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Abstract—The growing demand for secure and privacy-

preserving machine learning frameworks has resulted in the 

implementation of federated learning (FL), especially in critical 

areas like Credit card fraud detection. This study presents a 

comprehensive federated learning architecture that incorporates 

Neural Networks as local models, in conjunction with KMeans-

SMOTEENN to address class imbalance in distributed datasets. 

The system utilises the Flower framework, employing the FedAvg 

algorithm across ten decentralised clients to collectively train the 

global model while preserving raw data confidentiality. To 

improve model transparency and cultivate stakeholder trust, 

Local Interpretable Model-Agnostic Explanations (LIME) is 

utilized, offering localised, comprehensible insights into model 

decisions. The experimental results indicate that the suggested 

method effectively achieves high predictive accuracy and 

explainability, rendering it appropriate for real-world fraud 

detection contexts that necessitate data confidentiality and model 

accountability. 

Keywords—Component federated learning; K-Means 

SMOTEENN; credit card fraud detection; LIME 

I. INTRODUCTION 

In recent years, the proliferation of global communication 
and advancements in computing technology have significantly 
contributed to the widespread use of credit card transactions. 
However, this growth has been accompanied by a surge in 
fraudulent credit card activities. According to data reported by 
the European Central Bank, Europe experiences annual 
financial losses amounting to billions of Euros as a result of 
credit cards [1]. 

Traditional fraud detection methods, which typically rely on 
rule-based systems or manual monitoring, have become 
increasingly inadequate due to their limited ability to 
dynamically adapt to evolving fraudulent patterns and their 
reliance on centralized data storage, raising significant privacy 
and regulatory concerns [2]. 

Consequently, researchers and practitioners have 
progressively shifted towards machine learning (ML) methods, 
which offer superior predictive capabilities by analyzing vast 
datasets and recognizing complex fraud patterns. While these 
ML-based approaches, including deep learning models such as 
CNN, LSTM, and Autoencoders, have shown promising results 
[3], the centralized nature of data processing inherent in these 
models poses significant challenges, particularly regarding data 

privacy, security, and regulatory compliance in sensitive 
sectors such as finance [4]. 

To address these critical limitations, federated learning (FL) 
has emerged as an innovative solution, enabling decentralized 
model training without exposing sensitive raw data. FL allows 
multiple institutions to collaboratively train global models by 
aggregating locally trained model parameters, significantly 
enhancing data privacy and security [5]. Despite its advantages, 
current FL implementations often face issues such as data 
imbalance and lack of model interpretability, critical aspects 
that affect real-world applicability, particularly in fraud 
detection scenarios [6]. How can we design a privacy-
preserving and interpretable federated fraud detection system 
that remains effective under severe class imbalance and cross-
client data heterogeneity, while satisfying regulatory 
constraints and enabling real-world deployment? 

This study aims to: 1) develop a multi-client FL pipeline 
(FedAvg) that trains a global model without centralizing 
sensitive data; 2) address class imbalance at the client level by 
implementing a client-side hybrid resampling technique 
(KMeans-SMOTEENN) on each client's training subset prior to 
local training; validation and test datasets remain unaltered, no 
raw samples are transmitted from the client, and solely updated 
model parameters are dispatched for FedAvg aggregation; 3) 
compare six deep learning architectures—FNN, DNN, CNN, 
LSTM, Autoencoder, and a stacked DL model within the same 
FL pipeline to identify the best performer for fraud detection; 
4) enhance interpretability by applying LIME to the top-
performing model (by AUPRC) and analyzing feature 
attributions to support audit and domain validation; and 5) 
compare the performance of our proposed method with state-
of-the-art approaches. 

Regardless of its benefits, current research on FL-based 
fraud detection encounters two principal challenges: i) 
significant class imbalance and non-IID data distributions 
among clients, which obstruct the identification of minority-
class fraud cases, and ii) restricted interpretability, which 
impedes auditing, regulatory compliance, and stakeholder 
confidence. Moreover, there is scant information concerning 
the efficacy of hybrid resampling techniques (e.g., KMeans-
SMOTEENN) in federated environments, as well as the 
comparative performance of various deep learning architectures 
for rare-event fraud detection. These shortcomings present 
substantial obstacles to the dependable and regulatory-
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compliant use of FL in practical financial settings. 

The proposed framework advances regulation-aligned fraud 
detection by enabling cross-institution collaboration without 
data sharing, improving minority-class detection under severe 
imbalance and non-IID partitions, and closing the explainability 
gap via LIME. The result is a deployable recipe FL with client-
side hybrid resampling, neural models, and post-hoc 
explanations that: i) raises recall/AUPRC for rare fraud events, 
ii) preserves privacy and supports compliance, iii) provides 
decision transparency for risk and audit teams, and iv) 
generalizes across heterogeneous clients. The approach is 
transferable to other sensitive domains (e.g., finance and 
healthcare), where privacy, imbalance, and interpretability are 
critical. 

Building on these objectives, this work makes the following 
contributions: 

1) We offer an innovative federated learning framework 

that integrates the FedAvg algorithm with KMeans-

SMOTEENN, effectively tackling significant class imbalance 

and heterogeneity in distant client datasets. 

