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Abstract—Accurately forecasting currency exchange rates is a 

persistent and significant challenge in computational finance. 

This study addresses the challenge by introducing an advanced 

model based on the Artificial Immune Recognition System 

(AIRS), an algorithm inspired by the adaptive learning of 

biological immune systems, to predict the directional movement 

of the EUR/USD pair. While conventional machine learning 

models are widely used, immune-inspired approaches have been 

largely unexplored in this domain. Using historical data from 

May 2002 to July 2024, the proposed model was rigorously 

optimized through time-series cross-validation and an 

Evolutionary Algorithm search. On the out-of-sample test set, the 

optimized model demonstrates strong predictive power, 

achieving an F1-Score of 0.66 and an ROC AUC of 0.74, results 

that are competitive with standard machine learning 

benchmarks. These findings validate AIRS as a robust and 

scientifically defensible tool for financial forecasting, offering a 

viable alternative to conventional methods in a highly volatile 

market. 
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I. INTRODUCTION 

Predicting financial markets is a notoriously difficult task. 
The underlying data is noisy, patterns are often fleeting, and 
traditional statistical models frequently fall short of providing 
reliable forecasts. Consequently, this has spurred significant 
research into machine learning approaches. 

While a significant body of research has focused on popular 
models such as neural networks [1] and random forests [2], a 
fascinating family of algorithms—Artificial Immune Systems 
(AIS)—has been largely overlooked, especially for the Forex 
market. This represents a missed opportunity, as the adaptive, 
self-learning nature of these biological systems seems perfectly 
suited for the constantly changing market environment. 

The objective of this study is therefore not merely to apply 
another algorithm. Instead, the aim is to rigorously test whether 
AIRS, a well-known immune-inspired model, can perform 
competitively in the EUR/USD prediction space. To achieve 
this, a simple application is insufficient. This work focuses on 
implementing a robust walk-forward [3] validation method, 
which is critical for time-series data and involves considerable 
effort in hyperparameter tuning. The central research question 

is whether the theoretical promise of AIRS can be translated 
into a practical, demonstrable edge in financial forecasting. 

A. Research Gap and Motivation 

A review of the literature reveals a clear disconnect. On one 
hand, the Artificial Immune Recognition System (AIRS) has 
been successfully applied in complex fields where it is praised 
for its ability to learn from noisy and dynamic data. On the 
other hand, the world of financial prediction is saturated with a 
wide range of machine learning models [4], yet immune-
inspired approaches are conspicuously absent. This gap was the 
primary motivation for this work. 

The core principles of a biological immune system appear 
tailor-made for the challenges of financial markets: 

 Constantly Changing Markets: A model that is effective 
today may fail tomorrow. The adaptive nature of AIRS, 
which constantly refines its "memory cells", is designed 
precisely for such dynamic environments. 

 Exploration vs. Exploitation Trade-off: Successful 
trading requires a balance between exploiting known, 
profitable patterns and exploring for new ones. The way 
AIRS manages its population of "antibodies" through 
cloning (exploitation) and mutation (exploration) 
directly mirrors this fundamental trade-off. 

Given this strong theoretical fit, the lack of rigorous studies 
applying AIRS to currency markets constitutes a significant 
oversight. This study was therefore designed to answer a 
simple question: Can a well-tuned AIRS model provide a real, 
practical edge in predicting the direction of the EUR/USD 
pair? 

B. Main Contributions and Novelty 

The primary contribution of this work is the first rigorous 
application and validation of the AIRS algorithm for 
EUR/USD exchange rate prediction. The study moves beyond 
a simple proof-of-concept by introducing a robust framework 
that integrates time-series-aware validation (walk-forward 
cross-validation) and advanced hyperparameter optimization 
(Evolutionary Algorithm Search CV), addressing a common 
weakness in prior financial forecasting studies. Furthermore, a 
practical implementation is provided that tackles the specific 
challenges of financial data, from feature engineering with 
technical indicators to handling temporal dependencies. To 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

287 | P a g e  

www.ijacsa.thesai.org 

support transparency and reproducibility, the mathematical 
underpinnings of the AIRS model are also detailed in this 
specific context. 

