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Abstract—Conformance checking techniques evaluate how well
a process model aligns with an actual event log. Existing methods,
which are based on optimal trace alignment, are computationally
intensive. To improve efficiency, a model sampling method has
been proposed to construct a subset of model behaviour that
represents the entire model. However, current model sampling
techniques often lack sufficient model representativeness, limiting
their potential to achieve optimal approximation accuracy. This
study proposes new model behaviour sampling approaches using
hierarchical clustering to compute an approximation closer to
the exact result. This study also refines the existing upper bound
algorithm for better approximation. Our experiments on six
real-world event logs demonstrate that our method improves
approximation accuracy compared to state-of-the-art model
sampling methods.
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I. INTRODUCTION

Conformance checking is a set of process mining functionali-
ties aimed at identifying deviations between the actual behaviour
of the event log (“as-is”) and the modeled behaviour of the
process model (“to-be”). It facilitates further applications, such
as model repair, anomaly detection, and algorithm evaluation
[1]. In recent years, the alignment-based method [2] has
become the de facto standard for conformance checking in the
computation of conformance diagnostics, since it always returns
the most accurate deviations, known as optimal alignment
[3]. However, finding the optimal alignment is an NP-hard
problem [4]. As the complexity of the log and model increases,
the run-time complexity of optimal alignment computation
grows exponentially, leading to extremely long computation
times, sometimes even taking several weeks. This makes them
impractical for real-world applications, especially large-scale
event logs. Moreover, in certain cases, an exact conformance
value is not necessary, such as when performing a preliminary
evaluation of process models with various process discovery
algorithms [5].

To address the problems, various approximation strategies
have been proposed, including optimizing the search algorithm
[6], [7] and decomposition schemes [8], [9]. However, sampling
provides another angle for approximate conformance checking,
such as sampling traces to represent the event log [10], [11]
or selecting model traces to substitute for the process model
[5], [12]. In this study, we adopt the latter approach, focusing
on model sampling. Two main model sampling methods exist:
simulation [13] and candidate selection [5]. We concentrate

on candidate selection due to its higher accuracy [5]. The
candidate selection method identifies representative traces from
the event log (i.e., log behaviour subset), and then computes
their optimal alignments to determine the corresponding model
traces (i.e., model behaviour subset). The accuracy of this
approximation depends on the quality of the selected log traces
[12]. However, existing log selection techniques (e.g., random,
frequency-based [5], K-Medoids [14]) often lack behavioural
diversity and model representativeness (see Section II), leading
to reduced accuracy in the conformance approximation. Hence,
there is significant potential for improving the quality of model
behaviour subsets.

In this study, we propose an enhanced model behaviour
sampling method to select more representative subsets and
obtain more accurate approximate values. First, we apply
hierarchical clustering to the event log using our proposed
distance criterion. Then, we propose two in-cluster methods to
select typical traces from each cluster, which are then used to
construct more representative model behaviour subsets. Finally,
we extend the existing cost lower bound algorithm to achieve
more accurate approximation results. The experimental results
show that our approach yields more accurate approximations
than existing baselines, though with an increased approximation
time.

The remainder of this study is organized as follows.
Section II provides a motivating example to further illustrate
the research problem. Section III discusses related work in
approximate conformance checking. Section IV outlines the
necessary preliminaries. In Section V, we propose our method
for constructing model behaviour subsets using hierarchical
clustering. Section VI details the evaluation setup. Section VII
presents the experimental results, followed by Section VIII
which presents the discussion. Finally, Section IX concludes
the study and presents the limitations and future work.

II. MOTIVATING EXAMPLE

Research such as [5] and [15] has shown that selecting
more typical log traces lead to higher approximation accuracy.
Thus, the key challenge is determining which subset should
be selected to improve approximate accuracy. Existing log
selection methods, such as the frequency-based and K-medoids
approaches, sometimes lack sufficient log representativeness.

To illustrate the potential limitations of these methods, we
use a synthesized event log L. It contains 5,106 traces consisting
of 32,600 events and 12 trace variants, as shown in Table I.
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TABLE I. EVENT LOG

ID Trace Variant Freq ID Trace Variant Freq

0 ⟨a, b, c, d, f, e, g, h⟩ 1280 6 ⟨a, d, f, h⟩ 250

1 ⟨a, b, c, d, e, f, g, h⟩ 912 7 ⟨a, f, b, c⟩ 96

2 ⟨a, b, c, d, e, g, f, h⟩ 864 8 ⟨a, c, e, f, g⟩ 64

3 ⟨a, b, c, h⟩ 792 9 ⟨a, d, e, g, h⟩ 56

4 ⟨a, b, c, d, h⟩ 400 10 ⟨a, b, f, e, g, h⟩ 48

5 ⟨a, h⟩ 320 11 ⟨b, f, g⟩ 24

Fig. 1. The process model discovered by inductive miner with infrequent threshold equals to 0.9.

TABLE II. BEHAVIOUR SUBSETS CONSTRUCTED BY FOUR METHODS

Method Subset Result Cost Deviation

Frequency-
based

Log Behaviour
ΣL = {⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, d, e, f, g, h⟩,

7806
⟨a, b, c, d, e, g, f, h⟩}

Model Behaviour
ΣM = {⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, d, e, f, g, h⟩,

⟨a, b, c, d, e, g, f, h⟩}

K-Medoids

Log Behaviour
ΣL = {⟨a, h⟩, ⟨a, b, c, d, e, g, f, h⟩,

6596
⟨b, f, g⟩}

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, e, g, f, h⟩,

⟨a, b, e, f, g, h⟩}

In-cluster
frequency

Log Behaviour ΣL = {⟨a, h⟩, ⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, h⟩}

4698

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, f, e, g, h⟩

⟨a, b, c, h⟩}

In-cluster
medoid

Log Behaviour ΣL = {⟨a, d, f, h⟩, ⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, h⟩}

4854

Model Behaviour
ΣM = {⟨a, d, h⟩, ⟨a, b, c, d, f, e, g, h⟩

⟨a, b, c, h⟩}

To discover the event log presented in Fig. 1, we applied
the Inductive Miner algorithm [16] with infrequent thresholds
of 0.9.

Assuming that we select three variants to represent the event
log, i.e., the behavior subset consists of three variants. Table
II shows the behaviour subsets generated by the frequency-
based method, K-Medoids, and our proposed methods (see
Section V for details). The frequency-based subsets show two
key limitations:

1) Overestimation of alignment cost: Variant 5, ⟨a, h⟩, can
be perfectly replayed in the model with an alignment cost of 0.
But it is not included in our model behaviour subset, aligning

it would require at least 6 insertions (i.e., cost of 6), resulting
in an overestimated approximate cost.

