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Abstract—DoS attacks have been the most popular type of 

attack on SDNs. The threat landscape has widened due to 

advanced persistent threats. Recent studies have focused on a 

single level of defence and conventional detection methods, which 

have become redundant. The study proposes and implements a 

novel multilevel DoS attack detection, which has a three-pronged 

approach to counter modern-day DoS attacks. The first level 

emphasizes the Zero Trust mechanism using Hash SHA-256 to 

validate the clients. The second level uses hybrid deep learning 

models to detect DoS attacks, which are trained and tested across 

three latest datasets, namely NSLKDD, CIC DOS 2019 and 

IOT2023, giving an accuracy of 95% consistently. The third level 

is a lightweight adaptive DoS detection, which can detect fast and 

low-rate DoS attacks, ensuring that the SDN is secure in a few 

milliseconds by ruling out any possibility of congestion. The 

results clearly indicate how a three-level approach can thwart 

most advanced persistent threats. 

Keywords—Software defined network; distributed denial of 

service; openflow 

I. INTRODUCTION 

Traditional networks are decentralized, rigid to allow 
changes, and complex to configure and manage due to vendor-
specific issues. SDN is a disruptive innovation as it allows 
remote management of large-scale deployments with ease and 
takes care of the rising demand for processing, storage, and 
networking. It has a centralized and programmable controller 
along with switches in the data plane. SDN takes advantage of 
virtualization to provide flexibility, adaptability, elasticity, 
scalability, robustness, security, and abstraction of the 
hardware [1]. Below mentioned are the vulnerabilities in SDN 
based on layers: 

A. Control Layer (Control Plane) 

As the central element of SDN, if the controller is not 
managed correctly, it could be a single point of vulnerability 
and attack. The controller establishes the direction of data flow 
within the data plane. When the controller is attacked and 

compromised, it will have a negative impact on the network. 

1) Hijacked rogue controller: The attacker takes control of 

the original controller or changes its functionality such that 

they can play around with the network. Some attackers replace 

the actual controller with a rogue controller, which controls 

the entire network thereafter. [2] 

2) Fake traffic and network manipulation: Intruder 

exhausts all the resources by introducing fake packets and 

simultaneously initiates other attacks on the entire network. [3, 

4, 5] 

3) Weak authentication, authorization and information 

disclosure: When the controller has weak authentication and 

incomplete encryption, the attacker breaches confidentiality, 

leading to information disclosure, making it susceptible [6]. 

B. Infrastructure Layer (Data Plane) 

Flow Switches are non-intelligent and can be manipulated 
by attackers [7, 8]. 

1) Flow table modification: The malicious nodes alter the 

flow table rules by adding or deleting rules and denying 

updates to the table. 

2) Flow table overloading/buffer saturation: Flow table 

rules are stored in TCAM, which is expensive, power hungry, 

with limited space, making it vulnerable to overloading and 

buffer saturation attacks. They can jam the bandwidth to cause 

overloading. 

3) Topology spoofing/traffic diversion: Create a fake 

network view to redirect traffic flows to attackers and explore 

vulnerabilities such as eavesdropping. They can forge non-

existent links between switches. 

4) Side channel attack: It targets the timing information 

by collecting ping timings and adding delays. Also, it can 

inform an attacker if a flow rule exists or not. 

C. Application Layer (Application Plane) 

Some contemporary attackers have started to exploit the 
applications present in the application layer [9]. 

1) Malicious applications: Attacker can modify or run 

malicious applications to ruin the network or collect 

information of the network. 

2) Resource exhaustion: Attacker can run resource 

intensive requests to controller bringing down the system. 

3) Policy conflicts: Applications running on single 

controller give conflicting policy instructions leading to delay 

and confusion. 

4) Privilege elevation: One application gains higher 

privilege access over other applications and later controls and 

manipulates them. 
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D. Interfaces 

1) Northbound interface: It serves as the application 

layer's and the control layer's open, local, non-standard, and 

non-encrypted connection interface. It collects network 

details, state resource requirements from the upper layer and 

gives directions to the controller in the control plane. As there 

are various types of REST APIs used here, this becomes a 

huge point of vulnerability for attackers to tamper or 

eavesdrop [10]. 