2) Thorough Evaluation of Deep Learning Models: We 

rigorously assess and compare the efficacy of six different deep 

learning models (FNN, DNN, CNN, LSTM, Autoencoder, and 

Stacked-DL) in our federated learning framework, yielding 

critical insights for optimal model selection in fraud detection 

applications. 

3) We utilize Local Interpretable Model-agnostic 

Explanations (LIME) on the top-performing model (highest 

AUPRC) to improve the interpretability and transparency of its 

predictions. This focused strategy guarantees that stakeholders 

comprehend feature contributions in essential projections. 

4) Empirical Validation: Through thorough 

experimentation, we experimentally confirm that our proposed 

federated learning technique regularly outperforms standard 

centralized approaches in accuracy, recall, F1-score, AUC, and 

AUPRC. 

This is how the rest of the study is structured: Section II 
reviews related work on centralized and federated credit card 
fraud detection, including class-imbalance remedies and model 
explainability. Section III details the materials and methods: the 
overall workflow, dataset, six neural architectures (FNN, DNN, 
CNN, LSTM, Autoencoder, and a stacked model), the KMeans-
SMOTEENN resampling strategy, and the federated learning 
setup based on FedAvg and the system architecture. Section IV 
presents experimental results and discussion, including global 
evaluations, LIME-based explanations, and a comparison with 
state-of-the-art methods. Section V concludes the study and 
outlines directions for future work. 

II. RELATED WORK 

Fraud detection algorithms employ machine learning to 
effectively identify fraudulent transactions. The majority of 
suggested CCFDS utilize centralized learning models, whereas 
a few academics are developing federated learning models to 
address fraud detection. The supervised, unsupervised, and 
semi-supervised learning models employ centralized learning 

algorithms [6]. 

Credit card fraud detection has been addressed through a 
variety of machine learning and deep learning techniques, 
encompassing both supervised and unsupervised methods. 
Khalid et al. [7] utilized a combination of supervised machine 
learning models, including Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Decision Tree (DT), Random Forest 
(RF), Bagging, and Boosting. Alrashdi et al. [8] concentrated 
on supervised machine learning techniques, employing 
Random Forest (RF), Extreme Gradient Boosting (XGBoost), 
and Light Gradient Boosting Machine (LightGBM) to identify 
fraudulent transactions. Feng and Kim [9] employed a 
combination of machine learning models, including Random 
Forest with AdaBoost (RF + AB), Gradient Boosted Decision 
Trees (GBDT), Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), and Convolutional Neural Network (CNN). 

Desai and Hase [3] undertook a review of deep learning-
based CCFD algorithms, encompassing architectures such as 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Autoencoders (AE), Deep Belief Networks 
(DBN), and hybrid models like CNN-RNN. 

Recent advancements in fraud detection through machine 
learning techniques have markedly improved detection 
efficacy; nevertheless, centralized methodologies frequently 
provide severe privacy and regulatory problems, particularly in 
financial institutions where the safeguarding of sensitive data is 
crucial. 

Federated learning (FL) has emerged as a significant option, 
enabling collaborative learning among distant financial 
institutions while preserving the confidentiality of private data 
[10] [11]. 

Recent research in federated learning for credit card fraud 
detection has investigated diverse deep learning architectures 
and privacy-preserving methodologies. Tang and Liu [12] 
introduced a Structured Data Transformer (SDT) model that 
incorporates federated learning, utilizing the self-attention 
mechanism of Transformers to adeptly capture intricate feature 
correlations in serialized transaction data while preserving data 
privacy among several banks. Their adaptive federated 
aggregation technique mitigates client heterogeneity and 
improves model convergence. Nonetheless, their methodology 
fails to include explicit oversampling approaches for addressing 
class imbalance, nor does it emphasize model explainability. 
Complementary to this, Liu et al. [13] employed a federated 
hybrid oversampling method using K-Means SMOTEENN, 
which combines K-Means clustering, Synthetic Minority 
Oversampling Technique (SMOTE), and Edited Nearest 
Neighbors (ENN) cleaning to effectively tackle class imbalance 
and noise in fraud detection datasets. Their approach partitions 
the data into clusters to better preserve local minority class 
distributions before applying oversampling and noise filtering, 
thereby enhancing model robustness and generalization. 
Integrated with a stacking ensemble of diverse classifiers, this 
method significantly improved detection performance on credit 
card fraud data, achieving superior precision, recall, and F1-
score compared to traditional resampling techniques. 

Meanwhile, A. M. Salih et al. [14] highlighted the 
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importance of Explainable AI techniques such as LIME and 
SHAP to provide transparency for deep learning models in 
regulated financial environments. 

