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Abstract—Natural rubber is one of Indonesia's most 

important export commodities, making the country the second-

largest exporter globally with a 28.65% share of the world 

market. However, recent production has declined, partly due to 

leaf fall disease caused by the Pestalotiopsis sp. fungus. This 

disease leads to premature leaf drop, which forces rubber trees to 

redirect energy from latex production to leaf regeneration, 

potentially reducing yields by up to 30%. Traditional detection 

methods that rely on manual visual inspection of leaf morphology 

are impractical over large plantation areas. To address this, the 

present study proposes a remote sensing-based detection 

approach using aerial drone imagery and unsupervised machine 

learning. Two feature extraction methods: Convolutional 

Autoencoder (CAE) and Gray Level Co-occurrence Matrix 

(GLCM) were used prior to clustering with k-means. Despite a 

small dataset, the GLCM-based approach significantly 

outperforms the CAE-based method. These results demonstrate 

that GLCM combined with clustering can reliably distinguish 

between healthy and diseased plantation areas. The proposed 

method offers a cost-effective, scalable, and non-invasive 

alternative to ground surveys, and has strong potential for real-

world deployment in disease monitoring and early warning 

systems across large agricultural regions. 

Keywords—Convolutional autoencoder; gray level co-
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I. INTRODUCTION 

The rubber plant (Hevea brasiliensis) is a plant in the form 
of a tall tree and possesses a substantial stem that generates 
natural rubber. Natural rubber is one among the essential 
goods for Indonesia to export. From 2014 to 2019, the average 
export of natural rubber in Indonesia made up to 2.691.120 
tons, and Indonesia dominates 28.65% world market share. 
This makes Indonesia the second biggest natural rubber 
exporter in the world after Thailand [1]. 

Recently, natural rubber production in Indonesia has been 
decreasing. One of the factors causing the decline is the 
emergence of new leaf fall disease caused by the fungus 
Pestalotiopsis sp. The leaf fall disease causes the rubber tree 

to drop its leaves prematurely, resulting food reserve of the 
rubber tree allocated into regrow fallen leaves [2]. It is 
estimated that the area of rubber plantations in Indonesia was 
around 3.692.352 hectares in 2021 [3]. The area of rubber 
plantation that is infected with Pestalotiopsis sp. is around 
30.328,84 hectares, resulting in a decline of natural rubber 
production by up to 30% [4]. 

The disease can be detected through the morphology of the 
leaf. The visible symptoms on the leaves manifest as brown 
spots, which subsequently progress into dark brown areas, 
with a distinct demarcation separating these affected regions 
from the healthy leaf sections. The size of these spots 
gradually increases to reach dimensions of 1 to 2 centimeters, 
eventually leading to necrosis in the surrounding tissue [4]. 

The ratio of a plant's leaf area to its land surface area is 
called the leaf area index (LAI) [5]. Research by [6] claims 
that there is a vigorous negative connection amongst 
severeness of disease resulting in leaves falling and the leaf 
zone index. This implies that if the disease is more severe, the 
leaf area index will also diminish. As the leaf area index 
decreases, the leaf area is also decreasing, implying that the 
number of leaves in the tree is also decreasing. When the leaf 
loss reaches a certain point, the rubber plant will find it 
difficult to photosynthesis, hence the rubber tree will allocate 
its food reserves to grow new leaves, rather than using its food 
reserve to produce latex [6]. 

When photographed with an aerial drone, the difference 
between a healthy rubber plantation and an infected rubber 
plantation is visible. Healthy rubber plantation has dense and 
tightly closed canopy while infected rubber plantation has 
sparse and not tightly closed canopy [6]. This gives authors an 
idea to create a disease detection model using machine 
learning as an early detection to detect leaf fall disease in 
rubber plantations particularly caused by the fungus 
Pestalotiopsis sp., using aerial photos of rubber plantations as 
the dataset. 

Early detection of leaf fall disease offers substantial 
benefits for rubber farmers and plantation managers. 
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Identifying affected areas at an early stage enables targeted 
intervention, such as localized fungicide application or canopy 
management, which can prevent the disease from spreading 
further. This minimizes crop loss, preserves yield potential, 
and reduces unnecessary operational costs associated with 
broad area treatments. Furthermore, by using aerial imagery 
and automated analysis, farmers can monitor large plantation 
areas more efficiently and frequently, improving response 
times and reducing dependence on labor-intensive ground 
inspections. Such scalable detection systems can ultimately 
support more resilient and sustainable rubber production. 