2) Lack of structural diversity: The selected model traces
⟨a, b, c, d, f, e, g, h⟩ and ⟨a, b, c, d, e, f, g, h⟩ differ only in the
order of e and f . This means that they represent essentially the
similar structural path, potentially overlooking other important
paths in the process model.

Also, the K-Medoids method has drawbacks: it clusters
traces solely based on their control-flow information, that is,
syntactic difference. For example, the trace ⟨b, f, g⟩ in log
behaviour subset (as shown in Table II) may have significantly
syntactic differences from other traces but, due to its low
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frequency (only 24 occurrences), it is still not enough to
represent the model behaviour.

To address the issues, our approach proposed in Section
V effectively balances frequency and control-flow information.
Table II also shows the cost deviation. It refers to the difference
in alignment cost between using model behaviour subset
and optimal-alignment. The values indicate that the model
behaviours generated by our methods significantly reduce the
cost deviations compared to vanilla methods.

III. RELATED WORK

To cope with the complexity of alignment construction,
approximation techniques have been developed to balance
result quality and computational cost. Early studies explored
replacing the A* algorithm with faster algorithms[7], [17], [18],
laying the foundation for a more efficient alignment computa-
tion. For example, Taymouri and Carmona [17], introducing
an evolutionary algorithm to enhance alignment approxima-
tions. Model decomposition has also been investigated as an
efficiency-oriented approximation approach. The foundational
work demonstrated how breaking models into smaller and more
manageable parts can simplify alignment, although it may not
always result in optimal alignments [19], [20]. Furthermore, the
construction of automata capable of aligning the log and the
model has been explored as another approximation technique
[21], [22]. This approach provides good approximations of the
optimal alignments in most cases. Recently, some researchers
have proposed using RNN-based neural networks to obtain
recall and precision metrics for event logs and process models,
demonstrating the potential of this technique for conformance
analysis [23], [24].

Reducing behaviour size is another promising strategy for
approximate conformance checking. One sampling approach
focuses on sampling the event log. For instance, [25] proposes
a trace sampling method, assuming that a few log traces can
estimate the conformance value. However, it lacks upper and
lower bounds for the approximation and performs worse when
the event log contains many unique behaviors.

Another recent sampling approach targets model behaviour.
[5] introduced a model sampling method to construct subsets
of the model behaviour that represent the entire process model,
significantly reducing the approximation time while largely
maintaining accuracy. The method also provides upper and
lower bounds to give some certainty of the approximation.

Hierarchical clustering is widely used in process mining
for its structural representativeness [26]. Furthermore, [27]
demonstrates how hierarchical clustering aids in discovering a
better model.

IV. PRELIMINARIES

This section presents the terminology and notation for
conformance checking to support the subsequent sections. We
use the basic definitions of Petri net, e.g., labeled Petri Net in
[28].

Given a system net SN , ϕf (SN) is the set of all complete
firing sequences of SN and ϕv(SN) is the set of all possible
visible traces, i.e., complete firing sequences starting in its
initial marking and ending in its final marking projected onto

the set of observable activities (not silent transitions, e.g., t3
in Fig. 1).

To measure how a trace aligns to a process model, moves
are represented by pairs (a, t), where a is a log activity, and t
is a model transition. Legal moves can be: log moves , model
moves, or synchronous moves . Any other combination is an
illegal move.

Definition 1. (Alignment). Let σL ∈ L represent a log trace
and σM ∈ ϕf (SN) denote a complete firing sequence of a
system net SN . ALM is the set of legal moves. An alignment
of σL and σM is a sequence of pairs γ ∈ A∗LM such that the
projection on the first element (ignoring ≫) yields σL and the
projection on the second element (ignoring ≫ and transition
labels) yields σM .

To quantify the costs of alignments we introduce a cost
function δ in Definition 2.

Definition 2. (Cost of Alignment). Cost function δ ∈ ALM →
N assigns costs to legal moves. The cost of an alignment
γ ∈ A∗LM is the sum of all costs:

δ(γ) =
∑

(a,t)∈γ

δ(a, t).

The cost values assigned to log moves, model moves, and
synchronous moves are 1, 1, and 0, respectively. Note that
an alignment is considered optimal if it has the minimum
alignment cost.

Definition 3. (Optimal Alignment). Let L be an event log and
SN a system net, where ϕv(SN) ̸= ∅.

• For σL ∈ L, we define: ΓσL,SN ∈ {γ ∈ A∗LM |
∃σM ∈ ϕf (SN) is an alignment of σL and σM}.

• An alignment γ ∈ ΓσL,SN is optimal for trace σL ∈ L
and system net SN if for any alignment γ′ ∈ ΓσL,M :
δ(γ′) ≥ δ(γ).

• γSN ∈ A∗LM → A∗LM is a mapping that assigns any
log trace σL to an optimal alignment, i.e., γSN (σL) ∈
ΓσL,SN and γSN (σL) is an optimal alignment.

Definition 4. (Levenshtein Edit Distance). As defined by [29],
the Levenshtein edit distance d(σ1, σ2) → N represents the
minimum number of edit operations (i.e., insertions, deletions,
and substitutions) required to transform one sequence into
another. For instance, d(⟨a, b⟩, ⟨c, d⟩) = 2, where the two edit
operations are substitutions (a, c) and (b, d).

Definition 5. (Edit Distance Cost Function). We can calculate
the distance between two traces (or sequences) faster by using
a modified version of the Levenshtein edit distance [30]. Let
σ1, σ2 ∈ A∗ be two sequences of activities. The Edit Distance
Cost Function ∆(σ1, σ2) → N is defined as the minimum
number of edits (insertion or deletion of activities) required to
transform σ1 into σ2.

Suppose that S is a set of sequences, Φ(σL, S) =
minσM∈S ∆(σL, σM ) returns the distance of the most similar
sequence in S. Let ϕv(SN) be the set of all visible firing
sequences in SN , and γSN (σ) be an optimal alignment
for sequence σ. It is possible to prove that δS(γSN (σ)) =
Φ(σ, ϕv(SN))[12].
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In the context of alignment, the edit distance function can
be used as a cost function δS for evaluating the misalignment
between a log trace σL and a model trace σM . This cost
function assigns a value corresponding to the number of
operations required to align the two sequences. For example,
∆(⟨a, c, b, e, d⟩, ⟨a, b, c, a, d⟩) = 4 corresponds to two deletions
and two insertions.

Moreover, the alignment cost of a single trace can be
converted into a fitness value between 0 (poor fitness, i.e.,
maximal costs) and 1 (perfect fitness, i.e., zero costs) using Eq.
(1) [5]. In this regard, we normalize this cost relative to the
worst case, with one log move for each activity in the trace
and one model move for each transition in the model’s shortest
path, SPM = minσM∈ϕf

(|σM |). Here, the optimal alignment
cost, δ(γSN (σ)), can be replaced by an alternative cost (e.g.,
edit distance cost) to obtain a corresponding fitness value.

