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Abstract—Assessing nutritional status, particularly among 

children and pregnant women, necessitates accurate measurement 

of Mid-Upper Arm Circumference (MUAC). This research 

introduces a novel system for MUAC estimation from digital 

images using the Mask R-CNN algorithm, employing a top-down 

panoptic segmentation strategy. The proposed model was designed 

to identify the upper arm region within human body images and 

compute MUAC values autonomously. Mask R-CNN was selected 

due to its capacity to perform precise segmentation of objects 

within visually complex scenes, especially in the mid-upper arm 

area. Model training was conducted using a dataset of annotated 

images, with subsequent evaluation confirming its ability to 

reliably detect and measure MUAC. The system was validated 

using 72 image samples, yielding a mean absolute error (MAE) of 

2.31 cm when compared to manual measurements. Among these 

samples, 29.2% (21 individuals) exhibited a measurement 

discrepancy of 0 to 1 cm, 27.8% (20 individuals) showed a 1 to 2 

cm difference, and 43.1% (31 individuals) demonstrated 

deviations exceeding 2 cm. Despite some variations in 

measurement accuracy, the system presents a promising tool for 

enhancing the automation and efficiency of nutritional 

assessments. 
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I. INTRODUCTION 

Recent advancements in artificial intelligence and image 
processing have significantly impacted the medical and 
healthcare sectors. A prominent area of application is 
anthropometry, where these technologies have improved the 
accuracy and efficiency of assessing nutritional and health status 
through body measurements [1]. Amongst the various 
anthropometric indicators, Mid-Upper Arm Circumference 
(MUAC) has gained recognition as a critical metric for 
evaluating individual health and physical condition [2] [3] [4]. 

MUAC is particularly valued for its effectiveness in 
detecting nutritional deficiencies, especially in vulnerable 
populations such as pregnant women [5]. As a simple, non-
invasive, and rapid screening tool, MUAC is instrumental in 
identifying individuals at risk of Chronic Energy Deficiency 
(CED). CED during pregnancy poses a major public health 
concern, as it is linked to elevated risks of infection, anemia, 

hemorrhage, and adverse neonatal outcomes, including low birth 
weight (LBW) [6]. MUAC measurement below the widely 
accepted threshold of 23.5 cm is generally considered indicative 
of increased CED risk, necessitating further clinical evaluation 
and targeted nutritional support [7] [8]. Owing to its low cost, 
ease of use, and minimal equipment requirements, MUAC is 
particularly suitable for deployment in limited resource settings 
[9]. 

Traditionally, MUAC is measured by wrapping a flexible 
measuring tape around the midpoint of the upper arm. This 
process involves identifying anatomical landmarks, specifically 
the shoulder and the elbow—and determining the midpoint 
between them. The tape is then positioned horizontally and 
applied with sufficient tension to avoid measurement errors due 
to slackness or excessive compression [7]. Despite its 
practicality, this manual method is susceptible to variability, 
primarily due to inconsistencies in tape dimensions and user 
technique, which may compromise the reliability and accuracy 
of the measurements [10]. 

The advancement of technology, digital approaches are 
emerging as potentially more accurate, efficient, and scalable 
solutions [11][12][13][14][15]. Liu, Sowmya, and Khamis [16] 
showed that the photogrammetric method can produce precise 
MUAC measurements, with a Technical Error of Measurement 
(TEM) value of 3.76 mm and its reliability coefficient (R) 
reaching 0.99. However, this research has yet to tap the potential 
of the Mask R-CNN method, which has proven to be highly 
effective and can be generalized to various tasks, including 
complex analyses in medical imaging [17][18][19] and human 
pose estimation [20], making it highly suitable for the detailed 
segmentation required for accurate MUAC calculation from 
digital images. 

Top-Down Panoptic Segmentation approach utilizing Mask 
R-CNN is among the pertinent innovations in developing digital 
image-based MUAC measurement systems. In [20], Mask R-
CNN framework represents a robust methodology capable of 
concurrently performing object detection and generating precise 
segmentation masks for each detected object instance. 

Panoptic segmentation as introduced in [21]. It supports 
comprehensive scene interpretation by unifying instance and 
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semantic segmentation in single framework. This technique 
assigns each pixel to either distinct objects ("things", such as the 
upper arm) or homogeneous background regions ("stuff"), 
thereby generating semantically rich image representations, a 
critical requirement for anthropometric analysis based on digital 
images. 