2) Southbound interface: It serves as the control layer's 

and data layer's open, local, and non-encrypted connection 

interface. The controller uses it to create and modify rules in 

the Flow table. Rules can be intercepted and manipulated due 

to a lack of security [11]. TLS security is recommended but 

not mandatory, making it vulnerable to contemporary attacks 

[12]. 

3) East-West bound interface: In most architectures, there 

is a single controller, and there are distributed multi-controller 

architectures to manage the SDN. The interface between these 

controllers is called the East-West bound interface. These 

controllers synchronise and work with each other for high 

availability by exchanging notifications. They share updates 

about the network, like the state, devices, changes in the flow 

table, list of hosts, etc. Due to a lack of security, attackers 

compromise and exploit the controller [13] interface between 

the switches. In the data plane, switches are interconnected via 

links on which packets traverse till they reach the destination. 

Links are open, local and not encoded, making it vulnerable. 

Section II discusses the various DDoS defense approaches 
in related work. Section III presents the proposed method. 
Section IV highlights the experimental setup and results. 
Section V presents the conclusion. 

II. RELATED WORK 

DDoS defense approaches are classified into two categories 
based on where these defense models have been deployed. 
Most attacks are carried out on the Controller rather than the 
switch. 

A. Controller-Based Solutions 

Bringing down the controller helps destroy the entire SDN. 
The main target is the controller, and the only way to protect the 
entire SDN is by protecting the controller. Over the years, many 
solutions have been proposed by researchers to protect the 
controller. Four major categories are: one is entropy-based, 
Machine learning, Neural Networks, Statistical analysis-based. 

1) Information Entropy: During normal days, the traffic 

flow is normal, and the entropy value is maximum. As soon as 

the attack starts, the traffic flow increases and entropy starts to 

decrease. The threshold level for entropy is set. If the traffic 

flow goes below this level, then it triggers the detection 

mechanism. In [14], the authors compute the threshold value 

five times, and then it triggers the detection mechanism. In [15], 

there is a two-step mechanism, in the first step, it checks the 

decrease in the threshold value, and in the second step, if the 

value decreases, it checks MAC addresses to differentiate 

between flash traffic and attack traffic. There are two modules 

in [16], the first one is for detection based on the threshold 

value, and the second module is used for mitigation by 

blocking unacknowledged SYN packets from the client. In 

[17], there are three phases, the first is normal phase of 

counting of packets, second is the preparatory phase, if value 

goes below the threshold, third is mitigate phase by dropping 

packets. Authors in [18] built a trust framework to identify 

malicious flow based on Kullback–Leibler divergence or 

relative entropy method. In [19], the authors use Jensen-Renyi 

divergence measure to estimate the variation from the 

threshold value for normal as well as malicious traffic. This 

can detect both high and low-rate attacks. Authors in [20] use 

three values- counter, entropy, and traffic rate. For detection as 

the packet flow increases the entropy decreases count gets 

incremented. For mitigation, it collects DPID, port and IP 

information to block the malicious packets. 