FitnessTrace(σL, SN) = 1− δS(γSN (σ))

|σL|+ SPM
(1)

Note that the overall fitness between the event log and
the system net is the weighted average of single trace fitness
values.

V. METHOD

In this section, we present the proposed conformance
approximation method. An overview of our approach is shown
in Fig. 2. The method begins with a preprocessing stage
using hierarchical clustering techniques. Next, two methods
are proposed for constructing model behaviour subsets: in-
cluster frequency and in-cluster medoid methods. Finally, the
alignment approximation process is explained.

A. Preprocess Event Log Using Hierarchical Clustering

In this stage, we apply agglomerative hierarchical clustering
[31] on event logs. Specifically, we first partition the event log
based on trace variants to get the trace variant subset Σσv . Then,
we introduce the normalized weighted Levenshtein distance to
measure the distance between these variants (see Definition 6) as
a new in-cluster distance criterion. This criterion considers both
frequency and control-flow information, alleviating the problem
with current log selection methods mentioned in Section II. It
is used to build a distance matrix, then forming a dendrogram.
By cutting-off the dendrogram, we obtain the desired number
of clusters. The framework is illustrated in Fig. 3.

Definition 6. (Normalized Weighted Levenshtein Distance).
Let A∗ be the set of all possible sequences of activities in A,
and let σv1, σv2 be two trace variants ∈ A∗. The normalized
weighted Levenshtein distance between σv1 and σv2, where
each trace variant has a frequency f(σv1) and f(σv2), is
defined as Eq. (2):

dweighted(σv1, σv2) =
f(σv1) · f(σv2) · dN (σv1, σv2)

max{f(σv1)2, f(σv2)2}
(2)

where, the normalized Levenshtein distance dN (σv1, σv2) is
given by Eq. (3):

dN (σv1, σv2) =
d(σv1, σv2)

max{|σv1|, |σv2|}
(3)

Here, dN (σv1, σv2) = 0 means the two traces are exactly
the same, and dN (σv1, σv2) = 1 means the two traces are
completely different.

Definition 7. (Distance Matrix). Let σv1, σv2, . . . , σvi ∈ A∗

represent all trace variants in event log L. The matrix D(L)
is defined as Eq. (4):

D(L) =


0 d(σv1, σv2) · · · d(σv1, σvi)

d(σv2, σv1) 0 · · · d(σv2, σvi)
...

...
. . .

...
d(σvi, σv1) d(σvi, σv2) · · · 0

 (4)

where, d is the normalized weighted Levenshtein distance
function.

B. Constructing Model Behaviour

In this stage, we first propose two in-cluster methods to
get log behaviour subset ΣL from the generated clusters and
transform it into the model behaviour subset ΣM . Specifically,

1) Candidate selection: After preprocessing, we obtain
several clusters, each representing different behaviours within
the model. The following question is how to choose the
most representative traces from each cluster to construct a
more effective log behaviour subset. Existing approaches in
approximate conformance checking often rely on either random
sampling or frequency-based selection without considering
control-flow similarity, which may lead to biased or suboptimal
subsets when the frequency distribution is highly imbalanced or
when rare but structurally central behaviours exist. To address
this, we extend the ideas of frequency-based and medoid
selection by introducing two in-cluster methods — the in-
cluster frequency method and the in-cluster medoid method —
designed to balance efficiency and representativeness.

The in-cluster frequency method selects, from each cluster,
the trace variant with the highest frequency of occurrence. This
approach assumes that the most common behaviour within a
cluster is also the most representative of that cluster’s behaviour.
Its main advantage lies in computational efficiency, as it
does not require computing pairwise distances between traces.
Compared to methods that sample traces uniformly at random
[25], the frequency method reduces the risk of including low-
relevance traces, especially in large-scale logs.

The in-cluster medoid method, in contrast, selects the trace
variant that minimises the total Levenshtein distance to all other
traces in the cluster, effectively identifying the “central” trace
in terms of control-flow similarity. Specifically, it computes
the pairwise Levenshtein distances between all traces in each
cluster, then constructs a distance matrix and obtains the medoid
trace (see Definition 8). This ensures that the selected trace best
represents the structural characteristics of its cluster, even if it
is not the most frequent. Compared to traditional frequency-
only methods, the medoid approach mitigates the bias towards
dominant behaviours and is more robust when clusters contain
diverse but equally important behaviours.

2) Optimal-alignment: In this step, we align ΣL with
process model to construct the ΣM , that is, we compute the
optimal alignments of selected traces in the event log and
finding the corresponding model traces for these alignments.
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Fig. 2. Overview of our approach.

Table III shows three clusters generated from the event
log in Table I. For example, applying the in-cluster fre-
quency method to cluster 2 yields ⟨a, b, c, h⟩792, the most
frequent trace. Repeating this for each cluster, we obtain
ΣL = {⟨a, b, c, d, f, e, g, h⟩1280, ⟨a, b, c, h⟩792, ⟨a, h⟩320}. We
then align ΣL with the process model, as shown in Fig. 1,
resulting in ΣM .Note that ΣL and ΣM are same in this example,
as all traces can be fully replayed in the model.

The specific algorithm steps for proposed methods are
outlined in Algorithm 1 and Algorithm 2.

Definition 8. (In-cluster Medoid). Let L′ be a clustered
sublog, n denote the number of trace variants in L′, and
D(L′) be the distance matrix of L′. The trace σj =

argminσj∈L′
∑

i∈[1,n] d(σi, σj) represents the medoid trace
of sublog L′.

C. Computing Alignment Approximation

After constructing MB , we use it to approximate alignments
for the traces in L − LC , where LC refers to the frequency-
based trace variants used to build ΣL. The actual alignment
fitness for the variants in ΣL has already been computed during
the construction of MB , so we can directly use this value for
more accurate approximations. At this stage, we calculate the
alignment approximations for the remaining variants.

Typically, the actual fitness is calculated using standard
alignment costs. However, for the remaining variants, we use
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Fig. 3. Preprocessing workflow for hierarchical clustering.