The Top-Down approach is particularly advantageous for 
digital anthropometry, especially when implemented using 
models such as Mask R-CNN. This method operates in a 
hierarchical manner, beginning with the detection of regions of 
interest such as the upper arm through bounding boxes, followed 
by fine-grained segmentation within these localized areas. Mask 
R-CNN exemplifies this approach by coupling coarse object 
detection with subsequent mask refinement. Central to this 
process is the Region Proposal Network (RPN), which identifies 
candidate object regions [22] prior to the mask generation stage. 
This sequential pipeline enhances computational efficiency by 
concentrating processing resources on the most relevant portions 
of the image. 

Integrating panoptic segmentation with a Top-Down 
architecture, the accuracy of MUAC measurement is 
substantially improved. This combination streamlines image 
analysis workflows, making it a promising innovation for 
applications in anthropometry and broader health-related fields. 

Despite recent progress in digital anthropometry, existing 
image-based MUAC methods still leave three practical gaps. 
First, most pipelines do not employ a top-down 
instance/panoptic segmentation strategy (e.g., Mask R-CNN 
with RPN/RoIAlign/FPN) to robustly isolate the upper-arm 
region under real-world variation in pose, clothing, and 
background, limiting measurement reliability. Second, pixel-to-
centimeter scaling is commonly tied to specialized hardware or 
fixed capture setups, offering no simple, low-cost calibration 
standardizable across sites in resource-constrained settings. 
Third, there is limited end-to-end validation against manual 
MUAC using interpretable metrics that jointly assess region 
localization (e.g., IoU) and circumference agreement (e.g., MAE 
in cm) on real subjects. In response, we: i) develop a top-down 
panoptic-segmentation pipeline based on Mask R-CNN to detect 
and segment the upper arm from complementary front and side 
views, ii) formalize an ellipse-based MUAC estimation that 
fuses both views, and iii) introduce a lightweight, field-feasible 
pixel-to-centimeter scaling procedure using a ubiquitous wall 
power outlet as reference. We then evaluate 
detection/segmentation and MUAC agreement against manual 
measurements on 72 individuals. 

Accordingly, this study develops a top-down panoptic-
segmentation pipeline based on Mask R-CNN (with RPN, 
RoIAlign, and FPN) to detect and segment the upper-arm region 
from two complementary views (front and side), and formalizes 
MUAC estimation using an ellipse-based circumference 
approximation that combines the front- and side-view 
measurements. To realize field feasibility, the pipeline includes 
a lightweight pixel-to-centimeter scaling procedure that uses a 
standardized wall power-plug as a ubiquitous reference object. 
The system is implemented in Detectron2 [28] and evaluated 
using Intersection over Union (IoU) [25] for 
detection/segmentation and mean absolute error (MAE, cm) for 

MUAC agreement with manual measurements, alongside 
distributional error analysis and training-configuration 
comparisons. 

The significance of this work is twofold. Practically, it 
reduces dependence on operator skill and measurement 
hardware by shifting MUAC assessment to a camera-based, 
low-cost workflow that can be standardized across sites and is 
well-suited to limited-resource environments. Technically, it 
demonstrates how top-down panoptic segmentation can 
strengthen digital anthropometry by delivering reliable region 
isolation prior to metric estimation, laying the groundwork for 
near-real-time and mobile implementations that can support 
large-scale nutritional screening and follow-up [21]. 

To guide the reader, the remainder of this study is organized 
as follows: Section II presents the related works. Section III 
(Materials and Methods) details the dataset and annotation 
protocol, image-capture standards, reference-object scaling, the 
MUAC estimation formulation for front/side views (ellipse-
based), the MAE metric, and the Mask R-CNN–based top-down 
panoptic segmentation pipeline. Section IV (Implementation 
and Results) first describes the dataset preparation and training 
environment, then details the system architecture. It also 
presents a comparative evaluation across training iterations and 
model variants (loss and accuracy), and reports the test results—
detection IoU; MUAC–vs–manual agreement summarized by 
MAE (in cm) with its error distribution; and qualitative top-
down panoptic-segmentation visualizations. Section V 
(Discussion) analyzes the findings, limitations, and avenues for 
improvement. Section VI (Conclusion) summarizes the 
contributions and key findings. Finally, acknowledgments are 
provided. 

