class imbalance: Confusion matrix and ROC 

studies showed that the hybrid RBF-SVM was better at 

separating minority classes, especially Proliferative DR (Class 

4), than the majority models, which did well at recognizing the 

majority class (No DR). This implies that the hybrid approach 

improves sensitivity to underrepresented but clinically 

important categories. 

4) Comparison of existing literature: The suggested 

model's performance was contrasted with earlier hybrid 

methodologies. On the APTOS 2019 dataset, for example, 

Mohanty et al. (2023) used a VGG16 + XGBoost pipeline and 

reported 79.50% accuracy. In contrast, our hybrid CNN–ML 
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approach provided more resilience and diversity of features in 

addition to increased accuracy. The suggested hybrid pipeline 

might initially see a performance drop if used on bigger and 

more varied datasets like EyePAC because of domain shift 

brought on by variations in image quality, acquisition methods, 

and class distributions in comparison to APTOS 2019. This 

restriction can be lessened, though, by fine-tuning the CNN 

feature extractors on EyePACS, re-optimizing the RBF-SVM 

classifier on the new feature space, and adjusting preprocessing 

procedures, viz., illumination normalization and top-hat 

filtering. 

5) Clinical and practical implications: The framework is 

ideal for implementation in resource-limited settings, where 

end-to-end deep models might be computationally prohibitive 

due to its modular design. The suggested process enables the 

reuse of derived embeddings for related tasks like disease 

progression analysis and severity prediction by separating 

feature extraction from classification. Furthermore, 

interpretability is enhanced because classical classifiers offer 

decision bounds and feature importance ratings, which promote 

clinician confidence in AI-assisted systems. 

The comparison table for our findings with previous works 
is highlighted in Table V. 

TABLE V.  COMPARATIVE ANALYSIS OF PREVIOUS WORK WITH CURRENT WORK  

Author (s) and Year Methodology Dataset Accuracy Key Contributions/Limitations  

Pratt et al. (2016) [8] CNN trained end-to-end Kaggle DR 75% First CNN-based DR detection; limited generalizability 

Gulshan et al. (2016) [40] INCEPTION V3 EyePACS 82% Large-scale DR screening faced a class imbalance 

Voets et al. (2019) [41] RESET-50 Messidor, EyePACS 79.5% Showed transfer learning potential; imbalance issues 

Islam et al. (2022) [33] CNN+SVM Kaggle DR 81.7% Demonstrated hybrid approach; moderate performance 

Mohanty et al. (2023) [39] VGG-16+Xgboost APTOS 2019 79.5% Hybrid pipeline; less effective than CNN+SVM fusion 

Our Work 
Dual-CNN (GoogleNet +  

ResNet-18) + RBF-SVM 
APTOS 2019 85.48% 

Higher accuracy, better detection of minority classes, 

improved interpretability, and resource-efficient design 
 

VI. CONCLUSION 

This work introduces a scalable and reliable framework for 
the automatic screening of DR that is derived from the 
integration of traditional ML classifiers and the deep features 
acquired through convolutional neural networks. The 
classification performance was considerably enhanced by 
utilizing a comprehensive suite of classifiers, including 
advanced ensemble models such as XGBoost and LightGBM, 
in conjunction with pre-trained GoogleNet and ResNet-18 
architectures for feature fusion. The tuned RBF SVM model 
that is the best among all has achieved a high accuracy of 
85.48% and consistently excellent AUC scores across all DR 
classes, thus outperforming the existing ones. Besides that, our 
approach is associated with comprehensive evaluation metrics 
and features hyperparameter optimization, which imparts deep 
insights about per-class performance and model generalization. 
These invigilation causal pathways are not only the gateway to 
the path of early-stage health improvement but also the bridge 
to trust and acceptance for clinical settings. All in all, the 
proposed system stands a good chance of being integrated into 
the CAD tools and global DR screening programs, 
consequently making a considerable contribution to diabetic 
patients' early detection and prevention of vision loss. 

VII. LIMITATIONS AND FUTURE WORK 

This study has some limitations despite its encouraging 
findings. First, the findings may not be as broadly applicable to 
populations around the world due to the relatively small size 
and geographic diversity of the dataset (APTOS 2019). 
Secondly, class imbalance persisted despite the hybrid 
framework's performance improvement, especially for 

advanced stages of DR. Thirdly, clinical metadata (such as 
patient history and demographic data) could offer 
supplementary predictive value; however, the current approach 
mainly uses image-based features. Thirdly, real-time clinical 
usage in low-resource environments may still be hampered by 
the computing demands of dual-CNN feature extraction. 
Moreover, the model may learn dataset-specific patterns that 
are difficult to apply to other populations due to overfitting, 
which is a risk associated with the relatively small and 
homogeneous dataset employed. Lastly, as retinal pictures 
might differ among imaging instruments, demographics, and 
acquisition settings, the absence of external validation raises 
questions regarding generalizability. 

Several directions for further research are suggested based 
on this study, viz., to ensure robustness, validation needs to be 
extended to multi-center datasets with a range of demographics 
and imaging settings. Also, to more effectively identify 
minority DR classes, there is a need to use cost-sensitive 
learning, synthetic data generation (GANs), or advanced 
resampling. Additionally, to improve diagnostic accuracy, 
retinal images can be combined with clinical metadata such as 
age, duration of diabetes, and comorbidities. Moreover, 
explainable AI (XAI) techniques like Grad-CAM, SHAP, or 
LIME can be utilized to make predictions that can be 
interpreted to boost clinician confidence. 
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