2) Machine learning: Based on historical data or changes 

in traffic flow, the system learns and detects the presence of 

DDoS attacks. Authors [21] propose aggregating packets to 

create signatures which can be later used to detect attacks. In 

[22] authors use a sequence of feature values to predict and 

detect attacks. Authors in [23] classify attacks using machine 

learning and neural networks. In [24], an SVM classifier was 

used after the authors extracted key features. In [25], the 

authors solved the multi-class classification problem by 

advancing the SVM algorithms. In [26], the authors 

implemented and compared MLP, Decision Tree, Random 

Forest and SVM to conclude that Decision Tree gives the best 

results. Authors in [27] extracted the features from the traffic 

to draw the feature pattern graph. In [34], the authors used 

entropy on ports and applied the KNN algorithm to detect and 

drop malicious traffic. In [28], the authors worked on KNN to 

get better accuracy. In [29], the authors classify the traffic 

based on packet flow, size and speed. In [30], the authors 

figured out the attack's intensity and classified the traffic using 

a KNN classifier. In [31], the authors implemented the 

Factorization Machine algorithm to mitigate low-rate DDoS 

attacks. In [32], the authors developed a multi-plane security 

framework named VARMAN, where the switch is modified to 

detect anomalies and then apply ML-based classifiers to detect 

attacks. In [33], the authors worked on programmable 

switches to improve efficiency. In [34], the authors deployed a 

trigger mechanism on the switches which alerts the controller, 

who activates the ML classifier (KNN and K-means) to detect 

the malicious traffic. In [35], the authors implemented a low-

volume defense solution with the following models (MLP, 

Random Forest, Decision Tree, SVM, REP Tree, J48). In [36], 

the authors implemented a hybrid ML algorithm (Support 

Vector Classifier and Random Forest) to detect malicious 

traffic. In [37], the authors implemented the Redis Simple 

Message Queue (RSMQ) mechanism with the following 

machine learning models (ExtraTrees, Decision Tree, KNN 

and Naive Bayes) to improve the accuracy of detection. In 
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[38], the authors classified traffic using following machine 

learning models (MLP, Random Forest, Logistic Regression, 

DT and AdaBoost). 

3) Artificial neural networks: Authors in [39] implement a 

mechanism which traces the source of the attack as it 

maintains the details of the entire network and a mitigation 

module to delete the malicious table flow entries. Authors in 

[40] classify the traffic using fuzzy logic combined with L1-

Extreme Learning Machines. By employing both unsupervised 

hashing and the discrete-time finite-state Markov chain 

(DTMC) model, it mitigates attacks. In [41], the controller 

acts selectively and focuses only on affected switches by 

applying the fuzzy c-means algorithm. 

4) Statistical analysis: In [42], the source is verified 

before accepting packets. The controller acts as a proxy and 

verifies the source, and sends SYNACK. In [43], it maintains 

the state and connection list of all TCPs. This list keeps on 

increasing till it reaches the set limit. Once it crosses that 

limit, the controller blocks packets from those sources. The 

authors designed the RADAR framework in which the 

controller selects certain flows to be investigated. Authors too 

confirm the legitimacy of the source, and the algorithm 

verifies the information in the Packet-In message with this 

dictionary of Port, IP, and MAC addresses. The malicious 

traffic is taken care of by a backup controller, which 

temporarily saves these requests as the attack begins, then 

quickly sends them to the main controller. Authors compare 

the threshold value to the quantity of Packet-In messages with 

a certain header received during a specific time interval. If it 

crosses the predetermined value, all packets are deep scanned. 

B. Switch-Based Solutions 

1) TCP proxies: LineSwitch deploys proxies based on 

random distribution and ensures blocking malicious traffic 

from reaching the control plane. In another paper, both act as 

proxy and minimizes the timeout to improve the efficiency. 

Authors provide multi-layer protection by implementing filters 

at all entry and exit points on the switches. 

2) Information entropy: Implements the algorithm on the 

switches instead of overloading the controller. Authors deep-

scan the packets for spoofing/changes, and once it locates the 

attacker host, it changes the table rules to block this host. To 

identify an attack, it also computes entropy within a 

predetermined time interval. The programmable switches 

cannot decode the arithmetic logarithmic function, so to 

calculate entropy, the authors utilize the longest-prefix match 

(LPM) table. It determines the IP-based entropy at the source 

and destination. Authors detect an attack on programmable 

switches by computing the entropy for IP addresses. They use the 

longest-prefix match (LPM) table and bespoke count-sketches, 

respectively, to approximate frequencies and carry out 

computationally complex mathematical operations. 

3) Artificial neural networks: Used switches as neurons in 

a distributed intrusion prevention system based on BPNN. 

Parallel operation is used by switches on the same layer. For 

easy computations, each swap uses minimal resources. 

Further, they  deployed a Radial Basis Function (RBF) neural 

network to enhance this work's accuracy. Authors propose a 

simple DDoS mechanisms having machine learning based, 

traditional IDS on a heterogeneous system including FPGA 

boards, GPU, and host processors. 

4) Flow statistics: The security tools such a DNS 

reflection defense, firewall and extensive filtering have been 

installed. In [14], the authors, to counteract HTTP GET 

flooding assaults, per-URL counting technique was created on 

NetFPGA-based Openflow switches. On the programmable 

switches, the DDoS detection logic was deployed. The switch 

computes a hash value using the source's MAC and IP 

addresses and compares it to one that was already computed. 