II. RELATED WORK 

Prior digital anthropometry solutions span: i) manual tape 
measurement, ii) monocular photogrammetry and regression, 
iii) 3-D imaging systems, and iv) learning-based 
detection/segmentation pipelines. 

1) Manual tape. MUAC is commonly measured by 

wrapping a dedicated MUAC tape around the upper arm; 

however, design differences (e.g., material thickness and scale 

placement) introduce systematic measurement discrepancies, 

and there is no single global tape specification—prompting 

calls for common design standards and standardized reporting 

[10]. 

2) Single-camera photogrammetry/regression. Liu et al. 

showed that MUAC (and height) can be estimated from images 

using linear regression under controlled capture with high 

reliability (TEM≈3.76 mm, R≈0.99). These systems typically 

rely on strict imaging geometry and explicit 

calibration/landmarking, and do not perform instance-level 

region isolation of the upper arm [16]. 

3) 3-D imaging. Automated 3-D anthropometry has 

demonstrated precise body measurement extraction, including 

in low-resource settings, but requires dedicated hardware and 

controlled environments that can increase deployment cost and 

operational complexity [11], [29], [14]. 
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4) Learning-based segmentation. Mask R-CNN and related 

top-down components (RPN, RoIAlign, FPN) [20], [24] deliver 

strong instance segmentation across diverse medical-imaging 

tasks, including organ and lesion analysis [17]–[19]. To our 

knowledge, integrating this paradigm into an end-to-end 

MUAC pipeline—with explicit centimeter scaling and paired-

view fusion—remains underexplored. 

Our study advances category (iv) by: 1) using a top-down 
Mask R-CNN pipeline to robustly isolate the upper-arm region 
from both front and side views, 2) fusing the views via an 
ellipse-based circumference formulation, and 3) introducing a 
lightweight, field-feasible pixel-to-centimeter calibration using 
a ubiquitous wall power outlet as the reference object. We 
evaluate both localization (IoU) and agreement with manual 
MUAC (MAE), on 72 subjects, thereby reporting interpretable, 
end-to-end accuracy rather than proxy metrics alone. Compared 
to (ii), our approach avoids hand-crafted landmarking and yields 
explainable, mask-level measurements; compared to (iii), it 
requires only commodity cameras and a common reference 
object, improving deployability in resource-constrained settings 
[16], [11], [29]. 

Across categories, open challenges remain: a) robust 
segmentation under clothing–background similarity and sub-
optimal pose; b) calibration methods that are reference-free or 
self-calibrating; c) generalization beyond standardized capture; 
and d) near-real-time, mobile deployment. These gaps motivate 
methods that combine reliable instance-level isolation with 
simple, field-feasible calibration and interpretable 
circumference estimation. 

III. MATERIALS AND METHODS 

This section establishes the methodological foundation of 
the proposed MUAC-from-image system. We first outline the 
Mask R-CNN–based top-down panoptic segmentation 
pipeline—covering the backbone-FPN architecture, 
RPN/ROIAlign heads, and instance masks—then formalize 
MUAC estimation from front/side views via an ellipse-based 
circumference formulation. We also define the MAE metric and 
detail the dataset acquisition and image standards, COCO-
formatted annotations (person, hand, upper arm) prepared in 
Roboflow, and the pixel-to-centimeter scaling derived from a 
wall power-plug reference. 

A. Mask R-CNN 

In the realm of instance segmentation, Mask R-CNN 
introduces a substantial enhancement, enhancing the Faster R-
CNN framework by integrating both object detection and 
detailed pixel-wise delineation of individual objects [20]. Its 
primary innovation lies in the addition of a separate, parallel 
pathway dedicated to producing binary segmentation masks for 
each proposed region, known as a Region of Interest (RoI). This 
structure allows the model to simultaneously perform object 
classification, precise localization, and segmentation at the 
instance level. 

The model employs a two-stage processing pipeline, as 
illustrated in Fig. 1. Initially, the Region Proposal Network 
(RPN) [22] identifies candidate object regions within the input 
image, generating a set of preliminary bounding boxes. These 

proposals are subsequently refined in the second stage, where 
features corresponding to each RoI are extracted using the 
RoIAlign operation. This operation is critical for maintaining 
spatial alignment between the input feature map and the sampled 
features, which directly contributes to the precision of the 
segmentation output. Utilizing these aligned features, the 
network proceeds to classify each object, adjust the bounding 
box coordinates, and produce a binary segmentation mask 
delineating the object’s spatial boundaries. 