Our study builds upon these advances by integrating hybrid 
data balancing, federated learning, and explainability methods 
to achieve robust, interpretable fraud detection in distributed 
settings 

III. MATERIAL AND METHOD 

A. Proposed Method 

The workflow of the proposed method is illustrated in Fig. 
1. Initially, raw data is collected and subjected to data 
preprocessing, which includes the application of the KMeans-
SMOTEENN technique to handle imbalanced data effectively 
by generating synthetic samples and editing noisy instances. 
Afterwards, the federated learning (FL) framework is 
implemented, enabling collaborative training of deep learning 
models across distributed client environments without 
compromising data privacy. The deep learning models are then 
locally trained on each client’s dataset and aggregated into a 
global model through the FL mechanism. Subsequently, 
evaluation metrics—including accuracy, precision, recall, F1-
score, AUROC, and AUPRC—are computed to assess model 
performance. To enhance transparency and interpretability of 
the model decisions, the Explainable Artificial Intelligence 
(XAI) approach, specifically Local Interpretable Model-
Agnostic Explanations (LIME), is integrated to explain the 
predictions and gain deeper insights into feature importance. 

B. Dataset Description 

This study employs a publicly accessible dataset of credit 
card transactions conducted by European cardholders. The 
European credit card fraud dataset was selected because it has 
become a widely accepted benchmark in fraud detection 
research, enabling direct and fair comparison with existing 
state-of-the-art methods. Its highly imbalanced distribution, 
with fraud cases accounting for only 0.172% of the total 
transactions, closely reflects real-world scenarios where 
fraudulent activities are rare but critical to detect. 

 

Fig. 1. Proposed method workflow. 

The dataset’s anonymized features, derived through PCA 
transformation, ensure compliance with data privacy and 
confidentiality requirements, aligning well with the regulatory 
considerations of financial applications. Furthermore, the 
dataset is publicly accessible, facilitating reproducibility and 
transparency in research. These characteristics make it an 
appropriate and representative choice for evaluating the 
effectiveness of federated learning in addressing fraud 
detection under severe class imbalance and privacy constraints. 

The transactions encompass a two-day duration in 
September 2013, totaling 284,807 entries, of which merely 492 
are classified as fraudulent. This indicates a significantly 
imbalanced class distribution, with fraudulent instances 
constituting merely 0.172% of the dataset. The dataset 
comprises 31 attributes: 'Time', 'Amount', 'Class', and the 
anonymized variables 'V1' to 'V28', which have been subjected 
to Principal Component Analysis (PCA) to maintain the 
confidentiality of sensitive data [1]. The dataset is suitable for 
machine learning operations because of its exclusively numeric 
properties. Moreover, its prevalent application in current 
research enables efficient benchmarking and performance 
evaluation against proven fraud detection algorithms. 

This work involves data preprocessing in three primary 
stages: resampling to address class imbalance, standardization 
to equalize feature scales, and reshaping to prepare data for 
input into diverse machine learning architectures. 

Fig. 2 demonstrates a significantly skewed class distribution 
within the dataset, comprising 283,253 normal transactions and 
merely 473 instances of fraud, or approximately 99.8% and 
0.2% of the total data, respectively. This considerable disparity 
is a significant obstacle in the training of prediction models, as 
conventional classifiers often prioritize the majority class, 
hence risking the neglect of infrequent yet crucial fraudulent 
patterns. This discrepancy highlights the need for implementing 
resampling strategies to improve model sensitivity and 
guarantee effective fraud detection performance. 

Considering that the minority class signifies fraudulent 
instances, employing the unaltered dataset without any 
balancing methods may considerably impair the model’s 
capacity to identify fraud, resulting in suboptimal recall 
performance. An innovative hybrid resampling method, 
KMeans-SMOTEENN, is utilized to resolve this issue. This 
method integrates clustering-based oversampling with noise-
filtering undersampling, facilitating a more efficient 
management of the dataset's class imbalance by producing 
synthetic minority samples while concurrently eliminating 
potential outliers and noisy majority samples. 

Subsequent to resampling, feature standardization is 
executed utilizing StandardScaler, which is crucial owing to the 
diverse types and sizes of the dataset's features. Standardizing 
the data guarantees that each feature contributes uniformly to 
the learning process, hence improving model convergence and 
performance. Furthermore, the data is restructured by 
incorporating an additional dimension to align with the input 
specifications of the Neural Network model, which serves as 
the principal architecture for fraud detection in this research. 
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Fig. 2. Imbalance ratio of class fraud and non-fraud. 

C. Deep Learning Model 

This section succinctly elucidates the deep learning 
methodology employed in this work. 

Since Hinton's breakthrough in 2006, deep learning has 
progressed swiftly, facilitating the development of robust 
architectures such as CNNs, RNNs, LSTMs, and Transformers. 
The breakthroughs, coupled with enhanced hardware 
capabilities and the accessibility of extensive open-source data, 
have established deep learning as a preeminent force in 
artificial intelligence [15]. 

The fundamental components of deep learning encompass 
backpropagation, stochastic gradient descent, and 
convolutional neural networks. It has proven useful in 
analyzing extensive datasets, especially in tasks such as 
semantic indexing, data annotation, and information retrieval. 
Nonetheless, obstacles persist, such as the management of high-
dimensional and streaming data, in addition to guaranteeing 
model scalability. Notwithstanding these constraints, deep 
learning persists in its advancement, with continuous endeavors 
to create a more cohesive comprehension and methodology 
[16]. 