C. Paper Organization 

The remainder of this study is structured as follows: 
Section II reviews related work in the field. Section III details 
the methodology used for the study. Section IV presents the 
mathematical framework of the AIRS model and the 
experimental setup. Section V presents the empirical results, 
which are interpreted and discussed in Section VI. Finally, 
Section VII concludes the study by summarizing the key 
findings and suggesting avenues for future research. 

II. RELATED WORK 

This section provides a comprehensive review of the 
literature pertinent to financial market forecasting, establishing 
the context and highlighting the research gap that this study 
addresses. The review is structured into key areas: the 
application of conventional machine learning and deep learning 
models to currency exchange prediction, and the use of bio-
inspired algorithms in finance, with a specific focus on 
Artificial Immune Systems. 

A. Machine Learning Approaches for Currency Exchange 

Forecasting 

The prediction of currency exchange rates has long been a 
focal point of research in computational finance. A wide array 
of machine learning models has been employed to tackle this 
challenging task. Early research often focused on traditional 
models such as Support Vector Machines (SVMs), which have 
demonstrated effectiveness in classification tasks due to their 
ability to handle non-linear data [5]. Similarly, ensemble 
methods like Random Forests have been widely adopted, 
valued for their robustness and their ability to mitigate 
overfitting by aggregating the predictions of multiple decision 
trees [2]. 

More recently, the field has seen a surge in the application 
of deep learning models, particularly Long Short-Term 
Memory (LSTM) networks. Given their inherent capacity to 
capture long-term dependencies in sequential data, LSTMs 
have shown remarkable promise. For instance, several studies 
report high statistical accuracy, often exceeding 90%, when 
using LSTMs for trend forecasting [1]. 

However, a critical review of this literature reveals 
significant limitations. Many works achieving exceptionally 
high accuracy metrics do so under idealized conditions, failing 
to account for market frictions such as transaction costs or 
slippage. Furthermore, as highlighted by Khan et al. [2], high 
statistical accuracy does not necessarily translate to economic 
profitability, and a substantial number of studies lack rigorous 
financial backtesting. This gap between statistical performance 
and practical utility underscores the need for models that are 
not only accurate but also validated through methodologically 
sound frameworks. 

B. Bio-Inspired Algorithms and Artificial Immune Systems 

Bio-inspired computing, which draws inspiration from 
natural systems, offers a promising alternative to conventional 
machine learning models. Algorithms such as Genetic 

Algorithms and Particle Swarm Optimization have been 
successfully applied to problems like portfolio optimization 
and trading rule discovery. Within this domain, Artificial 
Immune Systems (AIS) stand out due to their adaptive, self-
learning nature, which mirrors the human immune system's 
ability to recognize and respond to novel pathogens [6]. 

The Artificial Immune Recognition System (AIRS), first 
introduced by Watkins et al. [7], is a supervised learning 
algorithm inspired by the principles of clonal selection and 
affinity maturation. Its foundational design has proven to be a 
robust classifier, leading to numerous enhancements. For 
example, variations like AIBARS [8] have improved 
computational efficiency, while O-AIRS [9] was developed 
specifically to address the challenge of overfitting in complex 
datasets. 

The versatility of AIRS is evident in its successful 
application across diverse fields. In finance, it has been adapted 
for high-stakes problems such as fraud detection [10] and 
credit rating prediction [11]. Its capacity to handle noisy, high-
dimensional data has also been proven in medical diagnostics, 
where it achieved high accuracy in tasks like hepatitis 
classification [12]. 

Despite these successes, a significant research gap persists. 
While AIS and AIRS in particular have demonstrated their 
power, their potential remains largely unexplored in the 
specific context of financial time-series prediction. The 
dynamic, non-stationary, and noisy nature of the foreign 
exchange market appears ideally suited to the adaptive 
capabilities of AIRS. This study aims to bridge this gap by 
conducting the first rigorous application and validation of an 
optimized AIRS model for predicting the directional movement 
of the EUR/USD pair. Building upon preliminary work that 
applied machine learning to forecast Bitcoin's direction [13], 
this study extends that research to the unique and complex 
dynamics of a major currency market. 

