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Abstract—Increasing number of vehicles and rapid 

urbanization are the significant causes of road traffic congestion. 

Road traffic congestion is the main issue facing world cities today. 

Congestion control and mitigation are necessary to mitigate the 

negative impacts of road traffic congestion, such as delays and 

increased fuel consumption, among others. There are many 

congestion detection methods published in the literature; some of 

these methods, such as the speed threshold, use a single congestion 

detection metric. Using a single parameter for traffic congestion 

detection might produce false and inaccurate results. 

Furthermore, many congestion detection techniques fall short in 

describing traffic congestion from the user's perspective and 

vision. To address this, this study develops a segment-based 

congestion detection method that uses vehicle ID and loss of 

expected time of arrival. The ID-based method considers both 

vehicle speed and density, whereas the loss of expected time of 

arrival focuses on the time loss. These methods are segment-based, 

where roads are divided into segments using vehicle trajectories. 

Using a speed threshold of 8.33 m/s, the road is segmented into 

segments of 8.33 m, 16.66 m, and 24.99 m in length. Vehicle speed 

and density are monitored using vehicle identification numbers 

(VINs). Experimental results reveal that the speed threshold and 

the Microscopic Congestion Detection Protocol recorded false 

congestion detection. The proposed ID-based congestion detection 

method is capable of identifying false congestion and accurately 

detecting real congestion. Moreover, the loss of expected time of 

arrival shows a promising result in terms of identifying congestion 

based on motorists’ feelings. 
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vehicle trajectories; vehicle speed; vehicle density; loss of expected 
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I. INTRODUCTION 

One of the main issues facing today's urban cities is road 
traffic congestion. According to [1], it affects social and 
economic productivity, contributes to fuel consumption and 
environmental pollution, it adds delays to personal mobility [2]. 
Congestion leads to wasted time and increased fuel 
consumption. Loss time leads to reduced productivity. 

ITS-V2X technology is regarded as a key enabler for 
predicting and managing road traffic congestion, as well as 
enhancing road safety. V2X is an approach to exchanging 
information between vehicles and infrastructure that utilizes 
decentralized wireless technologies. Future vehicles will share 
information about their current position (GPS), speed, and 
traffic status, among other vehicle details, and utilize this 
information to optimize their routes. 

This information is shared using a message called CAM 
(Cooperate Awareness Messages). CAM is a standard proposed 
by the European Telecommunications Standards Institute [3], 
which enables vehicles to collect their kinematic information 
and share it with other vehicles and infrastructure. Researchers 
are now leveraging these free, continuous, and abundant 
messages to manage, build, predict, and make more informed 
decisions about road traffic congestion. 

It is known that drivers and passengers in moving vehicles 
measure congestion with visual and temporal perception. The 
mind of a person in a travelling vehicle, upon seeing a high 
density of vehicles through the windscreen, would ultimately tell 
themselves that congestion occurs. Moreover, a person would, 
in general, continuously check how soon or later he would arrive 
at the destination, whether on a congested or non-congested 
road. Regardless of how fast a vehicle is travelling, the person 
would be more concerned with temporal perception, which 
involves the perception of time. When motorists are unable to 
reach their destination on time, the emotional feeling is that there 
is congestion. Even when vehicle speed and related parameters 
are given as the primary criteria for evaluating congestion, they 
are nevertheless inaccurate and misleading. A practical 
observation on a major road, conducted as part of this study, 
found that vehicles may travel at speeds exceeding the 30-
kilometer-per-hour speed limit and still experience intense 
congestion. 

This research employs vehicle trajectories (GPS 
coordinates) and vehicle IDs to develop an ID and Loss of 
Expected Time of Arrival (LETA) method for detecting 
vehicular traffic congestion. Roads are segmented using the 
concept of the Cell Transmission Model (CTM) [4]. Using 
vehicle trajectories and a speed threshold of 8.33 m/s, the road 
is segmented into three different segment lengths: 8.33 m, 16.66 
m, and 24.99 m. The ID-based traffic congestion detection 
system considers both speed and density. Vehicle speed and 
density are tracked and monitored on each segment using 
vehicle ID. LETA is calculated using a vehicle’s expected time 
of arrival (ETA) and actual time of arrival (ATA). 