TABLE III. THE CLUSTERS GENERATED FROM THE EXAMPLE LOG PROVIDED IN TABLE I

Cluster ID Traces in each cluster
1 {⟨a, b, c, d, f, e, g, h⟩1280, ⟨a, b, c, d, e, f, g, h⟩912, ⟨a, b, c, d, e, f, g, h⟩864}
2 {⟨a, b, c, h⟩792, ⟨a, b, c, d, h⟩400, ⟨a, f, b, c⟩96}

3
{⟨a, h⟩320, ⟨a, d, h⟩250, ⟨a, c, e, f, g⟩64,
⟨a, d, e, g, h⟩56, ⟨a, b, f, e, g, h⟩48, ⟨b, f, g⟩24}

Algorithm 1 In-cluster Medoid Method

Input: Event log L; Process model M .
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅
2: Initialize model behaviour subset: ΣM ← ∅
3: Partition L based on variants into Σσv

4: Cluster Σσv
into k clusters {Σσv1

,Σσv2
, . . . ,Σσvk

} using
hierarchical clustering

5: for i = 1 to k do
6: Compute pairwise Levenshtein distances between all

variants in Σσvi

7: Construct distance matrix D(Σσvi
)

8: Find the medoid trace σ
(i)
L in Σσvi

:

σ
(i)
L = arg min

σ∈Σσvi

∑
σ′∈Σσvi

d(σ, σ′)

9: Update log behaviour subset: ΣL ← ΣL ∪ {σ(i)
L }

10: end for
11: for each σ

(i)
L ∈ ΣL do

12: Compute optimal alignment γopt
SN between σ

(i)
L and M

13: Map to model trace: σ(i)
M ← λSN (σ

(i)
L )

14: Update model behaviour subset: ΣM ← ΣM ∪ {σ(i)
M }

15: end for
16: return ΣM

Algorithm 2 In-cluster Frequency Method

Input: Event log L; Process model M .
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅
2: Initialize model behaviour subset: ΣM ← ∅
3: Partition L based on variants into Σσv

4: Cluster Σσv
into k clusters {Σσv1

,Σσv2
, . . . ,Σσvk

} using
hierarchical clustering

5: for i = 1 to k do
6: Let Σσvi

denote the i-th cluster of variants
7: Find the most frequent variant σ(i)

L in Σσvi
:

σ
(i)
L = arg max

σ∈Σσvi

f(σ)

8: Update log behaviour subset: ΣL ← ΣL ∪ {σ(i)
L }

9: end for
10: for each σ

(i)
L ∈ ΣL do

11: Compute optimal alignment γopt
SN between σ

(i)
L and M

12: Map to model trace: σ(i)
M ← λSN (σ

(i)
L )

13: Update model behaviour subset: ΣM ← ΣM ∪ {σ(i)
M }

14: end for
15: return ΣM
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the edit distance cost function ∆ (see Definition 5) to estimate
fitness. This method provides guaranteed upper and lower
bounds for the alignment cost, instead of exact values [5]
(see Lemma 1 and Lemma 2 below) [see Eq. (5)].

Fitness(L, SN) =

∑
σ∈LC

f(σ)× FitnessApproximate(σ, SN)∑
σ∈L f(σ)

+

∑
σ∈L−LC

f(σ)× FitnessActual(σ, SN)∑
σ∈L f(σ)

(5)

Lemma 1 (Alignment Cost Upper Bound). Let σL ∈ U∗A be a
log trace and σM ∈ ϕv(SN) be a visible firing sequence of
SN . We have δS(γSN (σL)) ≤ ∆(σL, σM ), where γSN (σL) is
the optimal alignment.

Proof: The proof is provided in Appendix A and demon-
strates how the edit distance guarantees this upper bound.

Simply put, if we align trace variant 4 ⟨a, b, c, d, h⟩ from
Table I with σL from the in-cluster frequency subset in Table
II, the alignment cost is 1 (i.e., removing “d”). However, since
σM is a subset of the full model, the actual cost could be
smaller or equal. Thus, we use 1 as the upper bound for this
variant.

Lemma 2 (Alignment Cost Lower Bound). Let SPM =
minσM∈ϕv(SN) |σM | and LPM = maxσM∈ϕv(SN) |σM |, rep-
resenting the shortest and longest paths in the process model
M . σL⌈Av(SN) and κ(σL) are as defined in Definition 9.

For any log trace σL, if |σL⌈Av(SN)| < SPM , the
alignment cost lower bound is SPM − |σL⌈Av(SN)|+ κ(σL);
if |σL⌈Av(SN)| > LPM , the lower bound is |σL⌈Av(SN)| −
LPM + κ(σL); if SPM ≤ |σL⌈Av(SN)| ≤ LPM , the lower
bound is κ(σL).

Proof: The proof is provided in Appendix B.

The cost lower bound is the minimum edit operations needed
to transform σL into σM . We refine this algorithm using activity
projection (see Definition 9) to improve approximation accuracy.
Existing methods compare log trace length directly with the
model’s range, potentially yielding errors if irrelevant activities
are present. For instance, in Fig. 1, a trace ⟨a, x⟩ might seem
aligned if its length falls within the model’s shortest (SPM=2)
and longest paths (LPM=8), even though x is not in the model,
resulting in a miscalculated cost of 0. Our algorithm removes
non-model activities (e.g., removing x from ⟨a, x⟩ to form ⟨a⟩)
before comparing trace lengths. This adjustment yields a more
accurate cost of 1 rather than 0, resulting in a smaller upper
fitness and tighter bound width.

These bounds are then used to compute the corresponding
upper and lower fitness bounds (with the cost upper bound
giving the fitness lower bound, and vice versa) using Eq.
(1). The computations for the fitness bounds are provided
in Algorithm 3 and Algorithm 4. The average of these
bounds provides the approximate fitness. Once we compute
the approximate fitness for each remaining variant, we take
the weighted average of these values along with the previously
computed actual fitness to get the overall approximate fitness
for the entire event log, as shown in Eq. (5).

Definition 9 (Activity Projection). Let Av(SN) be the set of
unique observable activities in the system net SN . For any

log trace σL, let σL⌈Av(SN) represent the projection of σL

onto Av(SN), which means the set of activities in σL that
also appear in the model. Define κ(σL) = |σL| − |σL⌈Av(SN)|
as the number of activities in σL that are not present in the
model.

For example, let σL = ⟨a, b, x⟩ be a log trace and the observ-
able activities of the system net be Av(SN) = {a, b, c, d, e}.
Projecting σL onto Av(SN) results in σL⌈Av(SN)= ⟨a, b⟩,
as x is not part of Av(SN). Therefore, κ(σL) = |σL| −
|σL⌈Av(SN)| = 3 − 2 = 1, indicating one activity in σL is
not present in the model.

Algorithm 3 Fitness lower bound computation

Input: Event log L; Optimal-aligned Log LC ; Model
behaviour subset ΣM .
Output: Lower bound fitness L fitness(σL,M).

1: for each σL ∈ L− LC do
2: Φ(σL,ΣM ) // Compute minimun edit distance cost
3: L fitness(σL,M)← 1− Φ(σL,ΣM )

|σL|+minσM∈ϕv(SN)(|σM |)

4: end for
5: return L fitness(σL,M)

Algorithm 4 Fitness upper bound computation

Input: Event log L; Optimal-aligned Log LC ; Model
behaviour subset ΣM .
Output: Upper bound fitness U fitness(σL,M).