III. METHODOLOGY 

This section details the comprehensive framework used to 
develop, train, and evaluate the proposed forecasting model. It 
begins by presenting the mathematical formulation of the 
Artificial Immune Recognition System (AIRS) as adapted for 
this study. Subsequently, it describes the data collection, 
feature engineering, hyperparameter optimization, and 
evaluation protocols. 

A. The AIRS Forecasting Model 

As illustrated in the conceptual framework (Fig. 1), the 
AIRS model processes financial data through a well-defined 
evolutionary workflow to predict the EUR/USD direction. The 
process begins by initializing a diverse population of candidate 
solutions, known as antibodies. The model then enters an 
iterative training loop for each input vector, which consists of 
four core stages: affinity calculation to measure the fitness of 
each antibody, followed by cloning and mutation to reproduce 
and diversify the best candidates. A selection mechanism then 
retains the most promising antibodies for the next generation. 
This adaptive cycle, which is detailed in the following 
subsections, allows the model to effectively learn from 
complex market dynamics. 
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Fig. 1. Conceptual framework of the AIRS model for EUR/USD direction prediction. 

1) Problem formulation: Let the dataset be D =
{{xi, yi}}n

i=1
, where xi ∈ ℝd  is a feature vector of financial 

indicators and yi ∈ {0,1} is the corresponding target label (1 

for 'up', 0 for 'down'). The objective is to learn a classification 

function f: ℝd → {0,1},  modeled by AIRS, that accurately 

predicts the class y for a new feature vector x. 
2) Initialization: The process starts by initializing a 

population 𝑃  of 𝑀  antibodies. Each antibody 𝑤ᵢ  is a data 

prototype, defined as a tuple 𝑤ᵢ =  (𝑣ᵢ, 𝑐ᵢ), where: 

 𝑣ᵢ ∈  ℝᵈ is a feature vector representing the antibody’s 
position in the feature space 

 𝑐ᵢ ∈  {0, 1}  is the class label associated with the 
prototype. 

The population is initialized by randomly sampling M data 
points from the training set 𝐷. For each chosen sample (𝑥ⱼ, 𝑦ⱼ), 
an antibody wᵢ is created such that 𝑣ᵢ =  𝑥ⱼ and 𝑐ᵢ =  𝑦ⱼ. This 
strategy ensures that the initial population of prototypes is 
situated in relevant, data-dense regions of the feature space. 

3) Affinity calculation initialization: Affinity measures an 

antibody's ability to correctly represent its class within its 

local neighborhood. For a given antibody wᵢ = (vᵢ,cᵢ) and the 

training set D, we first identify the set Nₖ(vᵢ) of the k nearest 

neighbors to vᵢ within D. The affinity is then defined as the 

classification accuracy of wᵢ on this local subset: 

𝐴𝑓𝑓(𝑤ᵢ, 𝐷, 𝑘)  =  (
1

𝑘
)  ∗  𝛴{𝑥𝑗 ∈  𝑁ₖ(𝑣ᵢ)} 𝐼(𝑦𝑗  =  𝑐ᵢ)(1) 

where, (𝑦𝑗  =  𝑐ᵢ) is the indicator function. This ensures 

that antibodies representing dense and pure regions of their 
class are assigned higher affinity. 

4) Adaptive cloning and mutation: To explore the solution 

space and refine the antibody population, a process of 

reproduction and diversification is employed. 

 Cloning: In our implementation, a fixed-rate cloning 
strategy is employed. For each antibody in the current 
population, a single clone is generated. This approach 
ensures a consistent level of exploration by temporarily 
doubling the population size before the selection phase. 

 Mutation: Each resulting clone is then mutated. The 

mutation rate,  𝛽 , is a fixed hyperparameter, constant 
throughout the training process. The mutation is applied 
by adding a small random vector drawn from a 
Gaussian distribution to the clone's feature vector: 

𝑣′𝑐𝑙𝑜𝑛𝑒  =  𝑣𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  +  𝛽 ·  𝑁(0,1).         (2) 

5) Selection and memory cell update: From the pool of 

mutated clones, the n_best candidates with the highest affinity 

are selected to form the new population 𝑃_𝑛𝑒𝑤. A key feature 

of AIRS is the maintenance of a separate memory cell 

population, 𝑃_𝑚𝑒𝑚 , which stores the best-performing 

antibodies found during training. 