The remainder of the study is organized as follows: Section 
II discusses the relevant literature. Section III will cover 
methodology, including road segmentation techniques and 
congestion detection methods. Section IV compares the 
performance of ID-based with a speed threshold and analyzes 
the results. LETA results are also presented in this section. 
Section V concludes the study and presents future work. 
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II. RELATED WORK 

Trajectory data can provide valuable insights for decision-
making when properly examined, revealing patterns in road 
traffic congestion, urbanization, and traffic. The beginning, 
middle, and end of the road are all potential locations for traffic 
congestion. For easy monitoring, the road needs to be divided 
into segments. Model-based or criteria-based segmentation is 
the possible ways of segmenting trajectories. The method of 
segmenting a trajectory into a limited number of segments that 
must all satisfy a global criterion is known as criteria-based 
segmentation [5]. Using predetermined criteria, criteria-based 
segmentation divides a road into segments that satisfy particular 
spatiotemporal requirements. Each segment must fit a particular 
model parameter, which is the foundation of model-based 
segmentation. 

Hausdorff distance was employed in [6], a shape-based 
distance measurement for trajectory clustering, as one of the 
related efforts documented in the literature about trajectory 
segmentation. Origin and destination were employed by [7] to 
categorize trajectories based on business affairs. In [8], the 
authors broke the trajectory into segments using a similarity 
score in an attempt to create a trajectory segmentation map that 
matches large-scale GPS data. A system that divides trajectories 
into homogeneous segments based on spatiotemporal 
parameters, such as heading, speed, and position, was created by 
[9]. In [10], the authors divide the road lane into a segment of 
cluster cells, each with a 2-meter length. A protocol for 
evaluating and detecting traffic congestion on a road segment 
was presented by [11]. They describe a road segment as a road 
that connects two intersections without specifying its length or 
size. Although these works divided roads into segments, they did 
not utilize the concept of CTM. 

There are two ways of detecting road traffic congestion: 
using fixed equipment and floating vehicles [12]. Fixed 
equipment-based congestion detection involves using cameras, 
loop detectors, and other devices to detect road traffic 
congestion. The accuracy of this method is high; however, its 
coverage is limited to a specific location [13]. Using floating 
vehicles involves utilizing vehicles equipped with sensors and 
GPS technology on the road to detect traffic congestion. This 
method has the advantage of detecting congestion over large 
areas. It also provides a cost-effective method of analyzing and 
detecting road traffic congestion [14]. 

Congestion can be quantified using various metrics, 
including speed, trip duration, density, and congestion index, 
among others. GPS-based congestion detection is the most cost-
effective and widely used approach. Vehicles can also be easily 
tracked [15]. Road traffic congestion is measured using a variety 
of techniques; however, there is no single, universal method to 
determine the state of traffic. Congestion can be measured using 
the following criteria: 1) Average speed, 2) Travel time, 3) 
Delay, 4) Density, 5) Level of service, and 6) congestion indices 
[16]. According to [17], speed, density, and degree of saturation 
are good indicators of traffic conditions. 

Both stationary equipment and floating vehicles can be used 
to identify congestion [12]. Detecting traffic congestion on the 
road by using vehicles fitted with sensors and GPS technology 

was known as "floating vehicles". The benefit of this approach 
is that it can identify congestion over vast areas. Additionally, it 
offers an economical approach for assessing and identifying 
traffic jams [14]. Many studies have utilized data from floating 
vehicles to develop a road traffic congestion detection system, 
which includes methods developed by [18, 19, 13], all of which 
employ fuzzy logic for V2V congestion detection. However, the 
system incurs overhead due to the message exchange between 
vehicles for congestion validation. 

Fuzzy logic was also employed by [20] to estimate traffic 
flow. Vehicle speed and location were captured using RFID and 
transmitted to the cluster head. The cluster head will calculate 
the average speed and density and then use fuzzy logic to 
determine the flow. RFID is expensive to implement for all 
vehicles on the road, and vehicle clustering is also a time-
consuming process. 

Vehicle trajectories were segmented based on the time 
window in [21] to detect moving clusters. Vehicle speed and 
density were used to detect slow-moving clusters for congestion 
detection. The system is based on clusters, and the formation of 
these clusters is time-consuming. 

A congestion detection approach using clustering algorithms 
was developed in [22]. Vehicle trajectories are clustered, and the 
distance travelled by the clusters is computed to determine the 
average speed, which measures congestion. This method is 
based on historical data. 