Most previous studies on plant disease detection rely on 
labeled datasets and employ supervised classification methods 
to identify disease types, typically using close-up images of 
individual leaves. However, to the best of our knowledge, 
there is no prior research that utilizes aerial drone imagery to 
either classify or cluster plantations affected by leaf fall 
disease. Given that the dataset in this study is unlabeled and 
collected at the plantation scale using an aerial drone, an 
unsupervised clustering approach is adopted to detect and 
differentiate between healthy and infected rubber plantation 
areas. 

Before clustering the infected plantations, the images will 
be inputted through the feature extraction method. The feature 
extraction method is used to obtain as much information as 
possible from the images and to diminish the image’s size [7]. 
The information extracted by feature extraction will then be 
used as an input for the clustering method to cluster. 

The feature extraction used in this research is a 
convolutional autoencoder (CAE) and gray level co-
occurrence matrix (GLCM). Convolutional autoencoder uses a 
convolution layer and a pooling layer to extract temporal and 
spatial features from the image [8]. Meanwhile, GLCM uses a 
matrix, where all elements from the matrix are pairs of pixels 
that have a brightness level, distance d, and inclination angle θ 
[9]. These two approaches are applied to cut down the 
dimension of the picture and extract prominent characteristics 
from the images. 

In this research, the authors use CAE and GLCM as 
feature extraction methods to cluster healthy rubber 
plantations and infected rubber plantations, particularly caused 
by the fungus Pestalotiopsis sp. K-means clustering will then 
be used as a clustering algorithm. Convolutional autoencoder 
and GLCM are used to reduce the dimension of images and 
extract prominent features. Then the extracted features will be 
clustered using k-means clustering, and finally, the result will 
be evaluated using the silhouette score and davies-bouldin 
index. 

The major contributions of this study are as follows: 

 A novel application of unsupervised clustering (k-
means) to distinguish between healthy and diseased 
rubber plantations using aerial drone imagery, without 
requiring labeled data. 

 Implementation and comparison of two feature 
extraction techniques: CAE and GLCM to identify 
prominent image characteristics for clustering. 

 Empirical validation showing that the GLCM-based 
approach outperforms CAE in silhouette score and 
davies-bouldin index, highlighting its suitability for 
small-sample scenarios. 

 A cost-effective, scalable detection framework for early 
disease identification that supports better decision-
making and operational efficiency in large-scale rubber 
plantations. 

This research is organized into five sections: Section I 
provides the background and motivation for the study. Section 
II reviews related works and previous research relevant to this 
topic. Section III describes the dataset, methodology, and 
models employed in the study. Section IV presents and 
discusses the results. Finally, Section V concludes the research 
and outlines potential directions for future work. 

II. RELATED WORK 

This section outlines previous research related to the 
current study. A number of past investigations have focused 
on detecting plant disease using machine learning, and a 
summary of these studies is presented in TABLE I 

TABLE I STATE-OF-THE-ART 

Research Method Dataset Evaluation 

[10] MobileNetV3-small 
PlantVillage (54,303 

images) 

Accuracy = 

99.5% 

[11] 
VGG16 (Transfer 

Learning) 

Kaggle Rice Leaf 

Disease (4,500 
images) 

Accuracy = 

90% 

[12] SVM 
PlantVillage (2,152 

images) 

Accuracy = 

98.9% 

[13] 
SVM + GLCM + k-
means 

PlantVillage (8,350 
images) 

Precision = 
99% 

[14] 
SVM + GLCM + 

LBP + k-means 

500+ images (4 

disease classes) 

Accuracy = 

97.2% 

[15] 
KNN + GLCM + k-

means 

Carrot leaves 
(undisclosed, est. 

~400) 

Accuracy = 

95% 

[16] 
CAE + 

DenseNet121 

PlantVillage (9,920 

tomato images) 

Accuracy = 

98.35% 

[17] 
Deep KNN 
(optimized) 

Multispectral crop leaf 
dataset 

Accuracy = 
89.12% 

Khan et al. [10] implemented a MobileNetV3-small model 
on the PlantVillage dataset consisting of over 54,000 images, 
achieving an accuracy of 99.5%. Similarly, Jangid [11] 
utilized transfer learning with VGG16 on a rice leaf disease 
dataset and reported an accuracy of 90%. Abdu et al. [12] 
compared support vector machine (SVM) models to CNNs for 
classifying potato diseases, attaining 98.9% accuracy. 