6) Prediction mechanism: For a new input vector x, the 

prediction is determined using a 1 − 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (1 −
𝑁𝑁)  classification rule based on the final memory cell 

population, 𝑃_𝑚𝑒𝑚. 

- Calculate the Euclidean distance between the new 

input vector 𝑥  and the feature vector v of every 

memory cell in 𝑃𝑚𝑒𝑚 . 

- Identify the single memory cell, 𝑤_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 , that 

has the minimum distance to 𝑥. 

- The final prediction, ŷ , is simply the class 

label 𝑐_𝑐𝑙𝑜𝑠𝑒𝑠𝑡  associated with this single closest 

memory cell. 

7) Theoretical Properties 

a) Complexity analysis: The computational complexity 

for a dataset of size n, a population of M antibodies, and T 

epochs is approximately O(T ⋅  n ⋅  (M ⋅  d +  M log M)) , 

dominated by the affinity calculation and selection steps within 

the training loop. 

b) Convergence properties: The convergence of AIRS is 

analyzed as a stochastic process. The elitist selection 

mechanism ensures that the quality of the best solution found 

by the algorithm is non-decreasing over time, guaranteeing a 

progressive convergence towards highly fit regions of the 

solution space. 

8) Numerical Walkthrough 

a) Initialization: The process begins by creating an 

initial population from the training data. For this example, 

assume a population of two antibodies: 𝑤1 , representing 

class 1 with the feature vector [0.18, 0.22],  and 𝑤2 , 

representing class 0 with the feature vector [0.75, 0.88]. 

b) Affinity calculation: The affinity of each antibody is 

calculated based on its quality within the training data, where 

a higher affinity indicates a better representative of its class. 

For our example, let's assume the calculated affinities 

are 𝐴𝑓𝑓(𝑤₁)  ≈  0.67 and 𝐴𝑓𝑓(𝑤2)  =  1.0. 

c) Adaptive cloning and mutation: According to the 

implemented strategy, all antibodies in the population are 

cloned once and then mutated. Both 𝑤1 (𝑐𝑙𝑎𝑠𝑠 1, 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 ≈
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 0 and 𝑤2 (𝑐𝑙𝑎𝑠𝑠 0, 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 =  1.0) will generate one clone 

each. Their feature vectors are slightly altered by Gaussian 

noise, resulting in new antibodies such as 𝑤1
′(𝑐𝑙𝑜𝑛𝑒)   with 

features [0.20, 0.25]  and 𝑤2
′ (𝑐𝑙𝑜𝑛𝑒1)  with features 

[0.78, 0.90]. 

d) Selection: The affinities of the original antibodies and 

the new clones are calculated. The combined pool now 

consists of four antibodies: 𝑤1 , 𝑤2 , 𝑤1
′(𝑐𝑙𝑜𝑛𝑒) , and 

𝑤2
′ (𝑐𝑙𝑜𝑛𝑒). From this pool, the best antibodies are selected to 

form the next generation's population. For instance, if the new 

affinities are calculated as 𝐴𝑓𝑓(𝑤′1(𝑐𝑙𝑜𝑛𝑒))  ≈  0.75  and 

𝐴𝑓𝑓(𝑤2
′ (𝑐𝑙𝑜𝑛𝑒) )  ≈  0.98, and the target population size is 2, 

the new population would consist of the two antibodies with 

the highest scores: 𝑤2 and 𝑤2
′ (𝑐𝑙𝑜𝑛𝑒). 

e) Prediction: Once the model is trained, predictions are 

made using the final memory pool. For a new input vector, 

such as 𝑥2  =  [0.1, 0.3],  the algorithm identifies the single 

closest antibody in the pool (1 − 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟). If the 

closest antibody found has features [0.15, 0.25] and class 𝑐 =

1, then the final prediction ŷ for the input 𝑥2 will be 1 (′𝑢𝑝′). 