Pollutant emissions and traffic delays can be successfully 
decreased using vehicle speed guidance. Driving too fast is a 
significant contributing factor to traffic accidents, and research 
indicates that speed is a leading cause of deadly traffic accidents 
in nearly every nation. The effects of setting a speed restriction 
of 30-kilometer-per-hour on roads have been extensively studied 
by transportation researchers. 

The study by [23] found that enforcing a 30-kilometer-per-
hour speed restriction in 40 European towns significantly 
reduced traffic accidents, injuries, and fatalities. In [24], the 
authors analyzed the effectiveness of a 30-kilometer-per-hour 
speed limit on roads, finding that it reduced energy use and 
saved lives. 

According to [25], speed emerges as the predominant metric 
used in the congestion detection literature. Utilizing a single 
parameter, such as speed, for traffic congestion detection might 
not produce accurate results [26], [27]. The speed threshold was 
proposed by [28]. The vehicle's speed was calculated from the 
distance it covered, and the average speed was compared with 
the threshold to determine road congestion. Speed may overlook 
how traffic congestion develops across space, leading to 
incorrect identification of traffic congestion. 

This study presents an ID-based congestion detection 
method to address the issue of relying on a single parameter for 
traffic congestion detection. Using a speed threshold, time 
headway for congestion detection may be inaccurate, leading to 
false detections. Travel time and delay may not predict how 
early or late a motorist will arrive at their destination. This 
makes motorists question when they will get to their destination. 
LETA is intended to determine how late or early a motorist will 
arrive at their destination. 
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III. METHODOLOGY 

A. Road Segmentation 

CTM defines cell length as equal to the distance a vehicle 
travels at free-flow speed [4]. In the speed threshold [28], free 
flow speed was defined to be 8.33 m/s, which means the vehicle 
will move 8.33m in one (1) second or above to be considered 
not in congestion. The use of 1s is driven by the fact that the 
maximum CAM broadcasting interval is 1 second. In this 
research, vehicle information is collected every 1 second to 
determine congestion. A vehicle will drive 8.33m/s in 1s, 
16.66m/s in 2s, and 24.99m/s in 3s to be considered congested. 

Three different segment lengths are utilized to evaluate the 
method's effectiveness: 8.33 meters, 16.66 meters, and 24.99 
meters. In other words, the road is divided into three segments: 
8.33 meters, 16.66 meters, and 24.99 meters. Seongsin-ro 2-gil, 
140.06 meters, and part of Gonghang-ro, 101 meters in length, 
are used for the implementation of the proposed congestion 
detection methods. Table I shows the lengths of the three 
segments as well as the number of segments generated. 

TABLE I.  SEGMENT LENGTHS AND THE NUMBER OF SEGMENTS 

GENERATED 

Segment 

Length 

Number of Segments 

Created (Seongsin-ro) 

Number of Segments 

Created (Gonghang-ro) 

8.33 m 16 12 

16.66 m 8 6 

24.99 m 5 4 

The road is not physically segmented; rather, the ID-based 
system virtually segments the road based on the vehicle 
trajectories collected, as illustrated in Fig. 1. Vehicle speed is 
monitored using the vehicle ID and its trajectory. Vehicles 
driving on a segment of 8.33-meter length are expected to exit 
after one (1) second. With a segment length of 16.66 meters, 
vehicles are supposed to exit the segment after two (2) seconds. 
Vehicles will take three (3) seconds to exit a segment of 24.99 
meters in length. This process allows for the monitoring of your 
vehicle speed in each segment using three different segment 
lengths. 

B. ID-Based Congestion Detection 

The density metric was used in the majority of research 
investigating traffic congestion by counting the number of 
vehicles per unit of road length. Our approach uses the vehicle’s 
ID sent in the vehicular messages to identify slow-moving 
vehicles within a road segment. In terms of this research is the 
first study to detect road traffic congestion by using vehicle ID 
to identify slow-moving vehicles. 

In essence, a traffic flow refers to a line of moving vehicles 
on a specific route. Vehicles are grouped into substantially 
denser clusters, travelling at extremely slow speeds because 
there is insufficient space for lane changes or passing when there 
is heavy traffic [21, 29]. Therefore, the motivation is that 
tracking and identifying the group of slow-moving vehicles can 
effectively identify traffic congestion. 

