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Abstract—The rapid progress of deepfake technology, fueled 

by generative adversarial networks (GANs), has increased the 

challenge of verifying the authenticity of digital media. This 

study suggests a more powerful deepfake detection framework 

based on the EfficientNet convolutional neural network family, 

coupled with an unsharp masking preprocessing method to 

highlight manipulation artifacts. Based on a big, diverse dataset 

of over 5000 video samples, the model was trained and tested on 

several variants of EfficientNets (B0–B4). The results indicate 

that the integration of unsharp masking significantly improves 

the model's ability to detect minor irregularities in facial regions, 

with its best validation accuracy at 97.77% with EfficientNetB4. 

The method strikes a balance between computational cost and 

detection accuracy, rendering it applicable to real-world use 

cases, such as forensic examination and digital content 

authentication. The stability of the framework across different 

datasets and manipulation methods highlights its value as a 

scalable solution for curbing disinformation and protecting 

media integrity. 
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I. INTRODUCTION 

Deepfakes are photos or videos that have been changed 
using sophisticated techniques derived from computer vision 
and deep learning, commonly used to confuse people. In this 
case, the above methods involve combining, mixing, 
displaying or exchanging facial attributes to produce artificially 
authentic albeit synthetic photographs and videos [1]. 

The act of falsifying data is now widespread in our digital 
world due to AI and machine learning advancements. The rise 
in the number of fake images and videos on social media 
platforms has made reality distortion a significant issue too. 
Deepfakes are becoming increasingly sophisticated, making it 
difficult to distinguish them from real content for human 
beings and harder to catch up with [2]. 

Deepfake technology is one of the most impactful 
innovations of manipulating images, audio, or videos, which 
has made the distinction between real and fake almost 
incomprehensible. Deepfake videos have gained notoriety 
primarily because they lead to the deception and manipulation 
of the audience. These videos utilize AI algorithms to 
substitute, or overlay faces in the visual footage. The sphere of 

influence that deep fake videos possess is divergent and 
multifaceted, and poses significant risks to the media 
landscape. Such threats range from the distribution of false 
information to tarnishing a person’s reputation or instigating 
violence. With deepfakes being more common now these days, 
the need for finding ways to detect and prevent them is 
becoming more and more crucial [3]. 

Deepfake is a combination of the two words “Deep 
learning” and “Fake”, and this technology falls on the ends of 
modifying the video content alongside the Deep Learning (DL) 
algorithms [4][5]. With the use of deepfake technology, the 
production of videos and images in an artificial manner has 
become incredibly easy due to the use of learning networks 
such as DNNs. One method that can be used to manipulate a 
video is using a Generative Adversarial Network (GAN) [6], 
and with it, a single person's image or video can be inserted 
into another person's content by replacing it with their image 
and video. 

The accomplishment of replacing target faces while 
maintaining the original voice from the source during the video 
generation is termed face swapping. This swapping is done on 
GAN’s [7] targets. Zooming in on merging, StyleGAN2 [8] 
and StyleGAN [9] deepens the layering, which helps to further 
conceal the images, making it harder for humans to tell the 
difference between the two images. Initial research [1] [10] 
indicated that deepfakes were quite discernible, but swift 
technological development has now made them almost 
impossible to distinguish from authentic content. The 
generation of indecent videos using the faces of politicians and 
celebrities is what has sparked the carrying out of fake news. 
While this was once an issue raised in society, it is now 
becoming rampant and easier to get away with, because of the 
distortion of trust. The shattered trust gives rise to several key 
social problems, such as the change of public opinion or the 
spine spreading of fake news [11]. 

Facial video manipulation technology has evolved to that 
point in recent years, where humans cannot tell if the video has 
been manipulated or not [12]. It became a great challenge, 
especially with deep-fake videos. The deepfake algorithms can 
manipulate a video in real-time by pasting one person's face 
onto another or changing the lip movements and facial 
expressions to make them appear to say anything. Techniques 
like FaceSwap, Face2Face, NeuralTextures, Deepfakes, and 
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face reenactment can create completely new videos that feature 
the target. 

Bad visual quality, unnatural contextual surroundings, or an 
explicit declaration of being artificial identify some videos as 
deepfakes. However, several other factors make them very 
realistic, where the distinguishing factor from actual videos 
cannot easily be told [13]. Therefore, the detection of a 
deepfake video has been framed as a binary classification 
problem, where each image or video is labeled as "real" or 
"fake". 

Numerous techniques have been proposed for deepfake 
detection; however, they often prove ineffective when applied 
to real-world videos. External factors such as lighting 
conditions, compression, scaling, and positional changes 
further complicate the detection process, making it 
exceptionally challenging even for advanced deep learning 
algorithms [11]. 

Until the year 2006, only convolutional networks and 
related techniques could be well trained [14]. For the first time, 
this breakthrough happened in 2006 with the publication of 
DBN. As mentioned, for the first time in that same year, the 
term "deep learning" was used by [15]. 

Neural networks have evolved a lot since then, as the very 
first ones. Though they may appear advanced and almost 
futuristic, transforming the notion of a neural network into an 
actual model that can solve some problem often takes quite a 
while. It includes data collection, very often with labeling, data 
preprocessing, and algorithm development. Once the algorithm 
has been developed, training needs to take place, which is not 
always easy and may require several runs for optimal 
performance. Furthermore, a network performing well on a 
training dataset may not generalize well to unseen data, which 
is another challenge altogether [16]. 