 

Fig. 1. Architecture of Mask R-CNN. 

A key advancement in Mask R-CNN is the replacement of 
the RoIPool layer with RoIAlign. RoIPool’s quantization step 
often introduces spatial misalignments that compromise mask 
accuracy. RoIAlign mitigates this issue by avoiding 
quantization, preserving the exact spatial information during 
feature extraction. This refinement substantially improves both 
detection precision and the quality of the generated masks. 

Since its introduction, Mask R-CNN has consistently 
demonstrated cutting-edge performance across prominent visual 
recognition benchmarks, particularly the COCO (Common 
Objects in Context) dataset [23]. Its exceptional accuracy has 
contributed to its broad adoption in diverse computer vision 
applications, extending well beyond its original roles in instance 
segmentation and object detection to encompass more advanced 
tasks, including human pose estimation. 

The operational workflow of the Mask R-CNN architecture 
is organized into two main phases. Initially, a deep 
convolutional neural network—typically a ResNet variant—
serves as the backbone to derive hierarchical feature maps from 
the input image. The extracted features are then passed to the 
RPN, which identifies potential object-containing regions. In the 
subsequent phase, the RoIAlign mechanism is employed to 
extract accurately aligned features corresponding to each 
proposed region. These refined features are subsequently 
utilized to simultaneously carry out object categorization, refine 
bounding box coordinates, and generate segmentation masks at 
the pixel level for individual instances. 

In first stage, backbone network typically ResNet produces 
multi-scale feature maps denoted as C2 through C5, 
corresponding to different levels of convolutional hierarchy. 
These maps capture progressively abstract representations, with 
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deeper layers encoding semantic information and shallower 
layers retaining fine-grained spatial details. 

To address scale variation among objects, Mask R-CNN 
integrates a Feature Pyramid Network (FPN) [24]. FPN 
constructs a multi–level feature hierarchy (P2–P5) by combining 
high-level semantic features from deeper layers with spatially 
detailed information from earlier layers through a top–down 
pathway and lateral connections. This multi–scale 
representation enhances the model`s ability to accurately detect 
and segment objects of various sizes within the same image. 

Once the feature map is formed, RPN generates proposals 
for areas potentially containing objects. Each area proposal is 
assessed based on two main outputs: 

 Binary Class: Determines whether the area contains 
objects or not. 

 Bounding Box Delta: Correction of the bounding box on 
the proposal area to improve the accuracy of object 
position prediction. 

Next, the area proposals generated by RPN are processed 
using ROI Align, a technique that aims to extract features with 
a fixed size, even though the size of the area proposals varies. 
ROI Align improves the shortcomings of the ROI Pooling 
method, which tends to produce quantization errors in the 
detection process. 

During the second phase, the region proposals produced by 
the Region Proposal Network (RPN) are further processed by 
the Mask R-CNN head, which simultaneously carries out object 
classification, refines bounding box coordinates, and generates 
segmentation masks. This stage produces three principal 
outputs: 

 Object Classification: The model assigns a category label 
to each detected object based on its learned features. 

 Bounding Box Regression: The system adjusts the 
coordinates and dimensions of the bounding boxes to 
more accurately enclose the detected objects. 

 Mask Prediction: In addition to detecting objects, Mask 
R–CNN produces a binary mask for each identified 
instance. This mask delineates the specific pixels 
associated with the object, enabling precise instance-
level segmentation within the image. 

This stage enables Mask R–CNN to provide outputs like 
bounding boxes, class labels, and binary masks that map object 
areas more accurately. Thus, Mask R–CNN is not only able to 
detect the position of objects but also provide detailed 
segmentation for each detected object. Final result of Mask R–
CNN visualized by displaying the bounding box, class label, and 
mask on the input image. 

B. Measurement Upper Arm Circumference (MUAC) 

MUAC serves as a simple yet effective anthropometric 
measure for evaluating the nutritional status of pregnant women, 
particularly in screening for CED. Measure value below 23.5 cm 
is recognized as indicative of elevated CED risk, which is 
associated with adverse maternal outcomes and an increased 
likelihood of delivering infants with LBW. 