ID-based is a centralized system. The system uses the 
vehicle ID and trajectories to determine congestion, as shown in 

Fig. 1. At each time t (i.e., 1s), the vehicle broadcasts its status 
messages to nearby vehicles and RSUs. After receiving status 
messages from vehicles on a segment, the RSU aggregates 
vehicle IDs. As previously mentioned, roadways are segmented 
into 8.33-meter, 16.66-meter, and 24.99-meter segments, and 
congestion is measured separately in each segment. Congestion 
is checked after one (1) second, that is, after each message 
receipt cycle, for an 8.33-meter segment length. For a 16.66-
meter segment length, the system will check for congestion after 
two (2) seconds, i.e., two message-receiving cycles. Congestion 
is monitored after three (3) seconds, i.e., three message-
receiving cycles, with a 24.99-meter segment length. 
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Fig. 1. ID-based congestion detection model. 

Let us assume that there are n segments of road Ri. Ri = {Ri1, 
Ri2, Ri3, …… Rin}. Where i is the road ID, n is the segment ID 
of road i. Let m be the number of vehicles traversing on Rin such 
that Rin = {V1, V2, V3, … Vm}, where V represents a vehicle 
with ID m. Equation 1 shows that all vehicles in Rin can be 
presumed to be advanced to Ri(n+1) within t seconds (1 second) 
under light traffic, defined as 30-kilometer-per-hour (8.33 m/s) 
[see Eq. (1)]. 

𝑅𝑖(𝑛+1)(𝑡+1) = 𝑅𝑖𝑛(𝑡)                 (1) 

Congestion can be detected by detecting slow-moving 
vehicles [21]. Owing to this notion, an ID-based congestion 
detection method detects congestion when at least half of the 
vehicles remain in the segment after the clock tick (1, 2, or 3 
seconds, depending on the segment length). It signifies the 
existence of traffic congestion. This can be evaluated by 
comparing the vehicle IDs of segment n at time t with the IDs of 
the same segment at time t + i, where i can be 1, 2, or 3, 
depending on the segment length. 

Let Vn (ID) be a vehicle n ID. Let XRin(t) = {V1(ID), 
V2(ID), V3(ID), … Vn(ID)}, where XRin(t) is the total vehicle 
IDs of segment Rin at time t. Congestion occurs if Eq. (2) is 
valid. 

𝑋𝑅𝑖𝑛(𝑡+1) ≥
1

2
𝑋𝑅𝑖𝑛(𝑡)            (2) 

C. LETA 

LETA is a segment-based congestion monitoring system. 
Congestion is tracked on a segment-by-segment basis rather 
than the road as a whole. It is presumed that RSUs have full 
coverage of the road. To determine if vehicles may gain or lose 
time on a specific segment, LETA is computed for each 
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segment. LETA is capable of monitoring traffic congestion on 
every segment of the road. LETA is proposed with the intention 
of estimating the level of traffic a vehicle entering the road 
would have to experience. A congested road is indicated by loss 
time, and one that is free-flow is indicated by gain time. The 
estimated time of arrival (ETA) and actual time of arrival (ATA) 
must be ascertained in order to compute LETA. 

A B

8.33 m 8.33 m 8.33 m 8.33 m 8.33 m 8.33 m

24.99 m

16.66 m

24.99 m

16.66 m 16.66 m

 

Fig. 2. Shows vehicles moving from A to B across segments. 

Let Ri be a road with nth segments, i.e., Ri = {S1, S2, S3, 
…..., Sn}, where Sn is a road segment with index n of Ri. ETA 
is the estimated time a vehicle will arrive at destination B from 
origin A, as shown in Fig. 2. To compute ETA, the distance 
between two points must be defined. In this work, three different 
segment lengths are defined: 8.33 m, 16.66 m, and 24.99 m. 
Using Eq. (3), the ETA can be computed for each segment. 

𝐸𝑇𝐴𝑆𝑖
=  

𝐷𝑆𝐿𝑆𝑖
𝑉𝑆𝑆𝑖

⁄                         (3) 

where, ETASi is the average expected time of arrival for 
segment Si, DSLSi is the segment length, and VSQi is the 
segment’s average vehicle speed. ATA represents the vehicle's 
movement on the freeway at the recommended vehicle speed. 
Using Eq. (4), ATA can be calculated: 

𝐴𝑇𝐴𝑆𝑖
=  

𝐷𝑆𝐿𝑆𝑖
𝑅𝑉𝑆𝑆𝑖

⁄                      (4) 

where, ATASi represents the actual time of arrival for 
segment Si, DSLSi represents segment length, and RVSSi is the 
recommended vehicle speed for segment Si. LETA for a 
segment determines whether there is congestion and how late 
the vehicle is expected to arrive. LETA is determined by 
subtracting ETA from ATA and can be computed using Eq. (5). 