A CNN is a particular type of neural network in machine 
learning applied to medical image analysis. CNNs are designed 
to process data arrays, like images. The architecture of the 
CNN consists of three major parts: the input, which is the 
image in this case, feature extraction, and a nonlinear 
activation unit. In this context, the kernel can be visualized as a 
small 2-D matrix that helps to establish relationships between 
the central pixel and its surrounding pixels, enabling the 
network to capture spatial patterns effectively [17]. 

In this work, we present a novel approach to deepfake 
detection that builds upon and enhances Aaron Chong's 
implementation [18]. We use an EfficientNet-based model (B0, 
B1, B2, B3, and B4) and introduce a number of enhancements, 
including a new sharpening step and utilization of a large, 
heterogeneous dataset. Our contributions are threefold: 

1) Image sharpening step: We introduce an unsharp 

masking technique to the preprocessing stage, which will 

serve to improve the detectability of subtle artifacts in 

manipulated facial regions. The technique, using Gaussian 

blur and adding the original image, improves high-frequency 

information, improving artifact detection in deepfakes. 

2) Large dataset: We train over a highly diverse and 

enormous pool of deepfake datasets like DeepFake-TIMIT, 

FaceForensics++, Google Deep Fake Detection (DFD), Celeb-

DF, and Facebook Deepfake Detection Challenge (DFDC) 

comprising over 134,000 videos. The diversity helps our 

model to generalize nicely to other kinds of manipulations. 

3) Efficient model design: Our network is rooted in the 

EfficientNet (B0, B1, B2, B3, and B4) models and further 

optimized through the addition of additional layers for global 

max pooling and dense fully connected layers. This final 

design has high accuracy and efficiency for binary 

classification tasks in predicting the authenticity of videos. 

4) Research problem: Recent deepfake detection models 

are not generalizable across datasets and methods of 

manipulation. They remain very sensitive to variations in 

compression, illumination, and facial orientations. This makes 

them not easily deployable in the real world, where attack 

vectors keep changing with more sophisticated generation 

methods. 

5) Research objectives: This research aims to address 

these challenges by: 

a) Introducing an unsharp masking preprocessing 

operation to enhance weak manipulation artifacts in facial 

regions. 

b) Training EfficientNet architectures (B0–B4) on a 

large and diverse dataset to improve robustness to various 

manipulations. 

c) Creating an efficient and scalable detection 

framework that sacrifices high classification accuracy for 

computational efficiency. 

6) Research significance: The significance of this study 

lies in its scientific and practical contributions. Academically, 

it takes the state of deepfake detection to the next level by 

combining novel techniques in preprocessing with efficient 

deep learning models. Practically, the proposed framework 

benefits digital forensics, strengthens media integrity, and 

provides scalable solutions for combating misinformation in 

resource-constrained environments such as social media 

platforms and police investigations. 

This study robusts deepfake detection by coupling a novel 
preprocessing boost with an advanced model structure for 
improving both detection accuracy and generalizability. The 
rest of the study follows the structure as follows: Section II 
outlines related works. Section III presents the proposed 
pipeline. Section IV presents experimental results. Section V 
provides results. Section VI presents the discussion, and 
Section VII details the ethical concerns, data protection and 
misuse threat. Section VIII concludes the study. Finally, 
Section IX outlines the future work. 

II. RELATED WORK 

Qadir et al. [11] introduced a hybrid deepfake detection 
model, ResNet-Swish-BiLSTM, which combines convolutional 
and BiLSTM-based residual networks for training and 
classification. The model processes sequential video frames to 
identify artifacts in deepfake images, achieving high accuracy 
rates—96.23% on the FF++ dataset and 78.33% on combined 
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FF++ and DFDC datasets. Extensive evaluations demonstrate 
the method's robustness, generalizability, and superior 
performance across various datasets, including FF++, DFDC, 
and Celeb-DF. It mainly focuses on the detection of various 
deepfake variants: FS, NT, and F2F, with very good 
performance regarding the discrimination of tampered versus 
pristine digital footage in terms of recall and AU, reaching up 
to 0.9876. Future applications of the proposed method in 
digital forensics are mentioned; future enhancements might be 
needed with regard to capturing temporal patterns for better 
adaptability and inference. 

In [19], the authors suggested the job of identifying 
tampered videos on the basis of a hybrid deep learning method 
by combining CNN and EfficientNet B6. Their proposed 
framework identifies forged areas by analyzing video frames 
and was trained on the FaceForensics++ dataset with 90% 
classification accuracy. The validation metrics considered were 
precision, recall, and F1-scores of 98%, 81%, and 89% for fake 
images, and 84%, 98%, and 91% for real images. Apart from 
that, the trained model was deployed on Flask for real-life 
testing and validation with the public. 

According to [20], it is possible to detect deepfakes 
effectively using advanced CNN models such as EfficientNet-
B4 and XceptionNet. The authors conducted preprocessing 
through frame extraction and face isolation on the FF++ and 
Celeb-DF (v2) datasets and trained and tested using the log 
loss and AUC metrics. EfficientNet-B4 provided an accuracy 
of 92.99%, followed by XceptionNet with 90.15%, 
demonstrating strong performance in the classification of real 
and fake videos. The study emphasized the requirement for 
continuous updates of detection algorithms to keep up with 
evolving deepfake techniques. 