Several studies have integrated traditional feature 
extraction techniques with machine learning classifiers. 
Ahmed and Yadav [13] applied SVM in combination with 
GLCM and k-means clustering on the PlantVillage dataset and 
achieved 99% precision. Jamjoom et al. [14] enhanced this 
approach by incorporating local binary patterns (LBP), 
reaching 97.2% accuracy across four disease types. Similarly, 
Komala [15] employed a combination of k-means clustering, 
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GLCM, and KNN on carrot leaf images, with an accuracy of 
95%. 

Recent advancements have also explored the use of deep 
learning models for feature extraction. Kumar et al. [16] 
proposed a hybrid approach combining a convolutional 
autoencoder (CAE) with DenseNet121 for tomato disease 
classification, reporting an accuracy of 98.35%. In another 
approach, Gaikwad and Musande [17] utilized a meta-
optimized deep KNN model on a multispectral crop dataset, 
yielding an accuracy of 89.12%. 

Previous studies have shown high accuracy in plant 
disease detection using deep learning and supervised 
classification approaches. But the methods used are 
constrained by several limitations. First, most of the research 
relies on close-up images of individual leaves [10–16], which 
are impractical for monitoring large plantation areas. Second, 
these methods generally require large, annotated datasets for 
training, which are costly and time-consuming to obtain. 
Finally, many prior works focus on classification into 
predefined disease types, rather than unsupervised 
identification of disease-affected areas at the canopy or 
plantation scale. To address these shortcomings, the present 
study introduces an unsupervised clustering framework that 
operates directly on aerial drone imagery without the need for 
manual labeling. By comparing deep learning-based feature 
extraction (CAE) with handcrafted texture features (GLCM), 
we also investigate approaches that can perform robustly 
under small-sample constraints, making the method more 
practical for early disease detection in real-world plantation 
settings. 

III. DATA AND METHODOLOGY 

This section explains the data and methods used to explore 
the main topics of this study. Fig. 1 outlines the step-by-step 
process followed throughout the research. 

 

Fig. 1. The research flow of this study. 

A. Dataset 

The dataset utilized in this study comprises aerial 
photographs of rubber plantations, collected from the 
plantation site of PT. Pusat Penelitian Karet Nusantara 
Sembawa, located in South Sumatra, Indonesia. A total of 19 
images were captured using a drone, with each image 
representing a different section of the plantation and different 
times, some are taken from 2020 and some are taken from 
2021. As illustrated in Fig. 2, the dataset has variation in 
image perspectives, influenced by differences in drone altitude 
during image acquisition. Some images were taken from a 
relatively low altitude, offering a closer view of the canopy 
(the lower right side of Fig. 2), while others were captured 

from higher elevations, providing a broader overview of the 
plantation landscape. 

   

Fig. 2. Sample images of the dataset. 

B. Data Preprocessing 

 Resizing Data: Resizing images during the data 
preprocessing stage is a critical step in preparing the 
dataset for deep learning models. This process involves 
adjusting the size of images to meet the requirements of 
the model, with benefits such as computational 
efficiency, reduced memory load, and ensuring 
consistency in input sizes for the model, and preventing 
overfitting. In this study, the image is resized into 20 ×
20 for the input of GLCM and 64 × 64 for the input of 
CAE. 

 Convert to greyscale: Before applying the Gray Level 
Co-occurrence Matrix (GLCM) method, the input 
image must be converted to greyscale. This is because 
GLCM is designed to analyze texture by evaluating the 
spatial relationship of pixel intensities, which are 
represented in a single channel. Color images contain 
three channels (Red, Green, and Blue), which would 
complicate the computation. By converting the image to 
greyscale, it reduces the data to one intensity channel, 
ensuring that GLCM can accurately process and extract 
texture features.  

 Data Train and Test Split: The division of data into 
training and test sets is a key stage in the development 
of models. The training data, which comprises the 
majority of the dataset, is used to train the model and 
enable it to understand patterns and features within the 
data. Meanwhile, test data is employed to assess the 
model's ability against data it has not previously 
encountered. In this study, the data was divided into 
train, validation, and test sets with proportions of 70% 
and 30%, respectively. 

C. Building Models 

1) Autoencoder: An autoencoder is a specific type of 

Artificial Neural Network (ANN) designed to reconstruct its 

input. Typically, the network's hidden layers engage in 
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dimensionality reduction on the input, learning prominent 

features that facilitate effective reconstruction [18]. The main 

idea of the autoencoder is to have the same input size as the 

output size. Bottleneck layer is then introduced to make the 

model able to learn the representation of the data. 