1: SPM ← minσM∈ϕv(SN) |σM | // Shortest path
2: LPM ← maxσM∈ϕv(SN) |σM | // Longest path
3: for each σL ∈ L− LC do
4: Project σL onto SN : σL⌈Av(SN)

5: Compute κ(σL) = |σL| − |σL⌈Av(SN)|
6: if |σL⌈Av(SN)| < SPM then
7: U fitness(σL,M)← 1−

SPM−|σL⌈Av(SN)|+κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

8: else if |σL⌈Av(SN)| > LPM then

9: U fitness(σL,M)← 1−
|σL⌈Av(SN)|−LPM+κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

10: else
11: U fitness(σL,M)← 1− κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

12: end if
13: end for
14: return U fitness(σL,M)

VI. EVALUATION

In this section, we assess the accuracy and time performance
of our proposed log selection methods compared to frequency-
based and K-Medoids techniques, and evaluate their differences
in accuracy and time against normal alignment. Note that
the comparison between model behaviour sampling and other
approximate methods has been discussed in [5], we focus
here on comparisons with the baselines of model behaviour
sampling. First, we briefly describe the implementation (Section
VI-A) and experimental setup (Section VI-B), followed by a
discussion of the experimental results (Section VII).

A. Implementation

Our implementation consists of two steps: first, we im-
plemented the algorithms described in Sections V-A and V-B
in Python, to generate log behaviour subsets from event logs.
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TABLE IV. THE REAL-LIFE EVENT LOGS USED IN THE EXPERIMENTS

Event Log Activities # Traces # Variants # Uniqueness

BPIC2012 [36] 25 13087 4366 0.33

BPIC2013-closed problems [37] 4 1487 183 0.12

BPIC2016-Questions [38] 8 21533 2261 0.10

BPIC2017 [39] 28 31509 15930 0.51

Spesis [40] 18 1050 846 0.81

RTFMP [41] 13 150370 231 0.01

Specifically, we extended the pm4py.algo.clustering package
in PM4py [32] by introducing the normalized weighted
Levenshtein distance (Definition 6), to perform hierarchical
clustering. And implemented two proposed in-cluster methods
to get the log behaviour subset based on the clustering result.
In the second step, we used an existing plugin in ProM
[33], Conformance Log to Log Approximation [34], with the
generated model behaviour subset and the original event log as
input, obtaining approximate fitness bounds and values. For the
baselines, we used the implementation proposed by Fanisani
[5]. For normal alignment, we used PM4py to compute the time
and fitness values. The source code and experimental results is
available on Github 1.

B. Experimental Setup

Our experiments were based on six real event logs, with
basic information about these event logs given in Table IV.
Here, Uniqueness refers to Variant#

Trace# . A Uniqueness value close
to 1 indicates that almost all traces are different, e.g., Sepsis.
For process discovery, we used Inductive Miner infrequent
algorithm [35] with infrequent thresholds of 0.4 to get the
process model. Two log selection methods, frequency-based
sampling, K-Medoids clustering, were used as baselines to
compare with our proposed methods, i.e., In-cluster frequency
method and In-cluster medoid method. Furthermore, we set
the selection percentage to 10%, 20%, 30%, 40%, and 50%,
representing the ratio of the selected variants to the total
number of variants in the event logs. Our experiment was
repeated four times since the conformance approximation time
is non-deterministic. Finally, we performed the experiments
on a computer with Apple M1 (8 cores), 8 GB RAM running
macOS.

1) Evaluation metrics: To measure approximation accuracy,
we used Approximate Error, defined as ApproximateError =
|ActualF itness − ApproximateF itness|, where a value
closer to 0 indicates higher accuracy. Additionally, we assess
the Bound Width as BoundWidth = U fitness−L fitness,
with a smaller width indicating tighter bounds and a more
accurate approximation.

We used the Performance Improvement (PI) metric, defined
as PI = Actual Conformance Time

Approximate Conformance Time to assess time performance.
Actual Conformance Time refers to the time needed to compute
normal alignment, while Approximate Conformance Time in-
cludes the total time for the approximation. A PI value greater
than 1 indicates the approximation is faster than the actual

1https://github.com/lvyl9909/Approximate-Conformance-Checking-using
-Hierarchical-Clustering.git

conformance computation. Preprocessing time (e.g., hierarchical
clustering) is included in the approximate conformance time.

VII. RESULT

Table V presents the Actual Fitness and Approximate Fitness,
Approximate Error, and PI for four selection methods using
20% of the variants in six event logs. For each metric in a given
row, the best value is highlighted in bold. The results show
that the proposed in-cluster methods achieve the highest fitness
and the lowest approximate error in most cases, indicating
superior accuracy compared to the baselines. In terms of PI,
the frequency-based method consistently achieves the highest
values, reflecting its shorter approximate time. Our complete
experimental data is provided in Appendix B.

Fig. 4 shows that both Approximate Error and Bound
Width decrease as the selection percentages increase. Here,
Bound Width is represented by bars, and Approximate Error
by lines, illustrating the improvements in these metrics as
the selection percentage increases. Our in-cluster methods
consistently achieve tighter bounds at each selection percentage.
Notably, at a selection 50% in the BPIC2017 log, the bound
widths of the baseline are around 0.05, while our methods
reduce this by 40% to 0.03. Furthermore, in all data sets with
different selection percentages, the in-cluster frequency method
shows an average improvement of 19.1% in Approximate
Error compared to the frequency-based method, while the
in-cluster medoid method achieves an average improvement
of 27.6% compared to the K-Medoid method. Moreover, the
in-cluster frequency method often produces tighter bounds than
in-cluster medoid method, especially on low uniqueness logs
like BPIC2016-Questions, where selecting the most frequent
trace is more effective than clustering. However, on high
Uniqueness logs like Sepsis, in-cluster medoid method provides
more accurate approximations. In Fig. 5, we compare the
time performance of different log selection methods and their
improvement over normal alignment. Note that a value of
1 represents the normal alignment time. Consistent with the
results in Table V, the frequency method usually yields the
highest performance improvement, followed by the K-Medoids
method. Our methods are less efficient compared to these
baselines, particularly on datasets with higher Uniqueness
values. Table VI presents the experimental results for datasets.