This research selected deep learning for its capacity to 
autonomously extract significant features from data, thus 
reducing the necessity for costly manual feature engineering. 
To examine the optimal architecture for resolving the research 
challenge, various deep learning models were deployed and 
assessed. These models typically consist of multi-layer neural 
networks, wherein each layer incrementally acquires data 
representations, spanning from fundamental properties to more 
intricate and abstract patterns. 

In the studies, we employed six distinct variations of deep 
learning models to assess performance and identify the model 
yielding optimal results. The specifics of each model and the 
experimental findings will be comprehensively detailed in the 
experiment and analysis of results section. This methodology 
was employed to illustrate the generalizability of deep learning 
models and to identify the optimal solution depending on the 
dataset's specific attributes. 

1) Autoencoder: Autoencoders are a particular category of 

neural networks intended to acquire efficient representations 

(encodings) of unlabeled input, primarily for dimensionality 

reduction or feature extraction [17]. 

2) FNN: A Feed-Forward Neural Network (FNN) is a 

category of artificial neural network in which information 

progresses unidirectionally from input, through hidden layers, 

to output without any cycles. Establishing the optimal network 

size, encompassing the quantity of hidden layers and neurons, 

is essential as it influences learning ability, generalization, and 

the likelihood of overfitting. The universal approximation 

theorem asserts that a single hidden-layer feedforward neural 

network can estimate any continuous function with a sufficient 

number of neurons; however, additional hidden layers 

frequently provide more efficient solutions [18]. 

3) CNN: A Convolutional Neural Network (CNN) is a 

prevalent deep learning method that has yielded favorable 

outcomes across several applications. Convolutional Networks 

can reveal hidden characteristics of fraudulent transactions and 

prevent model overfitting. The ConvNets algorithm comprises 

three primary layers: the convolution layer, the pooling layer, 

and the fully connected layer. 

The convolution and pooling layers primarily execute 
feature extraction, but the fully connected layer subsequently 
maps the extracted features to the final output, such as 
classification [19]. 

4) LSTM: Long Short-Term Memory (LSTM) is a 

specialized architecture of artificial recurrent neural networks 

(RNN) employed to model time series data in deep learning. 

Unlike conventional feedforward neural networks, LSTM has 

feedback connections among hidden units linked to discrete 

time steps, enabling the learning of long-term sequence 

dependencies and the prediction of a transaction label based on 

the sequence of prior transactions [20]. 

5) DNN: A Deep Neural Network (DNN) is a kind of 

artificial neural network characterized by the presence of 

multiple hidden layers situated between the input and output 

layers, in contrast to shallow models. Like conventional neural 

networks, DNNs handle inputs by multiplying them with 

weights and transmitting the outcomes through hidden layers 

activated by nonlinear functions such as sigmoid, tanh, or 

ReLU. The model parameters are refined by minimizing an 

error function, typically by stochastic gradient descent, until 

convergence is achieved. DNN training has two primary phases 

utilizing the backpropagation algorithm: a forward pass, in 

which calculations flow from input to output, and a backward 

pass, during which incorrect gradients are propagated in reverse 

to adjust the weights[21]. 

6) STACKING-DL: Stacking is a significant ensemble 

learning strategy that synthesizes an optimal model by 

amalgamating predictions from many foundational machine 

learning algorithms in the initial layer (Emmanuel et al. 2023). 

The primary concept is to employ the prediction results of the 

base learner as input features, thereafter training and predicting 

with the meta-learner. During the model's training phase, an 

optimum combination of various machine learning methods is 

employed to fully leverage their respective strengths, hence 

enhancing the accuracy of the ensemble model's predictions 

[22]. 

Table I presents the configuration details and 
hyperparameters of the neural network models implemented in 
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this study for credit card fraud detection. The models include 
Feed-Forward Neural Network (FNN), Deep Neural Network 
(DNN), 1D Convolutional Neural Network (CNN 1D), Long 
Short-Term Memory (LSTM), Autoencoder, and a Hybrid 
model. 

 Input Activation Function: All models utilize the 
Rectified Linear Unit (ReLU) activation function at the 
input or hidden layers to introduce non-linearity and 
facilitate efficient training. 

 Output Activation Function: Sigmoid activation is 
applied in the output layer of all models except the 
Autoencoder, which uses a Sigmoid function suited for 
reconstruction tasks. This allows for output values 
between 0 and 1, suitable for binary classification 
problems like fraud detection. 

 Optimizer: The Adam optimizer is consistently used 
across all models, with an initial learning rate primarily 
set at 0.001, except for CNN 1D, which uses a lower rate 
of 0.0001 to accommodate convolutional learning 
dynamics. 

 Learning Rate Decay and Dropout: Learning rate decay 
and dropout regularization are employed selectively to 
improve generalization and prevent overfitting. DNN, 
CNN 1D, LSTM, and Hybrid models incorporate decay 
rates and dropout values ranging approximately between 
0.2 and 0.5, while FNN and Autoencoder models omit 
these parameters. 

 Communication Rounds and Federated Clients: All 
models are trained in a federated learning setup with 50 
communication rounds and 2 to 3 federated clients 
participating in the training process, ensuring distributed 
learning and privacy preservation. 