Autoencoder is consist of four components, that is the 

bottleneck layer, the decoder network, the encoder network 

and the reconstruction loss [8]. 

The encoder network is part of the autoencoder that is used 
to encode input data into a representation of input data. The 
mathematical equation that represents each layer at the 
encoder is presented in Eq. (1): 

𝑋𝑒𝑖+1
  =  𝑓𝑒𝑖

(𝑊𝑒𝑖
𝑇𝑋𝑒𝑖

+ 𝑏𝑒𝑖
) ∀𝑖 =  0,1,2, … . , 𝑁.       (1) 

The mathematical notation used in the encoder network is 

𝑋𝑒𝑖
,  𝑋𝑒𝑖+1

,  𝑊𝑒𝑖
, 𝑏𝑒𝑖

, 𝑎𝑛𝑑 𝑓𝑒𝑖
, which are the input of 𝑖𝑡ℎ layer, 

the output of the 𝑖𝑡ℎ layer, the weight of the 𝑖𝑡ℎ layer, bias of 

the 𝑖𝑡ℎ  layer, and the activation function of the 𝑖𝑡ℎ  layer, 
respectively. The encoder network's final layer is called the 
bottleneck layer, and its output is a representation of the input 
data. As a component of the autoencoder, the decoder layer 
uses the bottleneck layer's output as input and attempts to 
remodel input data from its representation. The mathematical 
equation that represents each layer at the decoder is presented 
in Eq. (2): 

𝑋𝑑𝑖+1  =  𝑓𝑑𝑖(𝑊𝑑𝑖
𝑇 𝑋𝑑𝑖 + 𝑏𝑑𝑖) ∀𝑖 =  0,1,2, … . , 𝑁    (2) 

The mathematical notation in the decoder network is 

𝑋𝑑𝑖
, 𝑋𝑑𝑖+1

, 𝑊𝑑𝑖
, 𝑏𝑑𝑖

,and 𝑓𝑑𝑖
, which are the input of 𝑖𝑡ℎ layer, the 

output of the 𝑖𝑡ℎ layer, the weight of the 𝑖𝑡ℎlayer, bias of the 

𝑖𝑡ℎ layer, and the activation function of the 𝑖𝑡ℎ layer, 
respectively. 

Reconstruction loss is the difference between the original 
data 𝑋𝑂 and the remodelled data 𝑋𝑅. Autoencoder is trained to 
minimize reconstruction loss. There are two reconstruction 
losses commonly used, namely binary cross-entropy (BCE) 
and mean squared error (MSE). The mathematical equation 
for mean squared error is shown by Eq. (3). Variable 𝐷 is the 
number of samples used. 

𝑀𝑆𝐸(𝑋𝑂, 𝑋𝑅) =
1

𝐷
∑ (𝑋𝑗

𝑂 − 𝑋𝑗
𝑅)

2𝐷
𝑗 = 1          (3) 

A convolutional autoencoder operates based on the same 
principles as a traditional autoencoder, with the key distinction 
being the utilization of convolutional layers instead of dense 
layers [19]. Similar to the autoencoder, the CAE also consist 
of four parts: the encoder, the decoder, the bottleneck layer 
and the reconstruction loss. While the types layer used by 
CAE is similar to the convolutional neural network (CNN), it 
primarily uses a convolutional layer and a pooling layer in the 
encoder and a convolutional layer and an upsampling layer in 
the decoder. The type of layer used by CAE makes it more 
suitable for the image data. As shown in [20], the 
convolutional layer performance is better when handling the 
images compared to the fully connected layer due to the 
number of parameters used in the convolutional layer being 

less than fully connected layer, making the convolutional layer 
harder to overfitting and translational invariance. Layers used 
in the encoder network primarily aims to extract prominent 
characteristic, while the layers used in the decoder network 
primarily aims to reconstruct the compressed input image. 

Convolutional autoencoders (CAEs) were selected in this 
study due to their strong capability for unsupervised feature 
extraction, especially in settings, where labeled data is scarce. 
Since CAEs are trained to reconstruct input images, they 
require no manual annotations, the image itself serves as the 
training signal. By using convolutional layers, CAEs are able 
to capture local spatial patterns such as edges, textures, and 
shapes at multiple scales, which are well-suited for analyzing 
structural variations in aerial plantation images. 