5) Smart switches: Authors deployed smart switches 

which would perform source address matching. If there is a 

mismatch it will automatically alert and block the traffic. It 

helps in early detection but will lead to overloading the 

controller with invalid requests. In another paper the source 

packets are filtered, and genuine packet traffic is given 

specific score so as to be allowed. This method is useful to 

limit the attack, but if the attacker bypasses this filter, it will 

fail. Authors use a port-hopping defense mechanism, where 

the target is moved to the controller, reducing the chances of 

an insider attack. In this, we need to add more moving target 

defense mechanisms, such as address hopping, service 

hopping, path hopping, etc. 

III. PROPOSED METHOD 

The traffic flow consists of information from regular clients 
as well as the DoS Attacker. The proposed method shown in 
Fig. 1 comprises three levels to ensure robust DoS attack 
detection: 

 
Fig. 1. Proposed method. 

First Level – The first level allows only regular flow by 
matching the hash of the current flow with the hash of the 
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previously stored record. This ensures that only the verified 
clients go ahead to the next level. 

Second Level – It consists of a deep learning-based hybrid 
model, namely RNN + LSTM, which has been trained and 
tested across three datasets to classify DoS attacks based on 
flow and performance-based parameters. 

Third Level – Most APTs these days can mix Fast as well 
as Low-rate DoS Attacks to bypass the defense systems. So, 
we deploy the Adaptive DoS Attack detection, which will 
check all parameters and ensure only verified flows reach the 
controller. 

A. Client Validation – Level 1 

Fig. 2 shows an external third-party component that 
performs this client validation to ensure authorized users 
move on to the next level and reach the controller. 

1) Collect - MAC Address and Source Port Number 

from each flow is collected by the third-party verifier. 

2) Convert and Store – Third-party verifier converts the 

collected data into a hash value (SHA-256) and stores it in a 

hash table. The hash table consists of the hash value of 

known/regular clients. 

3) Match - Repeat Step 1 and Step 2 to match the hash 

value of the current flow with the hash value of the flows 

stored in the table. If it matches, it will be classified as normal 

traffic and move to the next level or else block and do not 

allow that client to move ahead. 

 
Fig. 2. Client validation. 

B. Deep Learning Based DoS Detection – Level 2 

The process of creating a Deep Learning based DoS attack 
detection system employs a methodical process beginning with 
the selection of three popular datasets. These datasets are NSL-
KDD, CIC-DDoS 2019, and IoT-2023, which are intended to 
cover different types of network traffic patterns as well as 
possible attack types. To better illustrate these attack types, the 
datasets were focused on these specific attacks because they 
represent very prevalent attack types in real-life conditions. 
Certain attacks including SYN flood, UDP flood, and SQL 
Injection, were narrowed down for training of the model with 
intent of distinguishing between DoS/DDoS attacks and other 
attacks examples being ARP spoofing and command injection 
attacks. During model implementation, experimentation was 
carried on several deep learning architectures, namely the 

RNN, LSTM networks and GRU. These models were selected 
due to their suitability to time series data as well as their 
capabilities of recognizing sequential patterns in the network 
traffic, with LSTM networks being the superior of all in 
learning long-term dependencies of the data. Among the 
reasons for adopting such models in this work is the 
affordability of the economies delivered. That’s the sheer speed 
in real-time attack detection that the models are known to 
allow. Some models that incorporated RNN, LSTM and GRU 
were also trained. Due to phased traffic across complex 
systems aimed at enhancing detection rates. These models were 
learnt in interludes in order to save time, along with 
hyperparameter tuning to manage factors such as learning 
rates, batch sizes, and number of epochs, among others, with 
the aim of improving model accuracy and reducing overfitting. 
The models achieved an assessment based on vital 
performance indicators, specifically accuracy, precision, recall, 
and the f1 score. Accuracy is the ratio of the correct predictions 
made to the total amount of predicted traffic given. Precision is 
the ratio of the correctly predicted attack traffic to the overall 
predicted attack traffic. Recall is the ratio of the predicted 
attacks captured relative to the total predicted attacks. The F1-
score is the harmonic mean of precision and recall. High 
precision ensures accurate identification of attack traffic while 
minimizing false positives. A high recall reflects the system's 
ability to detect most attacks, reducing missed threats. 
Accuracy should be maximized by correctly classifying both 
attacks and normal traffic. The F1-score, which balances 
precision and recall, should approach 1, indicating a well-
rounded, effective IDS. High values across all these metrics 
demonstrate a robust and reliable deep learning-based IDS. 