Traditionally way assessed using manual measuring tapes, 
MUAC in this study is estimated through a digital method that 
leverages upper arm image segmentation. The approach begins 
with Mask R-CNN, which detects and accurately segments the 
upper arm within the image. From the segmentation mask’s 
bounding box, specific geometric features—namely diagonal 
and horizontal lengths—are extracted to estimate MUAC. 

For images captured from a frontal view, MUAC is inferred 
from the length of a diagonal line extending from the top-right 
to the bottom-left corner of the bounding box. In lateral view 
images, estimation is based on the horizontal distance from the 
midpoint of the left vertical edge of the bounding box to its 
geometric center. This view-dependent measurement technique 
is adapted from established methodologies [16], which also 
employed diagonal and horizontal representations to 
approximate upper arm dimensions. The proposed automated 
method aims to enhance the precision and consistency of MUAC 
estimation in digital anthropometric analysis. 

 

Fig. 2. A method for measuring MUAC. 

The calculation method for MUAC is shown in Fig. 2. The 
front is the result of MUAC measurement with the picture taken 
from the front, and the side is the result of MUAC measurement 
with the picture taken from the side. Because the shape of the 
MUAC is closer to an ellipse than a circle, we will use the 
elliptical equation [see Eq. (1)]: 

Circumference = 1/2π (Front + Side) (1) 

C. Mean Absolute Error (MAE) 

MAE is one of the most frequently used evaluation metrics 
to measure the error rate in a regression or forecasting model. 
MAE quantifies the average magnitude of the absolute 
differences between observed values and corresponding model 
predictions, providing a straightforward indication of the 
model’s predictive accuracy [26]. 

MAE is a commonly used performance metric that quantifies 
the average magnitude of errors between predicted values (ŷᵢ) 
and actual ground truth values (yᵢ). It calculates the absolute 
differences without taking into account the direction of the 
errors, thereby providing a clear and intuitive interpretation in 
the same units as the original data. Due to this property, MAE is 
particularly well-suited for image-based measurement 
applications, such as those investigated in this study. The 
mathematical formulation of MAE is presented as follows [see 
Eq. (2)]: 
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(2) 

where, 

 𝑦i is the manual measurement value (reference) 

 𝑦̂𝑖 is the system measurement value 

 n is the amount of data 

D. Dataset 

This study collected the dataset in person at the Faculty of 
Public Health, University of North Sumatra. Pictures were taken 
while the individual stood upright, with the left hand 
unobstructed by clothing and raised slightly, while the right hand 
was pointed straight down, as shown in Fig. 3. There was a total 
of 392 images, as shown in Fig. 4, but only 144 images were 
suitable for MUAC measurement. The reason is three-fold: i) 
Four pictures were taken from different angles during data 
collection. Only two images per individual were used in this 
study, so the remaining two were discarded. ii) The profile data 
of the individual in the image was not found, making the image 
unusable. iii) The captured image does not conform to the image 
standard. 

 
Fig. 3. A dual-angle picture in-pose for MUAC measurement. 

 
Fig. 4. The annotated set of images. 

Images that do not meet the image standard cannot be 
included in this study because testing results will differ 
significantly from those that meet the image standard. Also, the 
measurement results will not match because the images that do 
not meet the image standards have different camera-to-object 
distances. The image standard detail such as Dimension: 2340 × 
4160 pixel; Resolution:72 DPI; File Type: JPG; Camera to 
object distance: 180 cm. The collected data set was manually 
annotated on the Roboflow platform [27]. Annotation is done by 
marking bounding areas and bounding boxes to the objects to be 

detected in the image. The images in this dataset are put into 
three classes: person, hand, and upper arm. One hundred forty-
four images were manually annotated. Each person has two 
images: a front-view image and a side-view image. The data 
labeling is done on a total of 72 individuals. 

After annotating the images, a standard dataset suitable for 
model training was built. The dataset creation process was 
performed using the same annotation platform. This dataset is 
generated in JSON format, which is adapted to the COCO 
(Common Objects in Context) format so that it can be used 
directly in the Mask R-CNN architecture. 