IV. EXPERIMENTAL SETUP 

This section details the complete methodological 
framework used to build, train, and evaluate the AIRS 
forecasting model. It describes the data collection and 
preparation process, the feature engineering approach, the 
hyperparameter optimization strategy, and the rigorous 
validation protocol. 

A. Data Collection and Preparation 

The historical price data for the EUR/USD currency pair 
were collected from a recognized trading platform, ensuring 
reliability and accuracy. The dataset spans from May 1, 2002, 
to July 31, 2024, and includes daily opening prices, closing 
prices, highs, lows, and transaction volumes. The raw data 
were carefully preprocessed to ensure its integrity, which 
involved handling any missing values through forward-fill 
imputation and checking for outliers. 

To ensure a robust evaluation, the data was chronologically 
partitioned into three distinct sets: a training set (60% of the 
data), a validation set (20%), and a final test set (20%). The 
model was trained and optimized using the training set, 
evaluated during development on the validation set, and its 
final generalization performance was assessed on the 
completely held-out test set. 

B. Feature Engineering and Preprocessing 

To provide the model with meaningful predictive signals, a 
comprehensive preprocessing and feature engineering pipeline 
was implemented. 

a) Technical indicators: A suite of widely used 

technical indicators was calculated to capture market 

dynamics. These included trend indicators (e.g., Simple 

Moving Averages over 5, 10, and 20-day periods) [14], 

momentum indicators (e.g., the 14-day Relative Strength 

Index (RSI) and the Moving Average Convergence 

Divergence (MACD) with standard parameters) [15], and 

volatility indicators (e.g., 20-day Bollinger Bands) [16]. 

b) Lag features: To capture temporal dependencies, lag 

features for key variables (e.g., closing price, volume) were 

created for periods ranging from 1 to 5 previous days. 

c) Stationarity: The stationarity of all feature series was 

checked using the Augmented Dickey-Fuller (ADF) test. Non-

stationary series were transformed using first-order 

differencing to ensure robust modeling. 

d) Data transformation: The preprocessing pipeline 

included several key transformations applied sequentially to 

the training data: 

 Imbalance Handling: The Synthetic Minority Over-
sampling Technique (SMOTE) was applied to the 
training set to correct for class imbalance. 

 Scaling: All engineered features were standardized 
using StandardScaler. 

 Dimensionality Reduction: Principal Component 
Analysis (PCA) was performed to reduce the feature 
space. The number of principal components was 
selected to retain 95% of the original variance, thus 
reducing multicollinearity and model complexity. The 
same scaling and PCA transformations were 
subsequently applied to the validation and test sets. 

C. Hyperparameter Optimization 

The performance of the AIRS model is highly dependent 
on its hyperparameters. To identify the optimal configuration, 
this study employed an EvolutionaryAlgorithmSearchCV. This 
technique intelligently explores the hyperparameter space 
using principles of evolutionary computation. The search was 
conducted using a TimeSeriesSplit with 5 folds as the cross-
validation strategy to respect the temporal order of the data. 
The objective was to find the hyperparameter combination that 
maximized the F1-score. The key tuned hyperparameters and 
their respective search spaces were: 

 n_iterations: Integer values in the range [50, 150]. 

 population_size: Integer values in the range [100, 300]. 

 mutation_rate: Float values in the range [0.05, 0.2]. 

 n_best: Integer values in the range [5, 15]. 

D. Model Validation and Evaluation Framework 

1) Evaluation metrics: A comprehensive set of metrics, 

detailed in Table I, was employed to assess the model's 

performance. While accuracy offers a straightforward 

measure, the F1-score provides a more robust measure of 

classification quality. From a financial perspective, the Sharpe 

Ratio is especially significant as it quantifies the risk-adjusted 

return of an implied trading strategy. 
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TABLE I.  THE FOLLOWING EVALUATION METRICS WERE USED TO 

ASSESS THE MODEL'S PERFORMANCE 

Accuracy 
 

F1 Score 

 
 

Precision and Recall 

 
 

ROC AUC 

 
 

Matthews Correlation 
Coefficient 

 

Cohen's Kappa 
 

 

Sharpe Ratio 

Overall proportion of correct predictions 

[17].  
 