The bottleneck layer compresses the input into a low-
dimensional latent space, forcing the network to retain only 
the most essential information. This enables CAEs to act as 
powerful non-linear dimensionality reduction tools, 
outperforming traditional linear methods like PCA in 
capturing complex feature combinations with higher 
discriminative power [21]. 

Additionally, by eliminating redundant or noisy pixel 
information, CAEs help reduce the risk of overfitting, which is 
particularly advantageous when training on small datasets 
such as the 19 aerial images used in this research. 

2) Gray level co-occurrence matrix: The texture of a gray 

image is elucidated through the examination of spatial 

correlation characteristics of gray levels using the gray level 

co-occurrence matrix [22]. GLCM analyzes textures in images 

based on grayscale intensity, distance, and angle between 

representations of two neighboring pixels [23]. Texture 

features play a crucial role in distinguishing regions within 

images. They pertain to visual patterns characterized by 

homogeneity, avoiding the production of a single color or 

intensity [22]. The gray intensity used in digital image data 

has a value range of 0 to 255 or a quantization level of 256. 

The quantization level is the number of possible values that an 

image will have. Some of the texture metrics that can be used 

are dissimilarity, contrast, homogeneity, energy, angular 

second moment (ASM), and correlation. 

 

Fig. 3. Angle variation in GLCM. 
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Fig. 4. Comparison between original image (left) and resized image (middle and right). 

  
     (a)                      (b) 

Fig. 5. Clustering result for CAE combined with k-means clustering (a), Clustering results of GLCM combined with k-means clustering (b). 

Contrast is the magnitude of the difference in color 
intensity at a pixel coordinate point (𝑥, 𝑦) in the image with 
the surrounding pixels. Dissimilarity is a feature that states the 
size of the variation in pixel values in the image. Homogeneity 
is a feature that measures the distribution of each entry value 
in the GLCM matrix with its diagonal entries. ASM is a 
measurement of the similarity of a picture. A similar picture 
will only carry a few gray values; therefore, GLCM will have 
a slight variation in the value of (𝑖,), but each (𝑖,𝑗) will have a 
high value. Energy is the square root of ASM, which has a 
value range from 0 to 1, with 1 representing a constant image 
or an image whose entry value is the same for each pixel 
coordinate. Correlation is a measurement of how correlated a 
pixel coordinate value is with the surrounding pixels. In the 
GLCM method, there are about eight variations of angles that 
can be used, namely angles 0°, 45°, 90°, 135°, 180°, 225°, 
270°, and 315°, as shown in Fig. 3. 

The GLCM is a widely used texture-based feature 
extraction method that captures spatial relationships between 
pixels at defined directions and distances. It generates a set of 
statistical features—such as contrast, correlation, energy, and 
homogeneity—that quantify texture patterns within an image. 
These features are particularly effective for differentiating 
image regions based on their structural properties, making 
GLCM well-suited for classification and segmentation tasks. 
Moreover, GLCM is inherently color-independent, allowing it 
to work efficiently with grayscale images. This makes it a 
highly appropriate choice for analyzing drone-captured 
plantation imagery, where subtle variations in canopy texture 

caused by disease can be more informative than color. In 
agricultural applications, GLCM has been proven to reliably 
characterize vegetation patterns and support decision-making 
in crop monitoring. 

3) K-means clustering: K-means clustering is among the 

clustering approaches in unsupervised learning. This method 

requires the user to determine the number of clusters, and then 

the dataset will be divided into clusters. The distance between 

each centroid point in each cluster and the data points is 

utilized by k-means clustering to sort out the data. The cluster 

whose centroid is closest to a given data point comprises the 

data points. In the k-means clustering method, each data point 

can only be grouped into one cluster or also known as hard 

clustering. The following is the algorithm of the k-means 

clustering according to [24]. 

(1) Determine the number of clusters (K). 

(2) Selects K random points as the centroid (𝜇𝑘) per cluster. 

(3) Label each data based on the nearest centroid point 
using the Euclidean distance using Eq. (4), where 𝑟𝑛𝑘 is 
the label of each 𝑥𝑛 that belongs to cluster K. 

𝑟𝑛𝑘 = {
1, 𝑖𝑓 𝑘 =  𝑚𝑖𝑛

𝑗
||𝑥𝑛 − 𝜇𝑗||

2

0,   else
              (4) 

(4) Update the centroid point using Eq. (5) based on the 
cluster formed by Eq. (4). 
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𝜇𝑘 =
∑ (𝑟𝑛𝑘𝑥𝑛)𝑁

𝑛 = 1

∑ 𝑟𝑛𝑘
𝑁
𝑛=1

             (5) 

(5) Repeat Steps 3 and 4 until the convergence criteria are 
fulfilled. 