We used an in-house, task-specific dataset—rather than 
public corpora—because generic scene datasets lack MUAC-
specific labels, paired front/side views, and the controlled 
capture conditions described above that are required for reliable 
pixel-to-centimeter scaling. These properties align with our 
method’s needs (upper-arm detection/segmentation and dual-
view geometry) and enable a faithful end-to-end evaluation with 
Mask R-CNN. We acknowledge the modest dataset size and 
controlled setting as limitations and plan to expand to more 
diverse populations and capture conditions in future work. 

E. Reference Object Method 

To establish a scale for measurements within the image, we 
employ a reference object method by using a known object—a 
standard power plug- in this study—as a reference for scaling. 
This approach relies on the known dimensions of the reference 
object to infer measurements within the image. The power plug 
is a standard object because its dimensions are typically 
standardized and can be reliably measured. 

 
Fig. 5. (Left) Locating the power plug on the left side of the wall, and 

(Right)  cropping the power plug with an image editor. 

In Fig. 5, two images are presented to illustrate the process. 
The Right image shows an MUAC individual standing in front 
of a wall with a power plug visibly mounted on it. This initial 
image captures the scene as it appears naturally, with the power 
plug as the calibration reference object. The Left image in Fig. 5 
shows the result after the power plug has been isolated by 
cropping the original image using Adobe Photoshop. This 
cropping step focuses on the power plug, removing extraneous 
elements from the image to allow for precise measurement. 

 
Fig. 6. Determining the power plug's height using a measuring tape. 
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Fig. 7. General architecture of proposed system. 

Fig. 6 shows the physical measurement of the actual power 
plug using a measuring tape, which determines its height to be 
8.5 cm. Together, the equivalent height in pixels after measuring 
the power plug with digital imaging software is the width 297 
pixels and height 136 pixels. These measurements are critical for 
calculating the scale factor that relates pixel dimensions in the 
image to real world dimensions. 

The scale is calculated using the following equation: 

Scale = y : ŷ (3) 

The variable y refers to the physical height of the power plug 
(8.5 cm, and the variable ŷ refers to the height of the power plug 
in pixels (136 pixels). After plugging the values measured 
beforehand into the equation, the scale is computed: Scale = 8.5 
cm: 136 px. 

Simplifying this ratio, we divide both sides by 8.5, yielding 
1 : 16. This means that 16 pixels in the image correspond to 1 
cm in the real world. In other words, the pixel-to-centimeter 
conversion factor is 16 pixels/cm [see Eq. (3)]. This scale factor 
is then applied to all object detection and segmentation results 
obtained from the image. For example, if an object detected in 
the image has a height of 48 pixels, its real-world height would 
be 48 / 16 = 3 cm. 

IV. IMPLEMENTATION AND RESULTS 

This section presents the implementation and empirical 
findings: dataset preparation and training on Google Colab using 
Detectron2 with Mask R-CNN-FPN, the end-to-end system 
architecture, and a performance study across training iterations 
(1000 versus 2000). We then report testing and evaluation 
results—including IoU-based detection accuracy, MUAC 
measurement comparisons with the resulting MAE, and the 
accuracy distribution—and illustrate the top-down panoptic 
segmentation outputs that underpin the measurements. 

A. Dataset and Training 

In this study, the dataset was prepared and processed using 
the Roboflow platform, a tool specifically developed to optimize 
workflows in computer vision applications. During the data 
collection phase, relevant images were gathered and 
subsequently organized within Roboflow to ensure 
compatibility with model training requirements. This 
preparation process likely encompassed several key steps, 

including image annotation (e.g., labeling objects within 
images), data augmentation (e.g., applying transformations such 
as rotation or scaling to enhance dataset variability), and 
partitioning the dataset into training, validation, and test subsets. 
Roboflow’s integrated functionalities—such as automated 
preprocessing and annotation tools—facilitate the creation of 
well-structured and machine learning-ready datasets. 

Following the completion of dataset preparation, model 
training was conducted using Google Colab (Google LLC). 
Cloud-based platform offers access to significant computational 
resources, including Graphics Processing Units (GPUs), at little 
to no cost. Google Colab was using as the training environment 
primarily due to its robust GPU support, which is essential for 
efficiently accelerating the computationally intensive process of 
training deep learning models. The training efforts within this 
environment centered explicitly on the Mask R-CNN model, a 
novel architecture renowned for its efficacy in object detection 
and instance segmentation. 