Harmonic mean of precision and recall, 

robust to imbalance [18]. 
 

Measures of the quality and completeness 

of positive predictions.[19] 
 

Model's ability to discriminate between the 

'up' and 'down' classes [20]. 
 

Measure of the quality of binary 
classifications [21]. 

 

Measure of agreement between predicted 
and actual classes [22]. 

 

Measures the risk-adjusted return of an 
implied trading strategy [23]. 

2) Performance diagnostics: Beyond numerical metrics, 

key visualization techniques were used for in-depth analysis. 

Confusion Matrices were used to analyze error types (false 

positives versus false negatives). ROC and Precision-Recall 

Curves allowed for the evaluation of the model's 

discrimination ability across different decision thresholds. 

Finally, Cumulative Gain Curves helped to illustrate the 

model's efficiency in identifying positive cases, providing 

insight into its practical value for targeted trading strategies. 

V. RESULTS 

This section presents the empirical results of the optimized 
AIRS model for predicting the directional movement of the 
EUR/USD exchange rate. The overall performance of the 
model on the out-of-sample test set is first detailed, followed 
by an in-depth diagnostic analysis and a comparative 
benchmark against standard machine learning models. 

A. Overall Predictive Performance 

The performance of the optimized AIRS model on the out-
of-sample test set demonstrates its predictive capability. The 
model achieved an accuracy of 66.46% and a robust F1-score 
of 0.6583. This result indicates a solid balance between a 
strong precision of 0.7036 and a recall of 0.6185, suggesting 
the model is more reliable in its positive predictions than 
exhaustive in identifying all positive cases. The model's ability 
to discriminate between upward and downward movements is 
confirmed by a ROC AUC of 0.7406. The detailed 
performance metrics for both the validation and test sets are 
summarized in Table II. 

B. In-Depth Diagnostic Analysis 

To further understand the model's behavior, its performance 
diagnostics were analyzed, as shown in Fig. 2. The confusion 
matrix for the test set recorded 389 true negatives and 368 true 
positives, against 155 false positives and 227 false negatives. 
This reveals that the model is slightly more prone to missing a 
potential gain (a false negative) than to incorrectly predicting 

one (a false positive), a conservative characteristic that can be 
desirable in risk-averse strategies. 

TABLE II.  PERFORMANCE METRICS OF THE AIRS MODEL ON EUR/USD 

DIRECTION PREDICTION 

Metric Validation Set Test Set 

Accuracy 

F1 Score 

Precision 

Recall 

ROC AUC 

MCC 

Kappa 

Sharpe Ratio 

0.6831 

0.6727 

0.7040 

0.6441 

0.7503 

0.3680 

0.3667 

0.0766 

0.6646 

0.6583 

0.7036 

0.6185 

0.7406 

0.3343 

0.3317 

0.1098 

The diagnostic plots confirm the model's robustness. The 
ROC curve (AUC = 0.74) and the Precision-Recall curve 
(Average Precision = 0.76) both indicate strong class 
separation. The cumulative gain curve is particularly insightful, 
demonstrating that, by targeting the top 40% of the model's 
most confident predictions, an investor could capture 
approximately 70% of all actual positive market movements, 
highlighting the model's practical efficiency. 

 

Fig. 2. Performance evaluation metrics of the AIRS model on the test set. 

C. Comparative and Robustness Analysis 

1) Benchmarking against standard models: To 

contextualize the performance of the AIRS model, it was 

benchmarked against three standard machine learning models: 

a Support Vector Machine (SVM), a Random Forest, and a 

Neural Network. As shown in Table III, the AIRS model 

demonstrated highly competitive and, in some metrics, 

superior performance. 