D. Experimental Design 

This research started by collecting the dataset, which is a 
rubber plantation image photographed using an aerial drone. 
The image was then resized into 20 × 20 and converted into 
grayscale as GLCM input, while the image resized into 64 ×
64 × 3 as CAE input. The dataset will be splitted into train 
and test dataset for feature extraction using CAE. The image 
will then be feature extracted with the respective model. Both 
outputs of the feature extraction model are then clustered 
using k-means clustering. The clustering result will be 
evaluated using the silhouette score and davies-boudin index. 

The architecture of the convolutional autoencoder (CAE) 
in this study was designed with a focus on balancing feature 
richness and overfitting risk, especially given the small dataset 
(19 images). We used a series of convolutional layers 
followed by pooling layers in the encoder to progressively 
reduce spatial dimensions and capture hierarchical patterns in 
the image. A kernel size of 3×3 was selected to capture fine-
grained texture details typical of leaf canopy variation. 
Pooling layers were used to reduce spatial dimensions while 
preserving the most salient features. The bottleneck layer was 
set to 8×8×8 to compress the image while still retaining 
enough structural information for effective reconstruction and 
clustering. The decoder mirrored the encoder using 
upsampling layers to reconstruct the image. 

The selection of four principal angles in GLCM 0°, 45°, 
90°, and 135°, was made to adequately capture texture 
orientation diversity across the image. These directions 
represent the primary spatial alignments typically found in 
natural and man-made textures, including horizontal, vertical, 
and diagonal structures. Using these four directions allows the 
model to extract comprehensive spatial patterns without 
significantly increasing computational complexity. The 
features derived from the GLCM—such as contrast, energy, 
homogeneity, and correlation—statistically represent image 
texture by quantifying pixel relationships within a local spatial 
context. These features offer strong descriptive and 
discriminative power, making them highly effective for a wide 
range of image analysis tasks, including classification, 
segmentation, and object detection. In the context of this 
study, these features help differentiate between dense 
(healthy) and sparse (infected) canopy textures in aerial 
plantation imagery. 

In this research, the author used two different methods to 
extract features from photos of rubber plant fields, namely 
GLCM and a convolutional autoencoder. In the convolutional 
autoencoder, the data will initially be resized to a size of 64 ×
 64 ×  3. Then the data will be split into training and testing, 
by testing as much as 30% of the dataset. The CAE 
architecture used can be seen in Table II. The optimizer used 
is Adam with a loss function of mean squared error and 200 

epochs. In GLCM, first, the data will be resized to a size of 
20 ×  20 . Then the co-occurrence matrix will be formed.  
Next, feature extraction will be carried out on the co-
occurrence matrix that has been created. After going through 
the feature extraction, the dataset will be clustered using k-
means clustering. For the k-means clustering, the initialization 
method used is k-means++ to improve and faster convergence. 
Each experiment was run with 10 different centroid seeds with 
the maximum number of iterations for each experiment was 
set to 300. These settings are chosen based on experiment and 
shows consistent clustering performance and reduced 
sensitivity to initialization randomness. The results of 
clustering will be evaluated with a silhouette score and davies-
bouldin index. 

TABLE II ARCHITECTURE OF CAE 

Layer Layer type 
Input 

shape 

Size 

of 

kernel 

Activation 

function 
Padding 

Output 

shape 

1 Input layer 
64
× 64
× 3 

- - - 
64
× 64
× 3 

2 
Convolutional 

layer 

64
× 64
× 3 

3 × 3 ReLU Same 
64
× 64
× 16 

3 
Average 
Pooling layer 

64
× 64
× 16 

2 × 2 - - 
32
× 32
× 16 

4 
Convolutional 

layer 

32
× 32
× 16 

3 × 3 ReLU Same 
32
× 32
× 8 

5 
Average 
Pooling layer 

32
× 32
× 8 

2 × 2 - - 
16
× 16
× 8 

6 
Convolutional 

layer  

16
× 16
× 8 

3 × 3 ReLU Same 
16
× 16
× 8 

7 
Average 

Pooling layer 

16
× 16
× 8 

2 × 2 - - 
16
× 16
× 8 

8 

Convolutional 
layer 

(Bottleneck 
layer)  