𝐿𝐸𝑇𝐴𝑆𝑖
= 𝐴𝑇𝐴𝑆𝑖

− 𝐸𝑇𝐴𝑆𝑖
               (5) 

where, LETASi is the time loss from the actual time of 
arrival for segment Sj, ATASi is the actual time of arrival, and 
ETASi is the expected time of arrival. The total loss of expected 
time of arrival for road Ri is the sum of the LETA for each of 
the road's segments. Eq. (6) can be used to calculate the total 
time loss for road Ri. 

𝑇𝐿𝐸𝑇𝐴𝑅𝑖
=  ∑ 𝐿𝐸𝑇𝐴𝑆𝑖

𝑛
𝑖=0              (6) 

Where TLETARi is the total time loss for road Ri, LETASi 
is the loss of expected time of arrival for segment Si, and n is the 
total number of segments in Ri. 

IV. EVALUATION OF APPROACHES 

A. Dataset 

Jeju vehicular traces [30] were used. Seongsin-ro 2-gil and 
Gonghang-ro road are selected for implementation of the ID-
based and LETA methods for vehicular traffic congestion 
detection. Jeju dataset was chosen because it has CAM data 
properties, and its transmission timing is consistent at (1) second 
intervals. Seongsin-ro 2-gil is a one-way road measuring 140.06 
meters. At the same time, a part of Gonghang-ro, which is 101 
meters in length, is also used. These routes were chosen since 
they have a substantial number of trajectories, and their GPS 
coordinates do not deviate from the actual road map. The Jeju 
dataset contains kinematic information collected from vehicles, 
with 5000 seconds of heterogeneous vehicle simulation traces 
totaling 8,495,739 traces. The dataset is generated using the 
SUMO simulator. 

B. Data Preprocessing 

Working with GPS trajectories requires preprocessing, as 
some of the GPS points may deviate from the actual road map. 
Inaccurate results could arise from anomalies and mistakes if 
preprocessing were not done [8]. Seongsin-ro 2-gil and 
Gonghang-ro GPS points (trajectories) were matched on Google 
Maps. The actual road and the GPS position coincided. 

C. ID-Based Results 

1) Seongsin-ro: To evaluate the effectiveness of the ID-

based congestion detection method, a comparison was made 

with the speed threshold [28]  and the microscopic congestion 

detection protocol (MCDP) [31]. MCDP used vehicle 

information to calculate the number of vehicles and the time 

headway between them. If the time headway is less than two 

seconds, congestion occurs. At the same time, the ID-based 

method calculates the vehicle's speed based on the distance it 

covers and compares it with the speed threshold, i.e., 8.33 m/s. 

Since the ID-based method was developed to determine 
whether congestion exists, the number of detection points was 
used as a metric; the number of detection points is the total 
number of points where congestion has been identified. This 
enables a comparison of two congestion detection systems to 
determine which one has the highest detection rate. 

Fig. 3 illustrates the comparison results for an 8.33-meter 
segment length. The results reveal that both the ID-based speed 
threshold and the headway-based approach recorded similar 
patterns. It can be observed that both ID-based and speed 
thresholds recorded almost the same congestion detection values 
for all 16 segments. At the same time, a little difference was 
observed with the headway-based detection method. 
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Fig. 3. Shows a comparison between ID-based, speed threshold, and time 

headway-based results for an 8.33-meter segment length. 

Fig. 4 compares the results of ID-based, speed threshold, and 
headway-based methods using a segment length of 16.66 
meters. Both methods recorded a detection point of less than 200 
at the first segment, i.e., segment 0, with the ID-based and speed 
threshold methods being slightly lower than the headway-based 
method. In both the eight (8) segments, it is clearly shown that 
ID-based and speed threshold recorded lower detection 
compared to the headway-based method. It is also notably clear 
that the ID-based method recorded low detection in comparison 
to the speed threshold, especially from segment two onward, 
even though the difference is minimal. This means the base 
congestion detection method can detect actual (true) congestion. 

 

Fig. 4. Shows a comparison of results of headway-based, speed threshold, 

and ID-based for a 16.66-meter segment length. 

Fig. 5 shows a comparison of the ID-based speed threshold 
and headway-based results for a 24.99-meter segment length. As 
can be observed, only at the segment0 speed threshold did the 
detection point go below that of the ID-based method. Even 
though the difference is minor, in the rest of the segments 1 to 
3, it is seen that ID-based recorded lower detection than speed 
threshold and headway-based. 