While other models, particularly Random Forest, achieve a 
slightly higher F1-Score, the AIRS model demonstrates a 
superior ability to discriminate between classes, as evidenced 
by the highest ROC AUC score (0.74). This highlights its 
particular strength for this classification task. 
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TABLE III.  PERFORMANCE COMPARISON OF DIFFERENT MODELS 

Model Accuracy F1-Score ROC AUC 

AIRS 0.66 0.66 0.74 

SVM 0.65 0.68 0.71 

Random Forest 0.67 0.70 0.73 

Neural Network 0.66 0.69 0.72 

TABLE IV.  AIRS PERFORMANCE ACROSS DIFFERENT MARKET PERIODS 

(PART 1) 

Period Accuracy F1-Score ROC AUC 

Low Volatility 0.70 0.73 0.76 

High Volatility 0.65 0.68 0.71 

    

TABLE V.  AIRS PERFORMANCE ACROSS DIFFERENT MARKET PERIODS 

(PART 2) 

Period Accuracy F1-Score ROC AUC 

Trending Market 0.72 0.75 0.78 

Ranging Market 0.64 0.67 0.70 

2) Performance across market regimes: The model's 

robustness was tested across different market conditions. As 

detailed in Table IV and Table V, the model maintains strong 

predictive power in trending markets (F1-Score = 0.75) and 

remains effective in more unpredictable ranging markets (F1-

Score = 0.67). Similarly, it performs better in low-volatility 

periods compared to high-volatility ones, which is an expected 

and logical outcome. 

VI. DISCUSSION 

A. Interpretation and Positioning within the Literature 

An accuracy of 66.46% on the out-of-sample test set is both 
statistically and economically significant in a market often 
approaching a random walk. To properly contextualize this 
performance, it is essential to compare it to the broader 
literature, which reveals a clear and crucial dichotomy between 
statistical accuracy and practical utility. This comparison is 
detailed in Table VI. 

On the one hand, several studies report exceptionally high 
statistical accuracies. Advanced models like AdaBoost of 
Bagging (as referenced in Table VI, Paper 1), SVM with a 
rolling window (Paper 4), and LSTM networks (Paper 5) have 
shown the ability to achieve accuracies well above 90%. On 
the surface, these results seem to overshadow the performance 
reported in this study. 

However, critical research provides a more nuanced 
perspective. Khan et al. (Paper 2) powerfully demonstrate that 
a model with lower accuracy can be significantly more 
profitable, establishing that financial backtesting is a more 
critical standard for validation than raw accuracy. This finding 
directly challenges the practical relevance of the high-accuracy 
claims in Papers 1, 4, and 5. Furthermore, the complete failure 
of certain approaches, like the sentiment-based Stacking 
Regressor (Paper 3), which performed worse than a naive 
baseline, highlights the danger of relying on flawed 
methodologies or incomplete evaluation metrics. 

TABLE VI.  A COMPARATIVE BENCHMARK OF MACHINE LEARNING APPROACHES FOR STOCK MARKET FORECASTING 

Paper Model Key Insights 
Performance 

Metrics 
Comparison with Literature 

1 

 
 

 

 
 

2 

 
 

 

 
 

3 

 
 

 

 

4 

 

 
 

 
5 

 

 
 

6 

AdaBoost of Bagging 

[24] 
 

 

 
 

Random Forest [2] 

 
 

 

 
 

Stacking Regressor [25] 

 
 

 

Support Vector Machine 

(SVM) 

[5] 

 
 

LSTM Network 
[1] 

 

Artificial Immune 
Recognition System 

(AIRS) 

Hierarchical ensembling (boosting over bagging) 

improves model robustness and reduces 
generalization error across multiple metrics. 

 

Critiques the use of accuracy alone. Proves a 
lower-accuracy model can be more profitable. 

Establishes financial backtesting as a critical 

standard for practical validation. 
 

Demonstrates that sentiment-only regression 

models are fundamentally flawed, performing 
worse than a naive baseline, despite having low 

relative error. 

 
A rolling window training method dramatically 

enhances predictive accuracy and stability, but the 

model's practical profitability remains unproven. 

 

Validates the high effectiveness of LSTM deep 

learning models for trend forecasting, but focuses 
solely on statistical accuracy rather than financial 

performance. 
 

Robust predictive capabilities through adaptive 

learning and evolutionary optimization. Balances 
accuracy with other critical metrics (Precision, F1, 

AUC). 