 Train-Test Split Ratio: A consistent 80%-10%-10% split 
is applied for training, validation, and testing datasets, 
respectively, to maintain fair performance evaluation 
across models. 

This configuration setup balances model complexity and 
training efficiency, aiming to achieve optimal detection 
performance while maintaining computational feasibility in a 
federated environment. 

TABLE I.  MODELS HYPERPARAMETERS 

Model Name FNN DNN CNN 1D LSTM Autoencoder Hybrid 

Input Activation Function ReLU ReLU ReLU ReLU ReLU ReLU 

Output Activation Function Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid 

Optimizer Adam Adam Adam Adam Adam Adam 

Initial Learning Rate 0.001 0.001 0.0001 0.001 0.001 0.001 

Learning rate decay - 0.3 0.2 0.2 - - 

Dropout rate - 0.3 0.2, 0.4 0.5 - 0.3, 0.2 

Communication round 50 50 50 50 50 50 

Number of federated clients 3 3 3 2 3 3 

Train test ratio 80%-10%-10% 80%-10%-10% 80%-10%-10% 80%-10%-10% 80%-10%-10% 80%-10%-10% 
 

D. K-Means SMOTEENN Imbalanced Handling Dataset 

This work employs a hybrid data-balancing methodology 
that integrates K-Means clustering with SMOTE (Synthetic 
Minority Oversampling Technique) and ENN (Edited Nearest 
Neighbors), generally referred to as K-SMOTEENN. This 
strategy seeks to resolve issues of class imbalance and overlap 
between classes frequently encountered in datasets, particularly 
in the fraud detection dataset utilized. 

The K-SMOTEENN method we utilize consists of three 
primary phases: 

1) K-Means clustering: The K-Means approach is 

employed to partition the minority class data into multiple 

clusters according to feature similarities. Each cluster signifies 

a distinct pattern within the minority class that exhibits greater 

homogeneity than the class as a whole. 

2) Oversampling utilizing SMOTE: Subsequent to the 

segmentation of minority data into multiple clusters, we 

implement the SMOTE technique on each cluster 

independently to produce supplementary synthetic samples. 

This procedure is conducted just on clusters that satisfy the 

minimal sample size criteria for efficacy. 

3) Sanitation utilizing ENN: Upon completion of the 

oversampling phase, the resultant dataset from the 

oversampling is amalgamated with the majority class. The final 

stage involves employing the ENN approach to eliminate 

unclear or potentially noisy samples, hence enhancing the 

quality of the final data. 

The integration of the three methodologies yields a more 
balanced dataset, facilitating the classification model's ability 
to differentiate samples from other classes, particularly in 
overlapping areas. Practical applications of this methodology 
utilize Python libraries, including scikit-learn for K-Means 
clustering and imblearn for oversampling and undersampling 
techniques such as SMOTE and ENN. Optimal configurations, 
including the number of K-Means clusters and sample 
parameters, are determined during first experimentation [13]. 

Thus, this enables K-SMOTEENN to focus on sample data; 
this strategy is delineated in Algorithm 1. 
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Algorithm 1 K-SMOTEENN [13] 

Input: training data S is a set of pairs 
{(𝑥1, 𝑦1), . . . , (𝑥2, 𝑦2), . . . , (𝑥𝑚, 𝑦𝑚)} where x represents the input 

data and 𝑦 is the corresponding target vector. 

n (the number of samples) 

k (indicates the number of clusters)  

irt (imbalance ratio threshold)  

knn (quantity of nearest neighbors) 

begin 

// Step 1: Divide the input space into clusters clusters ← kmeans(X) 

filtered clusters ← empty set for c in cluster:  

imbalance ratio ← 
majority count(c)+1 

𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑜𝑢𝑛𝑡 (𝑐)+1
 

If the imbalance ratio is less than the irt, add the cluster "c" to the 

filtered cluster set. Repeat this process until all clusters have been 

checked. 

 end  

end 

Step 2: Implement the SMOTE oversampling technique.  

1) From the minority class, choose an instance xi  

 at random  

2) Determine the kind of xi and denote the samples  

 as Sj  

3) Randomly create a synthetic data point p by then  

 selecting a sample in Sj called z, then creating a  

 line segment in the feature space by connecting p  

 and z  

4) Minority class label assigned to p.  

5) Create a series of synthetic instances by combining p and z 

convexly. 

Step 3: Employing ENN techniques 

1) Choose the arbitrary instance 𝑥r from the set S  

2) Determine the knn of xr, with k being equal to 5 

3) Remove the 𝑥r Element if it has a more significant number of 

neighbors from the other class.  

4) Iterate 6 to 8 steps for the entire training dataset.  

End 

E. Federated learning 

Federated learning mainly refers to a distributed machine 
learning method implemented among numerous clients. The 
procedure involves N clients {C1, C2, ..., CN} indexed by k, each 
possessing its own local dataset {D1, D2, ..., DN}, which is 
maintained locally, and data cannot be transferred between 
clients or gathered by a third party. Typically, a server 
organizes various clients and their training. FL encompasses 
three essential steps: 

1) Initialization: At communication round t, the clients get 

the newest model wt from the server for initialization. 