This research employs Detectron2 [28], a comprehensive 
library developed by Facebook AI Research (FAIR). Detectron2 
facilitates the execution of complex, high-precision inference 
tasks, a capability leveraged in this study for model evaluation 
on the prepared dataset. For the specific architectural 
implementation herein, the Detectron2 framework was 
configured to utilize the Mask R-CNN model in conjunction 
with FPN. 

B. System Architecture 

The diagram depicts the data flow through the system, 
starting from the input images, followed by feature extraction 
using a backbone network. The system then branches into two 
main tasks: 1) a box classification and regression head, which 
predicts the object class and refines the bounding box 
coordinates, and 2) a mask prediction head, which generates a 
segmentation mask for each detected object. The final output is 
designed to produce measurements for the MUAC using the 
aforementioned algorithms. Fig. 7 illustrates the general 
architecture of the proposed system, providing a visual overview 
of the workflow. 

C. Model Performance Evaluation with Varying Iterations 

To evaluate the impact of training iterations on model 
performance, we compare the total loss and classification loss of 
different models trained for 1000 and 2000 iterations, as shown 
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in Table I. Total loss is a comprehensive metric that measures 
the overall error of the model, encompassing components such 
as classification, bounding box regression, segmentation, and 
object proposal. Classification loss quantifies the model's error 
in assigning objects to their correct classes. Lower values for 
both metrics indicate improved model performance. 

TABLE I.  PERFORMANCE COMPARISON FOR ALL TESTED MODELS 

Model Accuracy (P) Total Loss Class Loss 

Faster R–CNN R50-

FPN-3x (1000 iterations) 
0.96 0.33 0.08 

Faster R–CNN R50-

FPN-3x (2000 iterations) 0.98 0.19 0.05 

Mask R–CNN R50-FPN-
3x (1000 iterations) 0.96 0.41 0.08 

Mask R–CNN R50-FPN-
3x (2000 iterations) 0.98 0.26 0.04 

Mask R–CNN R101-C4 

(1000 iterations) 0.98 0.40 0.04 

Mask R–CNN R101-C4 

(2000 iterations) 
0.99 0.26 0.02 

Table I provides a comparative summary of performance 
results for multiple models, including Faster R–CNN and Mask 
R–CNN variants. For instance, as illustrated by data also 
visualized in Fig. 8, extending the training of the Mask R–CNN 
R50-FPN-3x model from 1000 to 2000 iterations led to a 
reduction in total loss from 0.41 to 0.26 and in classification loss 
from 0.08 to 0.04. Similarly, for the Faster R-CNN R50-FPN-3x 
model, an identical increase in training iterations (from 1000 to 
2000) yielded a decrease in total loss from 0.33 to 0.19 and 
classification loss from 0.08 to 0.05. This trend of improved loss 
metrics with more extensive training was consistent across other 
evaluated models. For example, the Mask R-CNN R101-C4 
model exhibited a drop in total loss from 0.40 to 0.26 and in 
classification. 

 
Fig. 8. Training loss curves for Mask R-CNN R50-FPN-3x. The plot 

illustrates the decrease in total loss and class loss over 2000 training 

iterations. The continued reduction in both loss metrics suggests that training 

for 2000 iterations yields a more refined model compared to training for only 
1000 iterations. 

Consistent with the observed improvement in loss metrics, 
the accuracy (P)—the proportion of correct predictions—also 
increased with more training iterations. For example, the 
accuracy of the Mask R-CNN R50-FPN-3x model improved 

from 0.96 to 0.98 when its training was extended from 1000 to 
2000 iterations. Similarly, the Mask R-CNN R101-C4 model's 
accuracy rose from 0.98 to 0.99 under the same increase in 
training duration. 

The presented results demonstrate that increasing training 
iterations from 1000 to 2000 consistently reduces total and 
classification losses across all tested models. This reduction is 
indicative of enhanced model convergence and lower overall 
error. The concurrent improvements observed in accuracy 
further corroborate this finding. Therefore, predicated on these 
empirical observations, this study adopts models trained for 
2000 iterations, as they exhibit demonstrably superior 
performance characterized by minimized error and heightened 
accuracy. 