Key performance metrics:   

 Accuracy (AC): The number of correct forecasts 
relative to total traffic. 

AC = 
TP+TN

TP+TN+FP+FN
                             (1) 

TP: True Positive: The model correctly predicts the positive 
class. 

TN: True Negative: The model correctly predicts the 
negative class. 

FP: False Positive: The model incorrectly predicts the 
positive class. 

FN: False Negative: The model incorrectly predicts the 
negative class. 

 Precision (P): It is used to figure out how much of the 
attack traffic is accurately identified. 

P = 
TP

TP+FP
                                     (2) 

 Recall (R): It measures the rate of anticipated attacks 
relative to overall attack traffic. 

R = 
TP

TP+FN
                                   (3) 

 F1-score (F1): It provides a more accurate, balanced 
estimate of both precision and recall. 
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C. Adaptive DoS Attack Detection - Level 3 

Earlier attackers used to flood the network or system with 
excessive amounts of traffic (ICMP, UDP), data or requests. 
Modern day attackers do not depend on only one type of DoS 
Attack. They use timeouts (LDoS), small queries (DNS/NTP 
Amplification) to bypass the DoS attack detection systems. 
Effective LDoS attack detection can be achieved using time-
based network traffic properties. 

Parameters used in the proposed mechanism are listed. 
Other than ThDiscard and TSDuration, all values are listed in Table I 
below: 

TABLE I.  LIST OF PARAMETERS 

Symbol Description 

Con No. of connections to the server in current Time slot 

IA Packet Inter-arrival time in current Time Slot 

AIA Average Packet Inter-arrival time 

TO No. of Time-outs in current Time Slot 

DP No. of discarded packets in current Time Slot 

D Time Slot Duration (in Seconds) 

T Traffic in current Time Slot 

AT Average Traffic per Time Slot 

TH 
Threshold number of packets discarded in a particular Time 
slot 

AT = α ∗ AT + (1 − α)T                               (3) 

AIA = α ∗ AIA + (1 − α)IA                            (4) 

To analyse network traffic, there are two steps: 

Step 1 - The following parameters are calculated using 
network traffic data from the network interface card: T, TO, 
DP 

Step 2 - Sleeps for D before calculating the following 
parameters using information gathered from Step 1: IA, AIA, 
T. It employs the following algorithm using the previously 
computed parameters. Algorithm 1 details the Adaptive DoS 
Detection. 

Algorithm 1: Adaptive DoS Detection  

Step 1: Evaluate T and AT ;  

             If (T ≥ ((1+β) * AT ))  

             Then Goto Step 2 Else Goto Step 4 

Step 2: Evaluate TO with Con and DP with TH; 

             If ((TO >= 2*Con) and (DP ≥ TH))  

             Then Goto step 3 Else Goto step 4 

Step 3: Evaluate IA with AIA; If ((AIA ≤ γ* IA)) 

            Then Assume Slow Rate DoS attack and not congestion 

             Else Goto step 4 

Step 4: Halt processing till the end of current time slot interval 

Traffic and Average traffic are compared. When the 

volume of traffic in the current time slot T exceeds (1 + β) 

times the volume of that time slot’s average traffic (AT), we 
proceed. We continue when there are more connections than 
timeouts, and more packets are refused, than the set threshold. 
The inter-arrival time and its average are then compared. We 
conclude that we are not experiencing congestion, but rather a 
Slow DoS assault when IA decreases. The processing is halted 
for that time period if any of the steps are unsuccessful. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Flow Validation – Level 1 

The experimental setup is shown in Fig. 3. The SDN 
consists of three hosts, namely Host 1 having an IP address of 
192.168.0.2, Host 2 having an IP address of 192.168.0.3, and 
Host 3 having an IP address of 192.168.0.5. Here we use a 
single controller named Controller 1 with IP address 
192.168.0.4. The Attacker having IP Address 192.168.0.1 is an 
external entity, which does fast, as well as Slow DoS-based 
attacks, as controlled by us. 