 

Fig. 5. Shows a comparison of headway-based, speed threshold, and ID-

based results for the length of a 24.99-meter segment. 

2) Gonghang-ro road: To validate the effectiveness of the 

base congestion detection method, another road was also 

considered. Vehicular traces from the Gonghang-ro road are 

also used to evaluate the ID-based detection method. Fig. 6 

compares ID-based results with speed threshold and time 

headway-based for the 8.33-meter segment length. Congestion 

detection points are shown for each segment. Segment 0 marks 

the beginning of the road for all segment lengths. 

It can be seen from the results in Fig. 6 that the detection 
points fluctuate over the segments, with segment 11 recording 
the lowest values for all the detection methods. The results 
reveal that with an 8.33-meter segment length, both methods 
observe the same pattern, with the headway-based method 
reporting higher detection points than the ID-based and speed 
threshold. Though the difference between ID-based and speed 
threshold is not significant, ID-based reported lower detection 
points. 

 

Fig. 6. Congestion detection comparison of the three detection methods 

using segment lengths of 8.33-meter. 
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Fig. 7. Congestion detection comparison of the three detection methods 

using segment lengths of 16.66-meter. 

The results in Fig. 7 showed a steady increase in detection 
points from the first to the last segment for the headway-based 
method, while ID-based and speed threshold observed a sharp 
drop in segment 2, then continued to rise till the last segment. 
With a 16.66-meter length, a clear varying result was observed. 
Headway has the highest detection points for all six segments, 
followed by speed threshold, and ID-based has the least. 

Similar to results with 16.66-meter segment length, results 
with 24.99-meter segment length also recorded a drop of 
detection points on segment 1, as shown in Fig. 8. It was 
observed that there is a significant difference between the three 
congestion detection methods in terms of detection points for a 
24.99-meter segment length in all four segments. 

 

Fig. 8. Congestion detection comparison of the three detection methods 

using segment lengths of 24.99-meter. 

Overall, the results presented show that the ID-based road 
traffic congestion detection system performed better than the 
speed threshold (Ahmed, Shariff, and Abubakar, 2024) and 
headway-based (Ahmad, Chen, and Khan, 2018) in identifying 
actual congestion in all three different scenarios (8.33m, 
16.66m, and 24.99m). ID-based creates a two-layer check by 
combining density estimation with the speed threshold 
technique. The ID-based approach employs density estimates to 
identify congestion that is not bogus congestion after verifying 
it with a speed threshold. 

D. LETA Results 

A comparison of the three scenarios—at 8.33meters, 
16.66meters, and 24.99 meters—is shown in Fig. 9. The findings 
indicate that while ETA and ATA are all influenced by speed 
and the distance between the source and the destination, 
segments with a length of 24.99 meters have the most significant 
LETA values in all the segments. The longer the segment 
distance, the greater the density of the vehicles. Segment 0 has 
the lowest LETA value in the 24.99 and 16.66 scenarios, as 
compared to the 8.33-meter scenario, where segment 1 has the 
lowest LETA value. 

 

Fig. 9. LETA results over segments for all three scenarios. 

A fine-grained LETA study is made feasible by calculating 
LETA for ten carefully selected vehicles, ensuring that the 
analysis focuses on specific entities of interest. To produce a 
combination of the most and least crowded vehicles, ten (10) 
vehicles were chosen, five with the most traces and five with the 
fewest. The 10 chosen vehicles are tested in 24.99-meter 
segments. 

Fig. 10 shows the LETA findings for ten (10) chosen 
automobiles during the simulated period. According to the 
findings, the LETA of several vehicles, including the JTr450, 
JBr450, JTx973, JPs973, and JTr832, grows dramatically over 
time. These are the vehicles with the most traces, and the spikes 
represent occasions when the vehicles lose a significant amount 
of time owing to traffic congestion they encountered throughout 
time. The 5000 to 15000 second LETA spikes observed by 
several vehicles may represent periods when most vehicles lose 
time due to traffic or driver behavior. These spikes can indicate 
specific places or periods of significant traffic congestion. 