91.45% (Mean 

Accuracy) 
0.9728 (Mean 

AUC) 

 
+189.66% 

Cumulative 

Return 
 

 

Negative R² 
(e.g., -61.593) 

 

 
 

92.48% (Average 

Accuracy) 

 

 

 
>93% (for most 

stocks); 
up to 97.7% 

 

68.31% 
(Validation), 

66.46% (Test) 

Strong statistical performance, but lacks financial 

backtesting. The model's practical utility remains 
unproven, a key limitation highlighted by Paper 2. 

 

Sets the benchmark for practical evaluation. This 
study's financial results provide a critical lens 

through which the high-accuracy claims of Papers 

1, 4, and 5 should be viewed. 
 

Serves as a critical failure case. The negative R² 

proves the model is unreliable, showing the 
danger of relying on error metrics like MAPE 

without a more rigorous metric. 

 
High statistical accuracy, but lacks financial 

validation. As shown in Paper 2, a >90% accuracy 

does not guarantee profitability. 

 

High accuracy, but methodology is not compared 

to simpler models. Paper 4 achieved similar scores 
with a less complex SVM model. 

 
Presents a realistic and defensible performance. 

Unlike studies with unproven >90% accuracy, 

AIRS's performance is comparable to validated, 
profitable models and avoids the fundamental 

failures seen in Paper 3.  
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In this complex landscape, the AIRS model's validated 
performance of approximately 66.5% is positioned as both 
realistic and scientifically defensible. It avoids the trap of 
unproven high-accuracy claims (Papers 1, 4, 5), it is grounded 
in a robust methodology that avoids the fundamental failures of 
flawed approaches (Paper 3), and its performance level is 
situated within a context where practical validation is 
prioritized over statistical perfection (Paper 2). 

B. Practical Implications 

The practical implications for traders and financial 
institutions are significant. The model can be integrated into 
algorithmic trading systems to generate buy/sell signals. Its 
ability to provide probabilistic-like insights (via affinity scores) 
can aid in risk management, and its efficiency, as shown by the 
cumulative gain curve (Fig. 2), makes it a valuable tool for 
focusing on high-probability trades. 

C. Limitations and Future Directions 

Despite its promising performance, this study has several 
limitations. The model's computational complexity could be a 
challenge for very high-frequency applications. Its 
performance is also highly dependent on the quality of the 
feature engineering and is sensitive to hyperparameter tuning. 

Given that this study represents the first successful 
application of an optimized AIRS model to the foreign 
exchange market, future work should focus on validating and 
leveraging its potential in a real-world environment. A crucial 
next step would be to test its robustness and profitability under 
simulated or live trading conditions. Such practical validation 
is essential before considering more complex extensions, such 
as the integration of alternative data sources or the 
development of hybrid models that combine AIRS with other 
machine learning techniques. 

VII. CONCLUSION 

This study sought to answer a fundamental question: Can a 
bio-inspired algorithm like the Artificial Immune Recognition 
System (AIRS) effectively predict the directional movement of 
the EUR/USD market? Based on the findings of this research, 
the answer is a qualified and encouraging "yes". 

Following a rigorous process of optimization and 
validation, the proposed AIRS model achieved an accuracy of 
66.5% and a ROC AUC of 0.74 on the out-of-sample test set. 
While these metrics do not reach the >90% levels sometimes 
claimed in the literature, they are realistic, statistically 
significant, and, most importantly, were achieved using a 
transparent and scientifically defensible methodology. The 
model proved to be highly competitive against standard 
benchmarks such as SVM and Random Forest, demonstrating a 
particular strength in its ability to discriminate between classes. 

This work represents an important first step, but it is not 
without limitations. The model is computationally intensive, 
and its success relies heavily on the quality of the engineered 
features. The next logical step in this line of research is to 
assess the model's profitability in a simulated or live trading 
environment, as strong statistical performance does not always 
guarantee positive financial returns. 

Nonetheless, the results of this study strongly suggest that 
Artificial Immune Systems deserve greater attention within the 
financial forecasting toolbox. They offer a robust and adaptive 
approach that holds significant potential. It is hoped that this 
study will encourage further exploration of these powerful 
algorithms in the field of computational finance. 
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