 

Fig. 3. Experimental setup (level 1). 

We have noted their MAC addresses to verify. Data from 
the switches is extracted in CSV. Here we note the IP address, 
as well as the MAC Address, which is stored in the external 
storage. To store this data, remove the colon from the MAC 
Address and concatenate it with the Source Port Number 
(which is converted to a string). All the information is stored 
after applying SHA-256, as shown below. Each entry is stored 
in Table II to be matched. If the match is found, move to level 
2 or wait for approval. During simulation, we found that the 
frequent IDs are stored and retrieved quickly from the 
database. New entries are not accepted and need time for 
approval from the controller. As soon as the entry from the 
attacker with source port number 6688 arrived, the hash 
matching failed. The attacker was blocked from moving to 
level 2, as expected. 
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TABLE II.  CLIENT MATCH TABLE 

SrcPort

Nr 

MAC 

Address 
HashValue Match 

4233 
00:0A:95:9

D:68:16 

b1b05f2632443eff30f3a71e579029855

7b27d7d2f969e5859aee7f0081b547e 
Yes 

5311 
00:1B:21:3
F:55:A1 

1057886baf2908dad4183baf45f653f25
91c4db72182a56c6636858361a0b4fe 

Yes 

9612 
00:23:A1:5
B:44:65 

35f956835f0c51c0aaaf3521f01120ad4
a5386f6581031de524cd4f417bb9717 

Yes 

1239 
00:17:CB:0

1:2A:B3 

04674e1d4150b7c464c67277d0c928c6

ce4fe52975b5fc32afdb56248a3a1bc6 
Yes 

6688 
00:14:22:01

:23:45 

2519d99444f45cc88521846451c8b423

ec345ecbd96cf069415c88f118c4a29b 
No 

B. Deep Learning based DoS Detection – Level 2  

We have tested three datasets to find the best predictive 
model so that we can rule out flows based on the performance 
metrics discussed earlier [48]. 

The DoS attacks detection results are shown in Table III 
using the NSL-KDD dataset. The RNN + LSTM model records 
the highest accuracy of 95.14% in terms of finding DoS 

attacks. It is also the best in finding precision, recall and 
achieving F1-score. LSTM and its hybrid models also perform 
strongly with accuracies of more than 93%. In comparison, the 
accuracy rate for the SOM model is the lowest at 90.6%. This 
leads to the observation that, whereas models are useful in DoS 
detection, advanced deep learning models are on another level 
in DoS detection. 

Table IV illustrates the performance of various machine 
learning models for detecting DoS attacks using the CIC-DDoS 
2019 dataset. The LSTM model achieves the highest accuracy 
at 95.73%, followed closely by the RNN + LSTM model at 
95.60%, showcasing their strong capability in identifying DoS 
attacks. Precision (P), recall (R), and F1 scores are consistent 
across all models, with values ranging between 0.85 and 0.88, 
indicating reliable detection performance across different 
approaches. However, while accuracy varies slightly, the 
models demonstrate comparable performance in precision, 
recall, and F1 score, with LSTM leading in accuracy, but all 
models performing similarly in overall detection quality. Thus, 
LSTM proves to be the most accurate, but other models like 
RNN + LSTM also offer strong results. 

TABLE III.  NSL-KDD DATASET [45] 

Score SOM RNN GRU+LSTM+RNN GRU GRU+LSTM LSTM RNN+LSTM 

AC(%) 90.6 92.45 92.95 93.07 93.20 94.34 95.14 

P 0.92 0.94 0.94 0.94 0.94 0.93 0.94 

R 0.89 0.91 0.92 0.92 0.92 0.91 0.92 

F1 0.90 0.92 0.93 0.93 0.93 0.92 0.93 

TABLE IV.  CIC-DDOS 2019 DATASET [46] 

Score SOM RNN GRU+LSTM+RNN GRU GRU+LSTM RNN+LSTM LSTM 

AC(%) 90.6 92.53 92.61 93.52 93.67 95.60 95.73 

P 0.88 0.88 0.88 0.88 0.87 0.87 0.87 

R 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

F1 0.86 0.86 0.86 0.85 0.86 0.86 0.86 

TABLE V.  CIC-IOT 2023 DATASET [47] 