VIII. DISCUSSION

Across Table V and Fig. 4, our in-cluster methods con-
sistently achieve higher fitness, lower approximate error,
and tighter bounds than the baselines, with the in-cluster
frequency method performing better on low-Uniqueness logs
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TABLE V. APPROXIMATE RESULT COMPARISONS (20% SELECTION) FOR FOUR DIFFERENT SELECTION METHODS

Event Log Actual
Frequency K-Medoids In-cluster freq. In-cluster medoid

Fit. Err. PI Fit. Err. PI Fit. Err. PI Fit. Err. PI

BPIC2012 0.9995 0.9741 0.0254 61.8496 0.9761 0.0234 41.1727 0.9788 0.0207 25.6113 0.9806 0.0189 24.8483

BPIC2013-closed problems 0.9997 0.9860 0.0138 11.8502 0.9711 0.0286 5.8732 0.9894 0.0103 1.6728 0.9875 0.0122 1.6443

BPIC2016-Questions 0.9997 0.9923 0.0074 45.3310 0.9463 0.0535 30.4731 0.9944 0.0053 13.1973 0.9565 0.0432 12.2026

BPIC2017 0.9995 0.9690 0.0305 11.8531 0.9700 0.0296 9.7231 0.9749 0.0246 1.9688 0.9747 0.0248 1.8838

Road 0.9999 0.9997 0.0002 15.7220 0.9996 0.0004 11.7262 0.9998 0.0001 7.5686 0.9995 0.0004 6.7700

Sepsis 0.9880 0.9202 0.0679 53.4338 0.9202 0.0678 44.9919 0.9313 0.0567 22.9238 0.9319 0.0561 20.0751

Fig. 4. The performance differences of different selection strategies on band width and approximate error.

(e.g., BPIC2016-Questions) and the in-cluster medoid method
excelling on high-Uniqueness logs such as Sepsis, highlighting
a key advantage of our approach over the baselines—improved
approximation accuracy. Fig. 5 shows that our methods have
larger approximation times. This is because hierarchical clus-
tering requires step-by-step merging and evaluating all possible
cluster combinations, which increases preprocessing time
compared to baselines. Nevertheless, they remain significantly
faster than the normal alignment-based approach, keeping
approximation times within acceptable limits while delivering
higher accuracy—making them well-suited for large-scale
processes where neither a quick, coarse estimate nor weeks of
exact computation is desirable. Overall, our results indicate a
clear trade-off: the proposed methods bring the approximations
closer to the actual values at the cost of some additional but
acceptable preprocessing time.

IX. CONCLUSION

In this study, we propose an enhanced model behaviour
sampling method using hierarchical clustering to construct more
representative model behaviour subsets. By incorporating both
frequency and control-flow information from the event log,
our approach more effectively captures the model’s behaviour,
leading to improved approximation accuracy. Experimental
results show that our method produces approximations that are
on average over 19.1% closer to the actual alignment values
than baseline methods, though it requires more computation
time.

A potential limitation of this study is the lack of an
explicit quantification of how much “increased” time would
be acceptable for the “improvement” in accuracy, which is
important to evaluate the practical utility of the method under
different application scenarios. As a next step, we plan to
conduct a systematic, quantitative analysis of the accuracy–time
trade-off. Based on it, an incremental approximation tool
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Fig. 5. The performance improvement using different methods in six event logs.

could be developed to increase the size of model behaviour
during the time, allowing the user to decide when the accuracy
is enough. In addition, we plan to apply a time-optimized
hierarchical clustering algorithm to reduce the approximation
time of our method. Furthermore, exploring how to make use
of the distribution information (e.g., Uniqueness) in the event
log to choose a better approximate method is also a direction
for future research.
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APPENDIX

A. Proof of Alignment Cost Upper Bound

Proof: We have shown that minσM∈S ∆(σL, σM ) =
δS(γSN (σL)) in Definition 5, so ∆(σL, σM ) ≥ δS(γSN (σL)).
Therefore, if δS(γSN (σL)) > ∆(σL, σM ), γSN (σL) is not an
optimal alignment. Consequently, for any MB ⊆ ϕv(SN),
Φ(σL,MB) returns an upper bound for the cost of optimal
alignment [5].

B. Proof of Alignment Cost Lower Bound

Proof: When |σL⌈Av(SN)| < SPM , at least SPM −
|σL⌈Av(SN)| insertions are needed. Adding the initial align-
ment cost, the total minimum alignment cost is |SPM −
σL⌈Av(SN)|+ |κ(σL)|. Similarly, when |σL⌈Av(SN)| > LPM ,
at least |σL⌈Av(SN)| −LPM deletions are required. Thus, the
total alignment cost is |σL⌈Av(SN)−LPM |+ |κ(σL)|. When
SPM ≤ |σL⌈Av(SN)| ≤ LPM , no insertions or deletions are
needed, so the alignment cost is |κ(σL)|.
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2012 0.9995 35400000

10%

Approximate
fitness

Lower
Bound 0.9167 0.9371 0.9368 0.9416

Approximate
fitness 0.9583 0.9685 0.9684 0.9708

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0412 0.0310 0.0311 0.0287

Band
Width 0.0833 0.0629 0.0632 0.0584

Preprocessing
Time (ms) / / 1219923 1259201

Approximate
Time (ms) 411778 439928 25030 26102

Total Approximate
Time (ms) 411778 439928 1244953 1285303

PI 85.9687 80.4677 28.4348 27.5421

20%

Approximate
fitness

Lower
Bound 0.9482 0.9522 0.9576 0.9612

Approximate
fitness 0.9741 0.9761 0.9788 0.9806

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0254 0.0234 0.0207 0.0189

Band
Width 0.0518 0.0478 0.0424 0.0388

Preprocessing
Time (ms) / / 1342972 1392321

Approximate
Time (ms) 572356 859792 39232 32323

Total Approximate
Time (ms) 572356 859792 1382204 1424644

PI 61.8496 41.1727 25.6113 24.8483

30%

Approximate
fitness

Lower
Bound 0.9618 0.9629 0.9688 0.9702

Approximate
fitness 0.9809 0.9814 0.9844 0.9851

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0186 0.0181 0.0151 0.0144

Band
Width 0.0382 0.0371 0.0312 0.0298

Preprocessing
Time (ms) / / 1423219 1529312

Approximate
Time (ms) 702244 1186892 41992 42223

Total Approximate
Time (ms) 702244 1186892 1465211 1571535

PI 50.4098 29.8258 24.1603 22.5257

40%

Approximate
fitness

Lower
Bound 0.9681 0.9690 0.9756 0.9730

Approximate
fitness 0.9841 0.9845 0.9878 0.9865

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0155 0.0150 0.0117 0.0130

Band
Width 0.0319 0.0310 0.0244 0.0270

Preprocessing
Time (ms) / / 1591211 1730030

Approximate
Time (ms) 1229401 1480757 41503 49020

Total Approximate
Time (ms) 1229401 1480757 1632714 1779050

PI 28.7945 23.9067 21.6817 19.8983

50%

Approximate
fitness

Lower
Bound 0.9745 0.9752 0.9802 0.9888

Approximate
fitness 0.9873 0.9876 0.9901 0.9944

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0123 0.0119 0.0094 0.0051

Band
Width 0.0255 0.0248 0.0198 0.0112

Preprocessing
Time (ms) / / 1823900 2102097

Approximate
Time (ms) 1863573 1971131 42826 43503

Total Approximate
Time (ms) 1863573 1971131 1866726 2145600

PI 18.9958 17.9592 18.9637 16.4989
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Table VI continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2013-incident 0.9997 135400