In [21], a new hybrid transformer network that learns using 
an early feature fusion method for deepfake video detection 
was introduced. Their method combines XceptionNet and 
EfficientNet-B4 as the feature extractors and end-to-end trains 
them with a transformer on FaceForensics++ and DFDC 
benchmarks. With a relatively simple architecture, the model 
achieves performance comparable to existing state-of-the-art 
techniques. It also employed a new face cut-out and random 
cut-out augmentation to improve detection performance and 
avoid overfitting. Furthermore, the research demonstrated good 
learning capability with limited data. The authors plan to 
continue their work by training on Celeb-DF and ForgeryNet 
datasets, testing generalization on unseen samples, and feature 
use analysis for manipulation detection, such as face swapping 
and face reenactment. 

The study in [5] proposed paper uses a deepfake detection 
model with the convolutional neural network-EfficientNet, 
which was trained using the Celeb-DF dataset. This model 
provided high classification accuracy at 95%, while its recall 
and F1 scores are 0.9161 and 0.9562 for images with 224x224 
pixels, respectively. This closely follows state-of-the-art 
methods to further prove how solid the approach is. The study 
therefore highlights the rapid evolution of deep-fake generation 
techniques, which require adaptable and scalable detection 
models. Testing on diverse datasets, exploring advanced 
EfficientNet variants, and increasing training iterations can be 

done to improve generalization and further improve 
classification performance. 

According to [22], a comprehensive review of deep 
architectures for deepfake detection shows the transition from 
CNNs to Transformers. Eight models were evaluated on 
second- and third-generation benchmarks such as FF++ 2020, 
Google DFD, Celeb-DF, Deeper Forensics, and DFDC, with 
accuracies of 88.74% to 99.73% and AUC scores ranging from 
97.61% to 100%. The results indicated that CNNs performed 
effectively in same-train-test settings, while Transformers 
generalized better across datasets. Further research on the 
relationships between datasets established the novelty of FF++, 
Google DFD, and Celeb-DF, as well as emphasized the 
importance of Deeper Forensics and DFDC in advancing 
detection methods. 

In [23], the authors employed a sequential convolutional 
neural network and max pooling with the Adam optimizer. It 
was trained and tested on a combination of datasets, including 
Celeb-DF and FaceForensics++. The model achieved 93.3% 
accuracy and 19.5% loss rate, indicating the strengths of CNNs 
in identifying manipulated content. 

The study in [24] proposes a neural network-based 
approach for the detection of deep-fake videos using advanced 
deep learning for the classification of genuine and manipulated 
content. The approach includes preprocessing, feature 
extraction based on facial landmarks, temporal patterns, and 
pixel-level inconsistencies, and classification using state-of-
the-art neural network architectures such as CNNs and RNNs. 

It proposed a diverse dataset of real and synthetic videos, 
annotated with ground truth labels to ensure robustness and 
generalization across varied deepfake generation techniques. 
Extensive experiments are conducted to verify the 
effectiveness of the framework with high detection accuracy by 
optimizing the trade-off between computational efficiency 
compared to the classic GAN-based methods. 

This approach further improves scalability and practicality 
for real-world applications by simplifying the authentication 
process and reducing computational overhead. This research 
makes a significant contribution to combating misinformation 
and securing visual media integrity by providing a 
computationally efficient and accessible approach to deepfake 
detection. 

In [25], the authors proposed a new Deepfake video 
detection model, Convolutional Vision Transformer (CViT2), 
which combines CNNs to extract local features and Vision 
Transformers to model both global and local relationships of 
features using attention mechanisms. The model was trained on 
five datasets: DFDC, FF++, Celeb-DF v2, DeepfakeTIMIT, 
and TrustedMedia, and tested on 2,669 videos, reaching high 
accuracy on test sets, including 95% on DFDC, 94.8% on 
FF++, 98.3% on Celeb-DF v2, and 76.7% on TIMIT. 

CViT2 is very efficient in analyzing both pixel-level and 
non-local features, which makes it more robust for Deepfake 
video detection under varied scenarios. In the future, more 
datasets should be included for training to improve 
generalization and robustness. The proposed model offers a 
realistic way to counter misinformation and fraud, having 
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major implications for digital forensics and societal trust in 
media authenticity. 

The work in [2] proposed the challenge of detecting 
deepfake videos by proposing a model that identifies 
inconsistencies in facial features, compression artifacts, and 
manipulation-induced discrepancies. The model, which uses 
transfer learning on the VGG-16 architecture, trains on the 
Celeb-DF dataset, focusing on manipulations of facial features 
for forgery detection. Much emphasis is placed on transfer 
learning to reduce resource requirements and training time 
while ensuring robust performance. 

The model can extract features that are relevant for 
deepfake detection, although it has certain limitations with 
low-quality images and videos. Further improvements, as 
suggested in the paper, could be made using better datasets, 
ensemble learning methods, temporal, and audio discrepancies. 
All these methods will improve accuracy and generalization by 
combining the results from multiple frames and learning 
models, hence providing a holistic approach toward deepfake 
detection. 