2) Local training: Each client Ck conducts iterative training 

based on its own local dataset Dk and hyperparameter η. The 

local model weight 𝜔𝑡
𝑘 is updated to 𝜔𝑡+1

𝑘  after certain training 

epochs according to 𝜔𝑡+1
𝑘  ←  𝜔𝑡

𝑘  (η, Dk), leftarrow and 

subsequently transmitted to the server. 

3) Model aggregation: the server does model aggregation 

on the received local models and updates the global model 

𝜔𝑔𝑙𝑜𝑏
𝑡+1  ←  Agg (𝜔𝑡

𝑘+1; k ∈ [1,….,N]). 

Thus, FL facilitates collaboration among different clients in 
training a model without the necessity of data exchange, which 
is particularly advantageous for privacy-sensitive applications 

[23]. 

This study utilizes the Federated Averaging (FedAvg) 
algorithm as the primary approach within our federated learning 
(FL) system. FedAvg is acknowledged as the predominant 
strategy in federated learning, enabling clients to 
collaboratively train a global model while refraining from 
sharing raw data. Each client develops a local model utilizing 
its own dataset, while the central server orchestrates parameter 
distribution, aggregation, and updates. The model parameters 
from all participants are averaged and redistributed until 
convergence is reached. This technique enhances data privacy, 
reduces communication overhead, and guarantees scalability 
for multiple customers [24]. The full procedure is depicted in 
Algorithm 2. 

Algorithm 2 FedAvg [24] 

1: Server performs:  

2: k is indexed as the K clients,  

3: the minibatch size is denoted by B,  

4: the number of local epochs is E,  

5: the learning rate is denoted as 𝜂  

6: 𝜔0 is initialized by the server  

7: for 𝑡 =1, 2, … , 𝑇 do  

8: 𝑚←max(𝐶.𝐾, 1)  

9: 𝑆𝑡 ← 𝑚 clients (random set) 

10: for 𝑘 ∈ 𝑆𝑡 do 

11: 𝜔𝑡+1
𝑘 ← ClientUpdate(𝑘,𝜔𝑡) 

12: ∑
𝑛𝑘

𝑛
𝐾
𝑘=1  𝜔𝑡+1

𝑘  

13: ClientUpdate(𝑘,𝜔): 

14: 𝛽 ← split 𝑃𝑘 into batches of size B 

15: for each local epoch 𝑖 from 1 to 𝐸 do 

16: for batch 𝑏 ∈ 𝛽 do 

17: 𝜔 ← 𝜔 − 𝜂∇𝑙(𝜔; 𝑏) 

18: end for 

19: end for 

20: end for  

21: end for  

22: return 𝜔 to server 

Fig. 3 depicts the federated learning architecture utilized in 
this research. The system consists of a central server and 
numerous distributed clients (Client 1 to Client 10). Each client 
maintains a distinct local dataset, which is saved and processed 
privately without the dissemination of raw data. The central 
server first disseminates a global deep learning model to every 
client. Clients thereafter train their models locally with private 
datasets and transmit the updated model parameters to the 
server. The server consolidates these parameters through 
federated averaging or analogous aggregation techniques to 
enhance and update the global model. This iterative procedure 
persists until model convergence is attained, safeguarding data 
privacy, reducing communication overhead, and adeptly 
managing heterogeneous data distributions among clients. 

IV. RESULT AND DISCUSSION 

This research presents an innovative approach to credit card 
fraud detection by leveraging federated learning (FL) combined 
with deep neural network models. To address the prevalent data 
imbalance issue in fraud detection, we employed the KMeans-
SMOTEENN resampling technique during preprocessing. The 
experimental results are structured into two main sections: 
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metrics comparison per training round and global (overall) 
metrics across all rounds. The federated learning framework 
incorporated six distinct deep learning architectures: 
Autoencoder, CNN, DNN, FNN, LSTM, and a stacked deep 
learning model. We implemented the FL process using the 
Flower federated learning framework, a widely recognized 
Python library tailored for distributed learning scenarios. 

All experiments were conducted on a Windows-based 
workstation, powered by an Intel(R) Core(TM) i7-10700 CPU 
@ 2.90GHz, and equipped with 16 GB RAM. Model 
performance was rigorously evaluated using multiple 
performance indicators: Accuracy, Precision, Recall, F1-score, 
AUROC (Area Under the ROC Curve), and AUPRC (Area 
Under the Precision-Recall Curve). The ROC curve graphically 
represents the classifier’s capability in discriminating between 
fraudulent and non-fraudulent transactions by plotting the True 
Positive Rate against the False Positive Rate at varying 
thresholds. AUROC provides a succinct numerical summary of 
this capability, ranging from 0 to 1, where a value close to 1 
signifies excellent predictive accuracy. Additionally, the 
Precision-Recall Curve focuses specifically on the performance 
of the classifier in imbalanced class scenarios, such as fraud 
detection tasks. The subsequent subsections provide detailed 
visualizations and analyses of the per-round and global 
performance metrics for each deep learning architecture 
utilized in the federated learning framework. 