Throughout the observed time period, vehicles such as 
JPs967, JTx688, and JPs688 consistently displayed low LETA 
values, implying that they did not waste much time and most 
likely moved faster in the absence of significant traffic 
congestion. All vehicles exhibit low LETA values toward the 
end of the time period, indicating that they either arrived at their 
destinations, exited congested regions, or experienced less 
traffic near the end of their journey. 
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Fig. 10. LETA results of 10 selected vehicles for the entire simulation time. 

 

Fig. 11. LETA results of 10 selected vehicles over the segment. 

LETA results of the ten (10) selected vehicles are plotted 
against segments, as illustrated in Fig. 11. The graph depicts the 
average LETA measurements for 10 distinct vehicles over five 
(5) road segments of length 24.99. The figure depicts how each 
vehicle's LETA patterns vary across the segments. Five of the 
vehicles had a high LETA value, indicating a significant loss of 
expected arrival time, whilst the remaining five had a 
continuously low LETA value, indicating smooth movement 
with little time loss. 

Fig. 11 also shows that JPs967, JTx688, JPs688, JTx127, and 
JTx967 vehicles have a flat trend or almost no decrease in 
expected time of arrival throughout all segments, with 
consistently low LETA values, indicating that these vehicles met 
less traffic on all road segments. Furthermore, Fig. 11 shows that 
some segments, particularly segments 1 and 2, have higher 
average LETA values for numerous vehicles, implying that 
these segments are congested. 

Five vehicles with the lowest LETA values and five vehicles 
with the highest LETA values were analyzed independently to 
further analyze the results displayed. Fig. 12 depicts the average 
LETA for five vehicles chosen, as having the lowest LETA 
along various road segments. 

 

Fig. 12. LETA results of 5 selected vehicles with the least traffic traces. 

Fig. 12 shows that each vehicle's LETA decreases 
significantly from segment 0 to segment 2. This suggests that 
traffic conditions improved throughout the route since the 
vehicles' LETA reduced as congestion lessened along the road 
segments. Only segment 0 of the four vehicles had a LETA 
value of less than 1 second, while JPs967 had a LETA value 
greater than 1 second. Between segment 0 and segment 1, the 
LETA for all vehicles declined by 0.47, and from segment 2 to 
segment 4, the LETA values for most vehicles remained 
reasonably steady. 

At segment 0, JTx967 has the highest LETA; however, after 
segment 1, it drops rapidly and stabilizes. Vehicles JTx688 and 
JPs688 follow similar trajectories, with LETA from Segment1 
stabilizing at around 0.2 seconds. JPs967 rises somewhat in 
Segment 4, but JTx127 and JPs967 continue their downward 
trajectory. 

Overall, the decrease in LETA for each vehicle from 
segment 0 to segment 1 indicates that the vehicles first 
encountered traffic, which then subsided after segment 1. In 
other words, when there was traffic, vehicles moved onto the 
road, and the bottleneck ultimately disappeared. 

 

Fig. 13. LETA results of 5 selected vehicles with the most traffic traces. 

Fig. 13 displays the average LETA for segment 0 to 4 for the 
five most congested vehicles (JPs973, JTx973, JTr450, JTr832, 
and JBs450). The findings shed light on how these vehicles lose 
LETA when traveling through various parts, whether due to 
traffic bottlenecks, poor road conditions, or driver conduct. 
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Fig. 13 indicates that the LETA trend for JBs450 cars is 
increasing steadily from segment 0 to segment 4, with a 
particularly noteworthy leap between segment 3 (8413s) and 
segment 4 (15034s). JTr450 began in segment 0 with a 
reasonably high LETA value of 2523s, increased to 12271 in 
segment 2, and then dropped to a low of 7 seconds in segment 
4. Vehicle JTr832's LETA grows from 2 seconds in segment 0 
to a maximum of 9058 in segment 2, following which it rapidly 
declines in segment 3 to 4, with segment 4 recording a LETA of 
5 seconds. 

In segment 0, the JTx973 vehicle had a high LETA value of 
7299s. In segment 1, it increased to 7894s, whereas in segment 
4, it reduced to 16 seconds. In segment 0, JPs973 has the highest 
LETA value of 9851s. In segment 1, it climbs to 13416s, 
whereas segment 3 and segment 4 dip and rise by 3s and 1381s, 
respectively. Some vehicles experienced increased LETA as 
they progressed, while others saw LETA drop at the end of their 
journey. The trend inconsistencies in Fig. 13 suggest that 
vehicles suffered LETA at different times and segments.