The study in [26] introduces a method that fine-tunes a 
transformer module to detect fake images by exploring new 
feature spaces through attention-based networks, specifically 
Res-Next CNNs. This architecture emphasizes selectively 
focusing on critical video features. Frame-level features 
extracted via Res-Next CNNs are used to train an LSTM-based 
RNN for classifying videos as real or manipulated. The 
approach is then validated on various datasets, such as 
FaceForensics++, Deepfake Detection Challenge, Celeb-DF, 
and a custom dataset, showing its efficiency in real-time 
scenarios. 

The proposed system has practical implications, such as 
preventing the spread of misinformation by restricting deep-
fake content on social media, news platforms, and law 
enforcement applications, thus safeguarding the authenticity of 
online content. 

The study in [1] addresses the challenges posed by deep-
fake technology by introducing a detection framework based 
on integrated Vision Transformer architectures, Deep-ViT and 
Cross-ViT. These models analyze pre-extracted facial features 
from the FF++ dataset, effectively identifying real and fake 
faces through subclass-specific detection for manipulation 
methods and overall classification across all types. The model 
excels in detecting FaceSwap manipulations, achieving an 
accuracy of 98%. 

Deep-ViT and Cross-ViT leverage the unique capability of 
Vision Transformers to model both local image features and 
global pixel relationships, unlike traditional CNN-based 
deepfake detection approaches. The multi-stream design 
captures varying scales of alterations, enhancing robustness. 
The framework's performance was evaluated under intra-
dataset and inter-dataset settings, achieving AUC scores of 
92.4% on FF++ and 83.1% on Celeb-DF (V2). In subclass 
detection for FF++ manipulations, the model achieved 
classification accuracies of 98.6% for Deepfake, 98% for 
FaceSwap, 97% for Face2Face, and 90.3% for Neural Texture. 

This research recognizes advanced architecture's 
contribution to fighting against the proliferation of deepfakes 
while highlighting their capabilities to provide safety to the 
authenticity of media content in view of growingly 
sophisticated manipulation techniques. 

In [27], EfficientNet B7-a state-of-the-art CNN-for 
detecting deepfake videos. Deepfake techniques that use 
advanced machine learning to manipulate visual content have 
created a significant threat to media authenticity. The research 
will study how EfficientNet B7 can find minute visual cues 
that hint at manipulation and assess its accuracy, computational 
efficiency, and robustness on different deepfake datasets. The 
model achieved an accuracy of 85%, which aligns with the 
84.4% accuracy reported in the original EfficientNet paper. 
EfficientNet B7's efficient architecture and lower 
computational demands make it suitable for real-world 
deployment, especially in resource-constrained environments. 
The study also suggests further research into ensemble models 
and advanced techniques like knowledge distillation to enhance 
performance. Eventually, EfficientNet B7 has a very bright 
future in detecting deepfakes and developing further robust and 
scalable solutions against misinformation. 

The work presented in [3] proposed a neural network-based 
deepfake video detection by fusing Convolutional Neural 
Networks and Recurrent Neural Networks. The CNN extracts 
frame-level features, which are further fed into an RNN, 
specifically Long Short-Term Memory, to find temporal 
irregularities and classify whether tampering has occurred in 
the video. The proposed approach considers two different 
methodologies of deepfake creation: GANs and autoencoders. 
Competitive performance is given using ResNext CNN on 
frame-level detection and RNN on video classification for the 
detection of deepfake content. The model does even better on 
real-time data, gaining more accuracy and confidence in 
classifying a video as real or fake. 

The study in [28] deals with the increasing problem of 
video forgery or deepfake media, which is posing quite a 
serious threat to media integrity because it is easy to fabricate 
and disseminate manipulated content. Applications for video 
forgery detection span across multimedia forensics, digital 
investigations, and video authenticity verification. The 
proposed technique relies on a CNN using a ResNet 
architecture to discover deepfake videos by deep feature 
extraction from frames. These features are analyzed using 
sequence descriptors to capture temporal information, which is 
then processed through fully connected layers to classify 
videos as real or fake. It is an effective preliminary solution for 
deepfake detection, based on the DeepFake video dataset, and 
performance could be improved by updating the data in the real 
world. 

In [29], the authors raise a very critical issue in video 
forgery and deepfake media, the integrity of which is seriously 
compromised by the rampant creation and dissemination of 
manipulated content. The proposed technique utilizes a CNN 
based on ResNet for deep feature extraction from video frames, 
together with sequence descriptors that capture temporal 
inconsistencies. Then, fully connected layers classify videos as 
either authentic or fake. This approach gives promising 
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accuracy with the DeepFake video dataset and is the initial 
framework of deepfake detection. Further enhancement of 
robustness can be done by training the model with more varied 
and unseen manipulation techniques. It opens a way for a 
resilient solution against fake media. 

In [30], the authors focus on the advanced technique of 
deep-fake image detection and propose an improved approach 
using computer vision and deep learning. It uses the 
FaceForensics++ dataset and has attained a very high AUC 
score. The faces are extracted from videos using RetinaFace, 
and the extraction is accelerated by multiprocessing. 
Enhancement and augmentation of the dataset are performed, 
and three models, namely SEResNeXt-50, EfficientNet B0, 
and EfficientNet B3, are trained and evaluated. Of these, 
occlusion and blending techniques work the best in 
combination. This deepfake detection system gives a robust 
pipeline for verifying video authenticity and is very useful in 
combating fake news, along with mitigating its potential harms 
during critical times. Table I provides a summary of some 
previous works. 