 
Fig. 3. Federated learning architecture. 

A. Performance Evaluation 

This section presents the assessment of our proposed 
federated learning framework for multi-client credit card fraud 
detection. To thoroughly evaluate the efficacy of various deep 
learning architectures employed in this federated framework, 
we analyzed their global performance indicators, consolidated 
over all clients and training iterations. The assessed designs are 
Autoencoder, Convolutional Neural Network (CNN), Deep 
Neural Network (DNN), Feedforward Neural Network (FNN), 
Long Short-Term Memory (LSTM), and Stacked Deep 
Learning model. 

Table II delineates the comparative performance metrics—
Accuracy, Precision, Recall, F1-score, AUROC (Area Under 
the Receiver Operating Characteristic Curve), and AUPRC 
(Area Under the Precision-Recall Curve)—for each deep 
learning model. All models demonstrated consistently high 
scores across the assessed metrics. The accuracy varied from 
0.9992 to 0.9993, signifying an exceptionally high rate of right 
classifications between fraudulent and legitimate transactions. 
Precision scores were consistently outstanding, ranging from 
0.9993 to 0.9994, indicating the models' exceptional 
proficiency in accurately recognizing actual positive cases, 
hence reducing false positive detections. 

Recall metrics, which assess the models' efficacy in 
detecting genuine fraudulent cases (true positive rate), 
consistently exhibited elevated values (ranging from 0.9992 to 
0.9993). Correspondingly, the F1-scores—which equilibrate 
precision and recall—were remarkably elevated (about 0.9992 
to 0.9993), highlighting the models' equitable performance and 
formidable predictive capability in identifying fraudulent 
behaviors inside the federated learning framework. 

To further assess the model's capacity to differentiate 
between classes, we used the AUROC and AUPRC measures. 
The AUROC scores for all models varied between 0.9748 and 
0.9833, indicating that all models possess exceptional 
discriminative ability in differentiating fraudulent transactions 
from legitimate ones. Nevertheless, there was modest 
heterogeneity in the AUPRC ratings, indicating slight 
discrepancies in the efficacy of each model in managing the 
intrinsically imbalanced fraud detection data. The DNN got the 
highest AUPRC score (0.8420), closely succeeded by layered 
deep learning (0.8383) and CNN (0.8289), underscoring these 
models' specific capabilities in precision-recall equilibrium, a 
vital component in fraud detection contexts characterized by a 
scarcity of positive class cases. 

TABLE II.  PERFORMANCE COMPARISON OF EACH MODEL 

Model Type Accuracy Precision Recall F1 Auroc Auprc 

Autoencoder 0.9993 0.9994 0.9993 0.9993 0.9748 0.8119 

Cnn 0.9993 0.9993 0.9993 0.9993 0.9816 0.8289 

Dnn 0.9993 0.9993 0.9993 0.9993 0.9833 0.8420 

Fnn 0.9992 0.9993 0.9992 0.9992 0.9798 0.8117 

Lstm 0.9993 0.9993 0.9993 0.9992 0.9708 0.8058 

Stacked_dl 0.9993 0.9993 0.9993 0.9993 0.9855 0.8383 
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In addition to the tabular overview, Fig. 5 visually illustrates 
the comparative global metrics among the six architectures. The 
illustrated bar graphs validate the superior and closely 
comparable performance of each model across all measures, 
underscoring the resilience and dependability of our federated 
learning methodology. This consistency indicates that federated 
learning, when combined with suitable data resampling 
methods (namely KMeans-SMOTEENN) and diverse neural 
network topologies, may proficiently address data imbalance, 
resulting in highly accurate and balanced predicted outcomes. 

In conclusion, both the table and graphical analyses 
unequivocally endorse the efficacy and dependability of our 
federated neural network methodology in identifying credit 
card fraud across various clients, yielding robust, equitable, and 
interpretable predicted results. 

B. Explainable AI with LIME 

We employed Explainable AI through the LIME (Local 
Interpretable Model-agnostic Explanations) technique to 
enhance the interpretability of the Deep Neural Network (DNN) 
model's predictions in fraud detection. Fig. 4 demonstrates 
LIME visualization for a transaction classified as non-
fraudulent with complete certainty (probability = 1.00) that 
features V11, V2, and V17 significantly bolster the non-fraud 
forecast (shown in blue), but features V14, V3, and V15 
marginally suggest a propensity for fraud (marked in orange). 

Despite certain indicators indicating possible fraud, their 
total impact is negligible, therefore corroborating the model's 
determination as non-fraudulent. This visualization improves 
transparency in the model's decision-making process and 
elucidates the significance of various attributes in certain 
forecasts, which is essential for stakeholder comprehension in 
financial contexts. 

 
Fig. 4. Explainable AI. 