Score SOM GRU GRU+LSTM+RNN RNN GRU+LSTM LSTM RNN+LSTM 

AC(%) 90.8 92.40 92.81 92.92 93.07 94.23 95.79 

P 0.98 1 0.98 0.99 1 0.96 1 

R 0.24 0.20 0.24 0.25 0.21 0.40 0.24 

F1 0.38 0.33 0.38 0.40 0.35 0.56 0.39 
 

Table V presents the performance of different models for 
detecting DoS attacks using the CIC-IoT 2023 dataset. The 
RNN + LSTM model achieves the highest accuracy at 95.79%, 
followed by LSTM at 94.23%, indicating their effectiveness in 
identifying DoS attacks in IoT environments. Interestingly, 
although GRU and GRU + LSTM exhibit perfect precision (P 
= 1), their recall values are significantly lower, leading to lower 
F1-scores. This indicates that while these models are highly 
precise, they miss a substantial portion of true positives. On the 

other hand, LSTM balances precision and recall, yielding a 
higher F1-score of 0.56, making it one of the more reliable 
models in terms of both accuracy and detection performance. 
While the RNN + LSTM model leads in accuracy, LSTM 
offers a better overall balance in terms of detection metrics. 

The analysis in Fig. 4 highlights the effectiveness of 
models in accurately detecting DoS attacks on IoT networks, 
with RNN+LSTM being the most effective. Models like SOM 
underperform, indicating that not all models are equally 
suitable for this specific dataset. 
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Fig. 4. Comparative Analysis of datasets based on their accuracy for DoS 

attack. 

C. Adaptive DoS Attack Detection - Level 3 

The experiment [49] is done using the Mininet Simulator, 
and we use a Python file to collect the flow, port, and timing 
statistics. Network simulation is run for 250 minutes, and 
1,04,345 rows of data are collected. The simulation is run for a 
defined interval again, and more data can be collected. The test 
is divided into two phases. Initially, the simulation is started 
and kept ready to detect flows. Phase I – Normal simulation is 
done, allowing the flow of packets across all switches and 
controllers. Phase II – Attack is simulated, where 100 forged 

packets are sent. Following values of α, β, γ, and TH are 

taken as 0.75, 0.30, 0.70 and 1000, respectively. For Phase I: 
During this phase, data is gathered and data measuring the 
switch performance is measured, and the data is represented 
graph. From Fig. 5, it is clear that when there is no attack, the 
timeouts and discards are null. Also, the packets arrive in an 
orderly fashion. 

 
Fig. 5. Normal scenario (RTO vs discarded packets). 

The typical traffic exceeds the current traffic in the time 
slot as soon as the attack begins, as shown in Fig. 6. 

 
Fig. 6. Attack scenario (RTO vs discarded packets). 

 

Fig. 7. Interarrival time. 

Also, one can observe that the connections are 3 timeouts 
are 6. The number of packets discarded are way above 600. 
Looking at Fig. 7, the average interarrival time has gone below 
the packet interarrival time showing that it could be a low-rate 
DoS attack rather than congestion. 

V. CONCLUSION 

The results clearly indicate that the proposed method is 
effective against all modern DoS attacks in SDN. The level 1 
zero trust approach ensures that only verified clients get access 
to the SDN. Level 2 based on deep learning, ensures that flows 
are classified and only verified flows are allowed to move 
forward. In case when the attacker bypasses levels 1 and 2, the 
level 3 adaptive DoS detection mechanism will ensure that 
both fast and low rates are thwarted. Researchers used 
blockchain for ensuring a zero-trust approach in SDN, which is 
time-consuming and complex. Hashing ensures that the initial 
check is done quickly and accurately. Researchers used various 
hybrid models, but the LSTM+GRU gives accurate predictions 
with better precision and recall. Researchers working on fast 
and low-rate attacks haven't worked on a simple, lightweight, 
combined approach relevant to real-time SDNs. This solution 
can be integrated with contemporary IDPS, as it is flexible and 
scalable. 
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