TABLE I.  RESULTS OF SOME PREVIOUS WORKS 

Model Dataset Acc 

EfficientNEt [11] DFDC 92.4 

EfficientNet-B4[20] FF++ 92.99 

XceptionNet[20] FF++ 90.15 

No Augs[21] FS 92.85 

No Augs[21] Deepfakes 95.71 

No Augs[21] F2F 93.57 

No Augs[21] NT 85.00 

No Augs[21] Pristine 96.42 

Face cut-out [21] FS 96.42 

ResNet-18[11] FF++, NT 86.6 

Face cut-out [21] NT 90.71 

Face cut-out [21] Pristine 00.99 

ResNet-18[11] FF++, F2F 92.5 

Random cut-out[21] NT 01.29 

Rossler et al [31] Deepfakes 92.48 

Rossler et al [31] Face2Face 91.33 

Rossler et al [31] FaceSwap 92.63 

Rossler et al [31] NeuralTextures 85.98 

CViT2 [25] DFDC 95.00 

CViT2 [25] FF++ Deepfake 91.26 

CViT2 [25] FF++ NeuralTextures 86.00 

III. METHODOLOGY 

This section details the methodological setup for 
developing a robust deepfake detection system, regarding data 
collection, preprocessing, model architecture, and experimental 
setup. The proposed methodology is tailored to ensure high-
quality input data generation, enabling thorough evaluation and 

ensuring reliable effectiveness. Fig. 1 shows the pipeline, 
which outlines the overall key steps. 

 
Fig. 1. The architecture diagram of the proposed methodology. 

A. Data Collection and Preprocessing 

The quality of the dataset and, in many ways, its diversity 
have large impacts on deep learning model performance. To 
this end, a large-scale diverse dataset is prepared, including 
videos from DeepFake-TIMIT, FaceForensics++, Google Deep 
Fake Detection (DFD), Celeb-DF, and the Facebook Deepfake 
Detection Challenge (DFDC). Combined, these datasets 
contained 134,446 videos of about 1,140 unique identities 
using over 20 different synthesis methods. This large collection 
enabled broad coverage of deepfake creation methods, 
significantly enhancing the model's generalization capability. 

B. Dataset Preparation 

The dataset was carefully analyzed and prepared to ensure 
its quality and equilibrium. The initial distribution of the 
frames was heavily unbalanced, with real faces totaling 11 
frames and fake faces totaling 50. After preprocessing, it was 
balanced by fake frames to equal the number of real frames. 
All images were resized to a standardized format. Steps taken 
to do this included the removal of all frames where a face could 
not be detected and low-confidence detections to ensure the 
quality of the dataset. The preprocessing steps produced a 
polished, fair, and representative dataset, thus laying a good 
foundation for model development and evaluation. 

This experimental setup fulfilled state-of-the-art best 
practices and, therefore, ensured reproducibility and utility for 
future research studies. This approach allows for reliable 
performance analysis and demonstrates feasibility even in 
resource-constrained computational environments. Table II 
provides a summary of used datasets. 

TABLE II.  SUMMARY OF USED DATASET 

Class 
Number of 

images 
Dataset Source Image size 

fake 1100 FaceForensics++ 

 

DFDC/DFD/ 
Celeb-DF 

 
 

Kaggle 

 
 

224 ×224 real 1078 
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Preprocessing was one of the most important steps in 
preparing data for model training. Frames were systematically 
extracted from videos, and their resolution was adjusted based 
on specified parameters so that the inputs could be 
standardized. Videos with width less than 300 pixels were 
upscaled by a factor of 2, those between 300 and 1000 pixels 
were retained at their original size, those between 1000 and 
1900 pixels were downscaled by 0.5×, and videos exceeding 
1900 pixels were downscaled by 0.33×. Following frame 
extraction, face detection and cropping were done using a pre-
trained MTCNN algorithm. 

Multi-task Cascaded Convolutional Neural Network 
(MTCNN) is a face detection and alignment deep learning 
algorithm, which is accurate and highly robust against varying 
conditions like lighting and pose. It contains three cascaded 
networks: P-Net (Proposal Network) for generating 
preliminary face bounding boxes, R-Net (Refine Network) for 
removing false alarms and refining the boxes, and O-Net 
(Output Network) for refining the final bounding boxes and 
facial landmark localization. MTCNN's multi-task learning 
enhances performance by synchronized face detection and 
landmark detection, making it efficient and reliable. It is used 
for face detection in images/videos, facial recognition, real-
time face tracking, and facial analysis. MTCNN's cascaded 
structure ensures high accuracy and is now a cornerstone in 
face detection research, as illustrated in Fig. 2 and Fig. 3, 
which shows an example of an image cropped using MTCNN. 

 
Fig. 2. The architecture diagram of MTCNN. 

 

Fig. 3. Example of images cropped with MTCNN model. 

In addition, a 30% margin around the bounding boxes was 
added to enhance the quality of the detected faces by including 
contextual facial features. A 95% confidence threshold was set 
to ensure high-accuracy detection; otherwise, if no detectable 
faces were found in a frame, the frame was thrown out of the 
dataset. If more than one face was detected in a frame, each 
face was saved separately. An example of this is detected faces, 
which consisted of bounding boxes like [110, 58, 71, 92] with 
a confidence score of 0.999996 and [392 ,60 ,48 ,63] with a 
confidence score of 0.999997. 