10%

Approximate
fitness

Lower
Bound 0.9559 0.9025 0.9610 0.9560

Approximate
fitness 0.9780 0.9513 0.9805 0.9780

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0218 0.0485 0.0192 0.0217

Band
Width 0.0441 0.0975 0.0390 0.0440

Preprocessing
Time (ms) / / 69233 70923

Approximate
Time (ms) 4200 19572 2033 2992

Total Approximate
Time (ms) 4200 19572 71266 73915

PI 32.2381 6.9180 1.8999 1.8318

20%

Approximate
fitness

Lower
Bound 0.9719 0.9422 0.9788 0.9750

Approximate
fitness 0.9860 0.9711 0.9894 0.9875

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0138 0.0286 0.0103 0.0122

Band
Width 0.0281 0.0578 0.0212 0.0250

Preprocessing
Time (ms) / / 78012 79232

Approximate
Time (ms) 11426 23054 2932 3111

Total Approximate
Time (ms) 11426 23054 80944 82343

PI 11.8502 5.8732 1.6728 1.6443

30%

Approximate
fitness

Lower
Bound 0.9795 0.9554 0.9860 0.9810

Approximate
fitness 0.9898 0.9777 0.9930 0.9905

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0100 0.0220 0.0067 0.0092

Band
Width 0.0205 0.0446 0.0140 0.0190

Preprocessing
Time (ms) / / 81203 85003

Approximate
Time (ms) 17294 27553 3504 4092

Total Approximate
Time (ms) 17294 27553 84707 89095

PI 7.8293 4.9142 1.5985 1.5197

40%

Approximate
fitness

Lower
Bound 0.9839 0.9612 0.9902 0.9850

Approximate
fitness 0.9920 0.9806 0.9951 0.9925

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0078 0.0191 0.0046 0.0072

Band
Width 0.0161 0.0388 0.0098 0.0150

Preprocessing
Time (ms) / / 89129 91892

Approximate
Time (ms) 27133 32868 3932 3902

Total Approximate
Time (ms) 27133 32868 93061 95794

PI 4.9902 4.1195 1.4550 1.4134

50%

Approximate
fitness

Lower
Bound 0.9875 0.9825 0.9920 0.9879

Approximate
fitness 0.9938 0.9913 0.9960 0.9940

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time (ms) / / 95002 104023

Approximate
Time (ms) 34006 41028 4002 4350

Total Approximate
Time (ms) 34006 41028 99004 108373

PI 3.9817 3.3002 1.3676 1.2494
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Table VI continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2016-Questions 0.9997 5200690

10%

Approximate
fitness

Lower
Bound 0.9679 0.8867 0.9680 0.8911

Approximate
fitness 0.9840 0.9434 0.9840 0.9455

Upper
Bound 1.0000 1.0000 0.9999 0.9999

Approximation
Error 0.0158 0.0564 0.0158 0.0542

Band
Width 0.0321 0.1133 0.0319 0.1088

Preprocessing
Time(ms) / / 359923 389454

Approximate
Time(ms) 47607 61807 2715 1551

Total Approximate
Time(ms) 47607 61807 362638 391005

PI 109.2421 84.1440 14.3413 13.3008

20%

Approximate
fitness

Lower
Bound 0.9845 0.8925 0.9888 0.9130

Approximate
fitness 0.9923 0.9463 0.9944 0.9565

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0074 0.0535 0.0053 0.0432

Band
Width 0.0155 0.1075 0.0112 0.0870

Preprocessing
Time(ms) / / 390239 421292

Approximate
Time(ms) 114727 170665 3832 4902

Total Approximate
Time(ms) 114727 170665 394071 426194

PI 45.3310 30.4731 13.1973 12.2026

30%

Approximate
fitness

Lower
Bound 0.9874 0.9087 0.9920 0.9309

Approximate
fitness 0.9937 0.9544 0.9960 0.9655

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0454 0.0037 0.0343

Band
Width 0.0126 0.0913 0.0080 0.0691

Preprocessing
Time(ms) / / 448922 489322

Approximate
Time(ms) 176359 266266 6020 6334

Total Approximate
Time(ms) 176359 266266 454942 495656

PI 29.4892 19.5319 11.4315 10.4925

40%

Approximate
fitness

Lower
Bound 0.9896 0.9114 0.9940 0.9440

Approximate
fitness 0.9948 0.9557 0.9970 0.9720

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0049 0.0440 0.0027 0.0277

Band
Width 0.0104 0.0886 0.0060 0.0560

Preprocessing
Time(ms) / / 483200 530239

Approximate
Time(ms) 280456 325313 9910 10355

Total Approximate
Time(ms) 280456 325313 493110 540594

PI 18.5437 15.9867 10.5467 9.6203

50%

Approximate
fitness

Lower
Bound 0.9913 0.9294 0.9960 0.9503

Approximate
fitness 0.9957 0.9647 0.9980 0.9752

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time(ms) / / 566660 602030

Approximate
Time(ms) 395799 445163 15330 14340

Total Approximate
Time(ms) 395799 445163 581990 616370

PI 13.1397 11.6827 8.9360 8.4376
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Table VI continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2017 0.9995 180829300