C. Performance Comparison with State-of-the-Art Methods 

To assess the efficacy and originality of our proposed 
approach, we performed a comparison analysis using other 
cutting-edge federated learning and unbalanced data 
management strategies documented in the literature. Table III 
demonstrates that our proposed model, which employs a Deep 
Neural Network (DNN) combined with the K-Means 
SMOTEENN method, exhibits exceptional performance, 
surpassing the majority of existing methodologies across 

various evaluation metrics, including Accuracy, Recall, 
Precision, F1-score, AUC, and AUPRC. Our method exhibited 
exceptional precision, recall, and F1-score, each at 99.93%, in 
addition to a high AUC value of 98.33% and a significantly 
raised AUPRC of 84.20%, outperforming comparable 
contemporary methodologies including those of Mustafa et al. 
[6], Liu et al. [13], and Saha et al. [29]. This thorough 
performance comparison highlights the efficacy and innovation 
of our federated learning methodology, especially in tackling 
the issues of imbalanced datasets in credit card fraud detection 
tasks. 

 
Fig. 5. Performance evaluation. 
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D. Discussion 

Our findings illustrate the efficacy of integrating federated 
learning with the FedAvg algorithm, a K-Means-SMOTEENN 
hybrid methodology, and a Deep Neural Network (DNN) in 
tackling significant obstacles in fraud detection across several 
customers. The implementation of federated learning (FL) 
markedly improves data privacy by facilitating collaborative 
model training without the exchange of sensitive client 
information, consistent with prior study findings [1, 2]. 
Furthermore, the FedAvg technique effectively consolidates 
local models, yielding consistently superior prediction 
performance across diverse client datasets. The use of KMeans-
SMOTEENN significantly enhanced the management of the 
pronounced class imbalance characteristic of fraud detection 
datasets. This hybrid approach substantially reduced the 
overlapping distribution between fraudulent and non-fraudulent 
occurrences by producing representative synthetic samples 
inside confined clusters. Our findings validate the results of 
other studies [3, 4], demonstrating that cluster-based 
oversampling strategies surpass conventional methods in 

intricate, imbalanced situations. 

Additionally, we utilized Explainable AI (XAI) 
methodologies, specifically the LIME approach, to elucidate 
the predictions generated by our DNN model. The LIME 
display emphasized the most significant features impacting 
individual predictions, enhancing model transparency and 
interpretability. The interpretability of automated judgments is 
essential for stakeholders, particularly in financial services, 
since it enhances confidence and ensures regulatory 
compliance, as highlighted by Ribeiro et al. [5]. 

Notwithstanding the attainment of encouraging outcomes, 
our study possesses specific limitations. The existing solution 
predominantly assesses federated learning in simulated client 
environments, which may not accurately reflect real-world 
operational conditions characterized by network latency, data 
heterogeneity, and diverse compute resources among clients. 
Moreover, the utilization of synthetic data, although efficient, 
may generate artifacts that inadequately reflect authentic fraud 
trends. 

TABLE III.  PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS 

Ref Year Method Use 
Imbalanced 

Handling 
Accuracy(%) Recall Precision F1 Score AUC AUPPRC 

Yang et al.[25] 2019 FL with CNN - - - - - - - 

Suvarna et al. [26] 2020 FL with RBF - 94.00 - - - - - 

Forough et al. [27] 2021 LSTM - - 74.08 95.6 78.1 83.3 - 

Aurna et al. [28] 2023 FL with CNN SMOTE 99.11 99.51 98.71 99.11 - - 

Aurna et al. [28] 2023 FL with MLP SMOTE 98.28 98.77 97.78 98.28 - - 

Aurna et al. [28] 2023 FL with LSTM SMOTE 95.78 98.20 80.23 88.31 - - 

Yuxuan et al. [12] 2024 Federated SDT - 99.8 79.5 85.0 82.2 99.8 89.2 

Mustafa et al. [6] 2024 Federated + CNN SMOTE - 80.9 8.26 81.7 93.7 - 

Liu et al. [13] 2025 
Stacking Ensemble 
without FL 

K-Means 
SMOTEENN 

1.00 0.88 0.95 0.92 1.00 0.96 

SC Saha et al. [29] 2025 FinGraphFL - 0.9780 - - - 0.9670 - 

Proposed method 2025 
Our best model 

(DNN) 

K-Means 

SMOTEENN 
99.93 99.93 99.93 99.93 98.33 84.20 

 

V. CONCLUSION 

This study introduces an innovative methodology that 
combines federated learning using FedAvg, KMeans-
SMOTEENN to tackle data imbalance, and Explainable AI 
with a Deep Neural Network model to improve multi-client 
fraud detection systems. Our proposed method exhibited strong 
predictive performance, enhanced data privacy protection, 
effectively tackled class imbalance issues, and provided clear 
model interpretability. 

The integration of these methodologies enhanced 
stakeholder trust and fostered a more profound comprehension 
of model-driven decisions in the financial sector. 

Future research has found numerous promising avenues. 
Investigating sophisticated federated learning methodologies, 
including personalized FL (e.g., FedProx, FedBABU, or 

adaptive FL approaches), may enhance model efficacy and 
adaptability to client-specific data distributions. Moreover, the 
integration of Differential Privacy approaches would augment 
data privacy, providing enhanced safeguards against potential 
inference assaults. 

Finally, applying this methodology to extensive real-world 
deployments, including dynamic and streaming data, could 
assess and enhance the practical usability and resilience of our 
suggested strategy. 
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