To address class imbalance, a common occurrence in 
deepfake datasets, the number of counterfeit samples was 
reduced to match the number of authentic samples to prevent 
any possible bias of the model towards the overrepresented 
class. Subsequently, the preprocessed dataset was divided into 
training, validation, and test sets in an 80:10:10 ratio, hence 
setting up a structured approach to model building, 
optimization, and evaluation. Next, image improvement was 
done to improve the quality of the data. Precisely, face image 
sharpening was carried out using an unsharp masking 
technique. 

Image Sharpening Algorithm enhances image definition 
and clarity by increasing contrast at edges. It does so by 
highlighting intensity differences between neighboring pixels, 
thus making edges more distinct, as shown in Fig. 4. Common 
methods include the Laplacian filter and Unsharp Masking, 
which entail subtracting a blurred image from the original. 
Sharpening is widely used in photography, medical imaging, 
and computer vision to improve visual quality and perception 
of detail, so that significant features are more visible. It 
involves blurring the cropped image with a Gaussian blur and 
then combining the blurred and original images with weighted 
summation. The enhanced images, which were converted to 
OpenCV's BGR format for compatibility, were stored for 
further processing steps. 

 
Fig. 4. Images after sharpening using unsharp masking. 

C. Model Architecture 

The deepfake detection model had an EfficientNet 
backbone, which balanced high performance and 
computational efficiency. Key modifications included: 

The proposed deepfake detection system was based on an 
EfficientNet backbone, chosen due to its best trade-off between 
computational efficiency and performance. Its input layer was 
adjusted to fit 128×128×3 images, which significantly reduced 
computational costs while retaining crucial visual information. 
The final convolutional layer output of the EfficientNet 
architecture was routed through a global max pooling layer to 
summarize spatial information into a single feature vector. Two 
fully connected layers with ReLU activation functions were 
appended to the model to acquire richer feature representations. 
The output layer used the Sigmoid activation function, 
allowing the model to output a probability signifying whether 
an input is deepfake (0) or pristine (1). 
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Regularization techniques were incorporated to increase 
model robustness and avoid overfitting. Dropout layers were 
used, and early stopping was implemented to stop training 
when validation performance no longer improved. This 
configuration provided a strong foundation for the accurate and 
efficient detection of deepfakes. Fig. 5 shows the architecture 
diagram of the proposed model. 

 

Fig. 5. The architecture diagram of the proposed model. 

IV. EXPERIMENTAL SETUP  

The experimental setup used to train and evaluate the deep-
fake detection model is described in detail. The training 
procedure used the processed dataset with the model, 
optimized by the Adam optimizer with a learning rate of 0.001, 
batch size 16, and binary cross-entropy as the loss function. 
These hyperparameters were tuned to balance convergence 
speed and model accuracy. 

The effectiveness of the model was evaluated using 
accuracy as the main measure. Accuracy calculates the number 
of cases predicted correctly to the total number of instances 
evaluated [32], represented by the Formula (1): 

Accuracy =
TP+TN

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                        (1) 

While accuracy is an intuitive and common metric, it can 
be misleading as a measure of model performance for 
imbalanced datasets. Nonetheless, in this study, accuracy was 
the first test of the system's classification abilities that had to be 
used. 

The generalization of the model was tested with a 5-fold 
cross-validation procedure. It evaluates the model on different 
subsets of the data, ensuring that it exhibits consistent and 
robust performance across a variety of training and validation 
splits. 

Preprocessing and training were performed using a CPU-
based system, although resource-constrained, thus showing the 
applicability of the proposed methodology in constrained 
conditions. The software stack included Python version 3.9 for 
scripting, TensorFlow version 2.17.1 for model execution and 
training, OpenCV for image processing operations such as face 
detection and cropping, and NumPy and scikit-learn for data 

handling and evaluation. TensorFlow's GPU libraries were 
installed, but all computational tasks were performed on the 
CPU, and warnings related to GPU dependencies were ignored. 

V. RESULTS 

Table III presents the comparative performance of 
EfficientNet models ranging from B0 to B4, evaluated under 
identical training and validation conditions. These models were 
fine-tuned on the dataset with a binary classification task using 
an input image size of 128×128×128 / times 128×128×128, 
consistent pre-processing, and training parameters. The main 
metrics that were evaluated included training accuracy, 
validation accuracy, training loss, and validation loss, 
averaging over 20 epochs. 

TABLE III.  RESULTS OF EFFICIENTNET 

Model Validation Accuracy (%) Validation Loss 

EfficientNetB0 94.59 0.13 

EfficientNetB1 97.45 0.04 

EfficientNetB2 96.50 0.08 

EfficientNetB3 95.54 0.05 

EfficientNetB4 97.77 0.13 

 
Fig. 6. The plot diagram with 20 epochs and EfficientNet B4 architecture. 

 
Fig. 7. The plot diagram with 20 epochs and EfficientNet B3 architecture. 

 
Fig. 8. The plot diagram with 20 epochs and EfficientNet B2 architecture. 
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Fig. 9. The plot diagram with 20 epochs and EfficientNet B1 architecture. 

 

Fig. 10. The plot diagram with 20 epochs and EfficientNet B0 Architecture. 