10%

Approximate
fitness

Lower
Bound 0.9332 0.9381 0.9454 0.9450

Approximate
fitness 0.9666 0.9691 0.9726 0.9725

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0329 0.0305 0.0270 0.0270

Band
Width 0.0668 0.0619 0.0543 0.0550

Preprocessing
Time (ms) / / 86490212 87983292

Approximate
Time (ms) 4049416 4399280 400366 509232

Total Approximate
Time (ms) 4049416 4399280 86890578 88492524

PI 44.6556 41.1043 2.0811 2.0434

20%

Approximate
fitness

Lower
Bound 0.9380 0.9399 0.9497 0.9493

Approximate
fitness 0.9690 0.9700 0.9749 0.9747

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0305 0.0296 0.0247 0.0249

Band
Width 0.0620 0.0601 0.0503 0.0507

Preprocessing
Time(ms) / / 91423432 95431122

Approximate
Time(ms) 15255832 18597920 424210 561543

Total Approximate
Time(ms) 15255832 18597920 91847642 95992665

PI 11.8531 9.7231 1.9688 1.8838

30%

Approximate
fitness

Lower
Bound 0.9431 0.9420 0.9510 0.9512

Approximate
fitness 0.9715 0.9710 0.9755 0.9756

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0280 0.0285 0.0240 0.0239

Band
Width 0.0569 0.0580 0.0490 0.0488

Preprocessing
Time(ms) / / 95294232 99874342

Approximate
Time(ms) 13089388 16606568 502321 424931

Total Approximate
Time(ms) 13089388 16606568 95796553 100299273

PI 13.8150 10.8890 1.8876 1.8029

40%

Approximate
fitness

Lower
Bound 0.9481 0.9480 0.9575 0.9564

Approximate
fitness 0.9741 0.9740 0.9788 0.9782

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0255 0.0255 0.0208 0.0213

Band
Width 0.0519 0.0520 0.0425 0.0436

Preprocessing
Time(ms) / / 99034313 100293122

Approximate
Time(ms) 16294010 18807577 582312 510124

Total Approximate
Time(ms) 16294010 18807577 99616625 100803246

PI 11.0979 9.6147 1.8153 1.7939

50%

Approximate
fitness

Lower
Bound 0.9528 0.9527 0.9682 0.9691

Approximate
fitness 0.9764 0.9764 0.9841 0.9846

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0231 0.0232 0.0154 0.0150

Band
Width 0.0472 0.0473 0.0318 0.0309

Preprocessing
Time(ms) / / 108224313 119901232

Approximate
Time(ms) 20183838 22539508 391222 454002

Total Approximate
Time(ms) 20183838 22539508 108615535 120355234

PI 8.9591 8.0228 1.6649 1.5025
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Table VI continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

RTFMP 0.9999 130430

10%

Approximate
fitness

Lower
Bound 0.9987 0.9975 0.9989 0.9980

Approximate
fitness 0.9994 0.9988 0.9993 0.9990

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0006 0.0011 0.0006 0.0009

Band
Width 0.0013 0.0025 0.0008 0.0020

Preprocessing
Time(ms) / / 10585 11021

Approximate
Time(ms) 8986 15555 2901 3531

Total Approximate
Time(ms) 8986 15555 13486 14552

PI 14.5148 8.3851 9.6715 8.9630

20%

Approximate
fitness

Lower
Bound 0.9994 0.9991 0.9994 0.9990

Approximate
fitness 0.9997 0.9996 0.9997 0.9995

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0004 0.0002 0.0004

Band
Width 0.0006 0.0009 0.0006 0.0010

Preprocessing
Time(ms) / / 14012 15432

Approximate
Time(ms) 8296 11123 3221 3834

Total Approximate
Time(ms) 8296 11123 17233 19266

PI 15.7220 11.7262 7.5686 6.7700

30%

Approximate
fitness

Lower
Bound 0.9994 0.9992 0.9994 0.9994

Approximate
fitness 0.9997 0.9996 0.9997 0.9997

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0003 0.0002 0.0002

Band
Width 0.0006 0.0008 0.0006 0.0006

Preprocessing
Time(ms) / / 15236 22293

Approximate
Time(ms) 9831 10222 3232 3923

Total Approximate
Time(ms) 9831 10222 18468 26216

PI 13.2672 12.7597 7.0625 4.9752

40%

Approximate
fitness

Lower
Bound 0.9996 0.9993 0.9998 0.9996

Approximate
fitness 0.9998 0.9997 0.9999 0.9998

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0001 0.0003 0.0000 0.0001

Band
Width 0.0004 0.0007 0.0002 0.0004

Preprocessing
Time(ms) / / 17222 24422

Approximate
Time(ms) 10323 13123 4442 4232

Total Approximate
Time(ms) 10323 13123 21664 28654

PI 12.6349 9.9390 6.0206 4.5519

50%

Approximate
fitness

Lower
Bound 0.9998 0.9996 0.9998 0.9997

Approximate
fitness 0.9999 0.9998 0.9999 0.9999

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0000 0.0001 0.0000 0.0000

Band
Width 0.0002 0.0004 0.0002 0.0003

Preprocessing
Time(ms) / / 19203 30020

Approximate
Time(ms) 9050 10212 4301 5021

Total Approximate
Time(ms) 9050 10212 23504 35041

PI 14.4122 12.7722 5.5493 3.7222
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TABLE VI. EXPERIMENTAL RESULTS FOR DATASETS.

Table VI continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

Sepsis 0.9880 3035200

10%

Approximate
fitness

Lower
Bound 0.7959 0.7965 0.8204 0.8100

Approximate
fitness 0.8980 0.8983 0.9101 0.9050

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0901 0.0898 0.0780 0.0830

Band
Width 0.2041 0.2035 0.1793 0.1900

Preprocessing
Time(ms) / / 107478 110312

Approximate
Time(ms) 32599 28302 1902 2032

Total Approximate
Time(ms) 32599 28302 109380 112344

PI 93.1072 107.2433 27.7491 27.0170

20%

Approximate
fitness

Lower
Bound 0.8403 0.8404 0.8626 0.8638

Approximate
fitness 0.9202 0.9202 0.9313 0.9319

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0679 0.0678 0.0567 0.0561

Band
Width 0.1597 0.1596 0.1374 0.1362

Preprocessing
Time(ms) / / 130101 148903

Approximate
Time(ms) 56803 67461 2303 2289

Total Approximate
Time(ms) 56803 67461 132404 151192

PI 53.4338 44.9919 22.9238 20.0751

30%

Approximate
fitness

Lower
Bound 0.8701 0.8405 0.8730 0.8748

Approximate
fitness 0.9351 0.9203 0.9365 0.9374

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0530 0.0678 0.0515 0.0506

Band
Width 0.1299 0.1595 0.1270 0.1252

Preprocessing
Time(ms) / / 159232 162820

Approximate
Time(ms) 79763 60393 5201 5433

Total Approximate
Time(ms) 79763 60393 164433 168253

PI 38.0527 50.2575 18.4586 18.0395

40%

Approximate
fitness

Lower
Bound 0.8931 0.8959 0.9066 0.9015

Approximate
fitness 0.9466 0.9480 0.9533 0.9508

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0415 0.0400 0.0347 0.0373

Band
Width 0.1069 0.1041 0.0934 0.0985

Preprocessing
Time(ms) / / 182782 209212

Approximate
Time(ms) 102649 116824 6123 5736

Total Approximate
Time(ms) 102649 116824 188905 214948

PI 29.5687 25.9810 16.0673 14.1206

50%

Approximate
fitness

Lower
Bound 0.9112 0.9113 0.9255 0.9192

Approximate
fitness 0.9556 0.9557 0.9628 0.9596

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0324 0.0324 0.0253 0.0284

Band
Width 0.0888 0.0887 0.0745 0.0808

Preprocessing
Time(ms) / / 209823 222011

Approximate
Time(ms) 126803 137461 3508 3769

Total Approximate
Time(ms) 126803 137461 213331 225780

PI 23.9363 22.0804 14.2277 13.4432
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