8 × 8
× 8 

3 × 3 ReLU Same 
8 × 8
× 8 

9 
Upsampling 

layer 
8 × 8
× 8 

2 × 2 - - 
16
× 16
× 8 

10 
Convolutional 
layer 

16
× 16
× 8 

3 × 3 ReLU Same 
16
× 16
× 8 

11 
Upsampling 

layer 

16
× 16
× 8 

2 × 2 - - 
32
× 32
× 8 

12 
Convolutional 

layer 

32
× 32
× 8 

3 × 3 ReLU Same 
32
× 32
× 8 

13 
Upsampling 
layer 

32
× 32
× 8 

2 × 2 - - 
64
× 64
× 8 

14 
Convolutional 

layer 

64
× 64
× 8 

3 × 3 ReLU Same 
64
× 64
× 3 
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IV. EXPERIMENTS AND RESULT 

In this section, we will explain the results of our research 
and at the same time a comprehensive discussion is also given. 

A. The Evaluation Parameters 

Silhouette score is an approach applied to assess 
clustering. The assessment is done by finding the distance 
between data in one cluster and the distance with other data in 
different clusters [25]. The mathematical equation for the 
silhouette score is presented by Eq. (6): 

𝑆(𝑖) =
𝑝(𝑖)−𝑞(𝑖)

𝑚𝑎𝑥(𝑝(𝑖)𝑞(𝑖))
                     (6) 

The variable 𝑝(𝑖)  means the average length of data 
accompanied by every other data in the similar cluster, while 
the variable 𝑞(𝑖)  is the average length of data i with every 
other data in the nearest cluster, 𝑆(𝑖) is the silhouette score of 

𝑖𝑡ℎ data. Silhouette score has a range of values from [-1,1]. A 
value near 1 denotes an excellent clustering because the data 
point is closer to its centroid means that each data can be 
grouped into a cluster that has the same characteristics. Value 
close to 0 indicates overlapping clusters or the distance 
between the clusters is not significant. Value close to -1 
indicates very poor clustering because the data occupies the 
wrong cluster [26]. 

Another metric used to measure the clustering 
performance is the davies-bouldin Index [27]. Davies -bouldin 
index measures the average similarity between each cluster 
and its most similar ones. A lower davies-bouldin index 
indicates better clustering performance [see Eq. (7)]: 

𝐷𝐵𝐼 =
1

𝑘
∑ max

𝑗≠1
(

𝑆𝑖+𝑆𝑗

𝑀𝑖𝑗
)𝑘

𝑖=1              (7) 

where, 𝑆𝑖 is the average of intra-cluster distance in cluster 𝑖 
and 𝑀𝑖𝑗 is the centroid distance between cluster 𝑖 and 𝑗. 

B. Results 

The outcome of the observations in this study will be 
discussed here. Fig. 4 displays a comparison of the original 
and resized images. The original image is shown on the left 
side, while the resized image is shown on the middle and right 
sides. The original image in the dataset has a varied shape. 
The GLCM will reduce the image into 20×20 and convert 
from an RGB image into a grayscale image, while the CAE 
will reduce the image into 64×64×3. The output feature 
extraction for 1 sample in GLCM is a 1D array with a shape of 
24, while for CAE, the output size for 1 sample is 8×8×8, but 
k-means clustering is only able to take input with a shape of a 
1D array; the output of CAE will be flattened to transform the 
output size into 1D array. 

The clustering result from CAE combined with k-means 
clustering is shown in Fig. 5. Clustering result for CAE 
combined with k-means clustering. It can be seen from 19 
samples, 7 of the samples are clustered as infected rubber 
plant plantation. The clustering results for GLCM combined 
with k-means clustering is also shown in Fig. 5. From 19 
samples, 6 of the samples are clustered as infected rubber 
plant plantation. 

The comparison of silhouette score between CAE and 
GLCM is also shown. The results of each model reveal that 
greater the silhouette score value, the better the cluster created 
by the model. This is because the clusters formed have low 
distances between data in the same cluster while have large 
distances between data in different clusters indicating that the 
clusters formed are well separated. This finding is also 
supported by the davies-bouldin index of GLCM, which is 
smaller compared to CAE, indicating better separation. From 
TABLE IIIresults of each model below, performance of 
GLCM combined with k-means clustering is better compared 
to CAE combined with k-means clustering. It means that 
GLCM combined with k-means clustering has better 
clustering performance which in this case is separating the 
healthy rubber plantation and infected rubber plantation. 