The performance evaluation of various EfficientNet models 
in detecting deepfakes in videos. Various versions of 
EfficientNet reveal a variation in validation loss and accuracy, 
which could be the result of depth and complexity. 

EfficientNetB0 reported a validation accuracy of 94.59% 
and a validation loss of 0.13. The model shown in Fig. 10(a) 
and Fig. 10(b), although having a reasonably high accuracy, 
reported a marginally higher validation loss, which reflects a 
moderate level of misclassification. On increasing the depth of 
the model, one can observe that the performance significantly 
increases. EfficientNetB1 performed much better than 
EfficientNetB0, having an accuracy of 97.45% and a much 
lower validation loss of 0.04. This demonstrates that increased 
complexity and parameters result in better feature extraction 
and generalization. 

EfficientNetB2, as presented in Fig. 8(a) and Fig. 8(b), 
experienced a marginal decrease in accuracy to 96.50% from 
EfficientNetB1, with the validation loss rising by 0.08. This 
represents a decrease in predictive efficiency to a marginal 
degree, perhaps due to overfitting or poor training conditions. 
EfficientNetB3, as presented in Fig. 7(a) and Fig. 7(b), also 
maintained a further reduction in accuracy to 95.54%, but its 
validation loss was low at 0.05. This finding suggests that 
making the model deeper past a point will not necessarily make 
it perform better and can instead result in diminishing returns. 

Among all the model tests, EfficientNetB4, as illustrated in 
Fig. 6(a) and Fig. 6(b), achieved the highest validation 
accuracy of 97.77%, though its validation loss (0.13) was 
greater than that of EfficientNetB1, as shown in Fig. 9(a) and 
Fig. 9(b). EfficientNetB4's high performance is due to its better 
capacity to learn complex patterns from deep-fake videos, 
leading to stronger feature representation. However, the high 
validation loss suggests possible overfitting or sensitivity to 
certain variations of the dataset. 

In summary, the results show that increasing EfficientNet 
models generally enhances classification performance, with 
EfficientNetB4 being the most accurate. The presence of 
relatively higher validation loss in certain deeper models shows 

the trade-off between complexity and generalization. 
Regularization techniques and data augmentation techniques 
can be explored further in future studies to minimize the risk of 
overfitting and further enhance the performance of deepfake 
video detection. 

VI. DISCUSSION 

This section provides a critical examination of the above 
results, with a special focus on evaluating the effectiveness of 
the proposed deepfake detection technique versus state-of-the-
art techniques with EfficientNet architectures. Extra focus is 
put on identifying how the application of unsharp masking as a 
preprocessing step aids the model's ability to detect fine visual 
details characteristic of synthetic video material. By 
comparison of performance over a number of datasets, this 
discussion investigates the contribution of both architectural 
choice and preprocessing method to overall classification 
accuracy. 

To assess the effectiveness of the suggested approach, we 
compare its performance with comparable works that have 
applied EfficientNet models to detect deep-fake videos, as 
shown in Table IV. The results indicate that our suggested 
models, which employ EfficientNet models and an unsharp 
masking preprocessing technique, outperform existing methods 
on several datasets. 

The baseline EfficientNet model in earlier studies achieved 
an accuracy of 92.4% on FF++, DFDC, and Celeb-DF datasets. 
Similarly, EfficientNet-B4, experimented on FF++ and Celeb-
DF, achieved a comparable but slightly higher accuracy of 
92.99%. These results, although indicative of good 
performance, fall short of the proposed models, which 
incorporate an unsharp masking technique to further enhance 
feature extraction. 

TABLE IV.  COMPARISON BETWEEN THE PROPOSED MODEL AND THE 

STATE-OF-THE-ART 

Model Dataset Acc 

Efficient Net [11] FF++/ DFDC/ Celeb-DF 92.4 

EfficientNet-B4[20] FF++/ Celeb-DF 92.99 

Efficient Net B7[27] ImageNet 85% 

Proposed model 

EfficientNetB0 + unsharp mask 
 

 

 
 

 

FF++/DFDC/DFD/ 
Celeb-DF 

94.59 

Proposed model 

EfficientNetB1+ unsharp mask 
97.45 

Proposed model 

EfficientNetB2+ unsharp mask 
96.50 

Proposed model 

EfficientNetB3+ unsharp mask 
95.54 

Proposed model 

EfficientNetB4+ unsharp mask 
97.77 

The proposed EfficientNetB0 + unsharp mask model 
accuracy was 94.59%, showing the benefit of preprocessing in 
improving deepfake detection. Most importantly, the proposed 
EfficientNetB1 + unsharp mask model significantly 
outperformed the earlier methods, achieving the highest 
accuracy of 97.45%. This shows that the combination of 
advanced CNN architecture and image enhancement methods 
enables the detection of real and synthetic content. 
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The other proposed models, EfficientNetB2, B3, and B4 
with unsharp masking, also performed considerably better than 
the prior works with 96.50%, 95.54%, and 97.77% accuracy, 
respectively. The highest performing model, EfficientNetB4 + 
unsharp mask, achieved a peak accuracy of 97.77%, 
outperforming the previous uses of EfficientNet architectures 
on deepfake datasets. 