TABLE II.  LETA VALUES FOR ALL TEN VEHICLES ACROSS THE SEGMENTS AND THE TOTAL LETA 

 Segment0 Segment1 Segment2 Segment3 Segment4 Total LETA 

jPs967 0.92 0.17 0.16 0.125 0.085 1.46 

jTx688 1.143333 0.195 0.135 0.14 0.235 1.85 

jPs688 1.213333 0.33 0.115 0.125 0.11 1.89 

jTx127 1.343333 0.41 0.19 0.175 0.12 2.24 

jTx967 1.433333 0.47 0.18 0.125 0.075 2.28 

jTx973 7299.101 7894.033 5157.802 6.00875 16.84625 20373.79 

jTr450 2523.266 3694.31 12271.22 3724.643 7.425 22220.86 

jTr832 2.32 8368.568 9058.859 6604.972 5.02 24039.74 

jPs973 9851.517 13416.29 9776.06 3.063333 1381.45 34428.38 

jBs450 5.62 7243.885 8006.662 8413.615 15034.56 38704.34 

Table II displays the LETA values for each segment of the 
ten vehicles, as well as the total LETA for the entire trip. As 
previously stated, the table shows that the LETA values for 
vehicles JTx973, JTr450, JTr832, JPs973, and JBs450 are 
significantly higher than those for the other vehicles. While the 
remaining vehicles maintain LETAs below three seconds across 
all segments, some vehicles have LETAs in the thousands of 
seconds. 

The table also shows that, with a total LETA of 38,704.34 
seconds, vehicle JBs450 has the most significant overall time 
loss across all segments. Surprisingly, the LETA of 15,034.56 
seconds is very high in segment 4. Vehicle JPs967, on the other 
hand, has the least loss of expected time of arrival throughout all 
segments, with a total LETA of only 1.46 seconds. 

E. Discussion 

The ID-based results presented showed great improvement 
compared to MCDP and speed-based congestion detection 
methods. This is because of the ID-based congestion detection 
method check vehicle speed and density in order to ascertain 
congestion on the road segment. It also clear that segment length 
has a significant impact on ID-based congestion detection, with 
a 24.99-meter segment length presenting the best performance 
result of ID-based. Additionally, the results illustrated that a 
longer segment length allows the ID-based congestion detection 
system to accurately check for vehicle density, whereas a shorter 
segment length limits the system's ability to detect congestion 
using vehicle density. Consequently, the results clearly reveal 
that segment length has a significant effect on congestion 
detection. 

LETA provided a positive result. A basic method of 
monitoring traffic congestion in relation to vehicle destination. 
This provided motorists with awareness and temporal 
comprehension of their trip by taking into account their arrival 
time. 

These two ways are simple to implement in the RSU of the 
ITS infrastructure, since it is built on the current V2X 
communication protocol. Both ID-based and LETA were 
developed to employ vehicle information, whereas ITS allows 
vehicles to communicate kinematic information, resulting in no 
communication overhead. 

V. CONCLUSION AND FUTURE WORK 

This study developed an ID-based congestion detection 
method that monitored vehicles' speed and density and loss of 
expected time of arrival on road segments. ID-based congestion 
detection method utilizes a vehicle's ID and trajectories 
contained in vehicular messages. Roads were divided into 
lengths of 8.33 meters, 16.66 meters, and 24.99 meters using 
vehicle trajectories. According to experimental results, the ID-
based congestion detection method detects actual (true) traffic 
congestion with long segment lengths. 

The ID-based congestion detection system combined the 
concept of speed threshold congestion detection with density 
monitoring and was applied to road segments to monitor traffic 
congestion. Its performance was evaluated against the speed 
threshold and MCDP congestion detection method. The results 
presented show that the ID-based congestion detection method 
detects congestion more accurately. Speed threshold and MCDP 
detect false congestion when compared with the ID-based 
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congestion detection method. This work shows that by using two 
or more congestion detection metrics, traffic congestion can be 
accurately detected. 

This work also defines and calculates LETA by taking into 
account segment length, vehicle speed, and the road 
recommended speed. The vehicle's LETA was displayed, as well 
as their overall LETA for the trip. The results demonstrate that 
LETA can be an effective measure of traffic congestion because 
it displays to the motorist how much time they are losing or 
gaining. 

This accomplishment is practical enough to be utilized in 
road design, moving object monitoring, and might be adapted to 
analyze traffic congestion in the city. To improve the ID-based 
congestion detection method accuracy, vehicle density 
monitoring must take into account the road segment length. 
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