TABLE III MODELS PERFORMANCE 

No. Method 
Silhouette 

Score 

Davies-bouldin 

Index 

1 
CAE combined with k-means 
clustering 

0.467 1.638 

2 
GLCM combined with k-
means clustering 

0.788 0.653 

C. Discussion 

The performance difference between the CAE and GLCM 
methods, reflected in silhouette scores of 0.467 and 0.788, 
respectively, can be attributed primarily to the limitations of 
the dataset and the characteristics of each method. Besides, the 
silhouette scores, clustering quality was further assessed by 
the davies-bouldin index. The CAE methods achieve 1.638, 
indicating moderate overlap between clusters and have poor 
performance on separation, while the GLCM has better 
performance with the davies-bouldin index of 0.653, 
indicating well-separated clusters. These findings, based on 
silhouette score and davies-bouldin index, show that the 
GLCM provides more discriminative representations resulting 
in more reliable clustering performance. 

One major factor is the small sample size. This study only 
utilized 19 aerial images, which is far below the typical data 
requirements for deep neural networks like CAE. As 
explained by LeCun et al. [28], deep learning models rely on 
large datasets to learn meaningful representations; otherwise, 
they risk overfitting and poor generalization. In this case, the 
CAE likely failed to learn robust feature embeddings due to 
insufficient training data. 

Moreover, the curse of dimensionality further exacerbated 
the CAE's performance. The output feature map of size 8×8×8 
was flattened into a 1D vector of 512 features per image, 
resulting in a dataset of shape (19, 512). With far more 
features than samples, the model operated in a highly sparse 
input space, where distances between points become less 
meaningful, making clustering less effective [29]. 

In contrast, GLCM produces a smaller set of statistical 
texture features that are handcrafted and less sensitive to data 
volume. These features capture relevant spatial patterns in 
grayscale images without the need for extensive training. As a 
result, the GLCM-based clustering method was more robust 
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and better suited to the constraints of a small dataset. This 
performance gap illustrates the importance of aligning model 
complexity with data availability: simpler feature extraction 
techniques may outperform deep learning approaches in low-
data scenarios. 

This study acknowledges some limitations. The dataset 
used in this work consists of only 19 images collected from a 
single plantation, without ground-truth labels or cross-site 
validation. The clustering results, silhouette score, and davies-
bouldin index may be influenced by dataset-specific 
characteristics rather than genuine disease discrimination. To 
address this, future research will focus on expanding the 
dataset to include more than one plantation site and diverse 
conditions. Ground-truth labels obtained through expert 
annotation will be incorporated to enable supervised 
validation. 

V. CONCLUSION 

Clustering with images of a rubber plantation as a dataset 
can be done with a machine learning approach. First, gather 
images of a rubber plant plantation. Second is to resize the 
image. Third, extract prominent features from the image using 
feature extraction. In this study, the feature extraction methods 
used are CAE and GLCM. Fourth, clustering the extracted 
image using k-means clustering.  The last step is to evaluate 
the result using the silhouette score and davies-bouldin index. 
GLCM combined with k-means clustering have better 
performance compared to CAE combined with k-means 
clustering, meaning that GLCM combined with k-means 
clustering is able to separate the healthy rubber plantation and 
infected rubber plantation. 

This study has several limitations. The most prominent 
being the small dataset size of only 19 aerial images. Such a 
limited sample restricts the generalizability of the results and 
poses challenges for deep learning models like the 
convolutional autoencoder (CAE), which typically require 
large datasets to learn robust, non-overfitted representations. 
The risk of overfitting in the CAE is especially high under 
these conditions, as the model may memorize noise or 
irrelevant patterns rather than general features of healthy or 
diseased plantation areas. Additionally, the dimensionality of 
the CAE’s output (512 features) compared to the number of 
samples introduces sparsity that negatively affects clustering.  

Future works should consider data expansion, such as 
collecting larger and more diverse aerial datasets across 
different seasons and regions to ensure generalization. 
Methodologically, hybrid approaches that combine 
handcrafted features (for example, from GLCM) and deep 
learning representations (for example, CNN or CAE) should 
be explored. Alternative approaches of clustering methods, 
such as Density-Based Spatial Clustering of Application with 
Noise (DBSCAN) or Gaussian Mixture Model, may better 
capture complex data patterns. Finally, integrate the proposed 
framework into a real-time disease monitoring pipeline. 
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