These findings highlight the strength of adding unsharp 
masking as a preprocessing module, which is likely to enhance 
edge detection and fine-grained details that are crucial in 
identifying deepfake artifacts. The improved performance on 
different datasets suggests that our solution has good 
generalization capability and can serve as a viable framework 
for real-world deepfake detection. The study can be extended 
to analyze the impact of adding other preprocessing modules or 
hybrid strategies to enhance classification performance. 

VII. ETHICAL CONCERNS, DATA PROTECTION, AND MISUSE 

THREAT 

The rapid development of deepfake detectors, as significant 
as it is for defending the integrity of digital content, involves a 
range of ethical, legal, and social challenges. Overcoming these 
challenges is crucial for ensuring that the design and 
deployment of such systems are in line with responsibility, 
transparency, and fairness principles. 

A. Ethical Concerns in Model Building 

The development of deepfake detectors is accompanied by 
considerable ethical obligations, particularly maintaining 
algorithmic fairness. Trainings of such models based on 
imbalanced datasets have the potential to behave unequally 
across population subgroups and may exhibit different levels of 
detection accuracy per gender, ethnicity, or age. These biases 
can lead to unfair results and must be actively mitigated 
utilizing heterogeneous and representative datasets in addition 
to rigorous testing across varied subpopulations [6], [11]. 

Moreover, the obscurity in deep learning algorithms 
complicates transparency and interpretability. Because these 
systems are being utilized increasingly in high-stakes domains 
such as media verification and forensic analysis, XAI methods 
need to be incorporated. This enhances user trust, makes one 
accountable, and gives stakeholders the capacity to understand 
and audit the system's decision-making better [22]. 

B. Data Privacy and Consent 

Deepfake detectors typically require access to enormous 
amounts of visual data with identifiable human features. Use of 
such data raises significant questions about individual privacy 
and consent. Compliance with data protection law, such as the 
General Data Protection Regulation (GDPR) and the California 
Consumer Privacy Act (CCPA), requires data collection to be 
carried out ethically, with explicit consent of individuals 
involved and appropriate anonymization techniques used, 
where necessary [6], [7]. 

Effective data governance frameworks must also be 
established to secure sensitive information. These encompass 
safe storage methods, access restrictions, and regular audits to 
prevent misuse. Ethical review processes must be integrated at 
all stages in the data life cycle, from acquisition to model 

deployment, to ensure compliance with privacy protocols and 
ethics [12]. 

C. Misuse Risks and Dual-Use Issues 

Although the technologies for detecting deepfakes are 
absolutely crucial for combating digital deception, they possess 
dual-use potential. Adversaries can use information regarding 
detection models to develop even more sophisticated forgeries 
that can bypass existing countermeasures [7], [25]. The 
constant cat-and-mouse game between detection and forgery 
can erode confidence in authenticity verification tools among 
the public. 

Distribution of detection tools within sensitive 
environments—such as journalism, law enforcement, or 
political communication—also risks misclassification. False 
negatives or positives can lead to reputational damage, 
wrongful accusations, or suppression of rightful content. To 
prevent such risks, the results of detection need to be given 
with confidence levels and be open to human analysis, 
particularly in high-risk scenarios [13]. 

D. Recommendations for Ethical and Responsible 

Deployment 

These social and ethical issues have to be resolved through 
a collective, multidisciplinary approach from policymakers, 
lawyers, ethicists, and researchers. Normative legislation 
should determine permitted uses, designate minimum 
performance levels, and impose transparency obligations 
throughout the whole life cycle of deepfake detection tools [6], 
[27]. Education and awareness campaigns among the public are 
also necessary to enlighten citizens about the potential and 
limitations of these technologies. 

VIII. CONCLUSION 

This work presents a strong and scalable deepfake detection 
system that combines EfficientNet models with an unsharp 
masking preprocessing method to improve the detection of 
nuanced facial manipulation artifacts. Through training on a 
large and varied dataset, the system exhibits high performance 
on various EfficientNet variants, with a best validation 
accuracy of 97.77% when using EfficientNetB4. The 
experiments validate the improvement in input image 
sharpness with unsharp masking as a significant factor in the 
accurate classification of synthetic versus real facial content. 
Comparison against previous state-of-the-art approaches 
validates the effectiveness and stability of the proposed 
approach against different deepfake generation methods and 
datasets. The use of deep light-weight EfficientNet models, 
such as B0 and B1, also offers implementable solutions for 
deployment under computationally constrained environments 
without affecting performance. The findings of this study 
contribute depth to the nascent field of multimedia forensics 
and digital media authentication. Future studies will tackle 
combining multimodal features (e.g., audio and temporal 
features), transparency-driven explainable AI techniques, and 
real-time implementation strategies to make them practicable 
and ethical to use in high-risk environments like journalism, 
law enforcement, and social media. 
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IX. FUTURE WORK 

Future directions will focus on achieving greater robustness 
and generalization of the deepfake detector by incorporating 
diverse datasets, including more state-of-the-art deep-fake 
synthesis techniques. Furthermore, architectural explorations 
deep into vision transformers and hybrid models capable of 
encoding spatial and temporal features are expected to 
maximize accuracy during detection. Incorporation of 
explainability methods will also be attempted to generate 
insights into model decisions, guaranteeing transparency and 
trustworthiness. Additionally, future work will be geared 
towards optimizing computational processes for real-time 
detection and deployment of the model in real-world settings, 
including social media and forensic monitoring. 
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