D. Testing and Evaluation 

Following the completion of model training, evaluation and 
testing procedures are conducted within the Colab notebook 
environment, where inference results are visualized directly on 
the input images. This workflow is seamlessly integrated with 
cloud storage services, which are utilized to manage both the 
datasets and the trained model files. To assess the accuracy of 
object detection, the IoU metric is employed as a key 
performance indicator. The IoU results for all evaluated images 
are presented in Table II. 

TABLE II.  IOU CALCULATION RESULTS 

Individual IoU for front-view image IoU for side-view image 

1 0,78 0,75 

2 0,80 0,82 

3 0,79 0,84 

4 0,90 0,73 

5 0,87 0,83 

6 0,77 0,61 

7 0,90 0,78 

8 0,87 0,79 

9 0,82 0,87 

10 0,83 0,79 

11 0,81 0,78 

12 0,81 0,83 

13 0,0 0,63 

14 0,81 0,76 

15 0,82 0,70 

16 0,86 0,92 

17 0,81 0,74 

18 0,85 0,90 

19 0,88 0,87 

20 0,83 0,71 

21 0,89 0,69 

22 0,80 0,62 

23 0,83 0,82 

24 0,81 0,70 

25 0,85 0,85 

26 0,78 0,78 
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27 0,88 0,63 

28 0,83 0,69 

29 0,85 0,88 

30 0,76 0,79 

31 0,81 0,78 

32 0,87 0,67 

33 0,89 0,79 

34 0,73 0,64 

35 0,78 0,85 

36 0,89 0,68 

37 0,76 0,81 

38 0,89 0,82 

39 0,89 0,88 

40 0,79 0,88 

41 0,85 0,70 

42 0,72 0,59 

43 0,76 0,79 

44 0,81 0,88 

45 0,86 0,70 

46 0,76 0,69 

47 0,87 0,76 

48 0,85 0,69 

49 0,76 0,79 

50 0,89 0,77 

51 0,79 0,65 

52 0,83 0,79 

53 0,89 0,68 

54 0,80 0,68 

55 0,82 0,88 

56 0,79 0,78 

57 0,86 0,88 

58 0,89 0,85 

59 0,87 0,74 

60 0,85 0,84 

61 0,81 0,79 

62 0,86 0,88 

63 0,91 0,73 

64 0,88 0,81 

65 0,82 0,71 

66 0,74 0,76 

67 0,87 0,69 

68 0,87 0,86 

69 0,90 0,82 

70 0,81 0,77 

71 0,85 0,78 

72 0,83 0,80 

After inference, the output is extracted to the CPU for easier 
processing. From here, the bounding boxes, masks, class labels, 
and prediction scores are extracted from the results. The class 

indices corresponding to the objects to be detected are then 
identified, namely "person", "hand", and "upper arm". 

Next, iterations are performed on each class to find the best 
detection based on the highest score value of each detected 
object. If the processed class is "upper arm", then the mask's 
diagonal and horizontal lengths are calculated using the 
CalculateDiagonalLength and HorizontalCutLength algorithms. 
The best mask for each class is then saved for further 
visualization. The saved information includes the bounding box, 
mask, score, and class label of the detection result. 
Subsequently, after measuring the MUAC of 72 individuals, the 
results obtained can be seen in Table III. 

TABLE III.  COMPARISON OF MUAC MEASUREMENTS 

Individual 
Manual measurement 

(cm) 
System measurement (cm) 

1 22,5 25,61 

2 26 25,71 

3 29 31,69 

4 27,5 32,58 

5 24 24,92 

6 32,5 29,73 

7 29 31,60 

8 25,5 26,20 

9 23,5 24,73 

10 27 31,20 

11 32 33,17 

12 29 29,63 

13 28,5 54,46 

14 24 25,32 

15 26 24,33 

16 26,5 26,98 

17 24 26,39 

18 26 29,04 

19 21,5 26,98 

20 24 26,69 

21 23 26,49 

22 27 25,12 

23 28 32,09 

24 29 28,65 

25 33 33,26 

26 24 24,53 

27 28 30,81 

28 27 29,93 

29 22 23,84 

30 27 29,53 

31 28 31,50 

32 21 23,94 

33 30,5 31,30 

34 26 26,59 

35 26 27,18 
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36 35 40,52 

37 35 32,09 

38 26,5 29,14 

39 27,5 28,95 

40 25,5 26,39 

41 23 23,25 

42 27 25,32 

43 27 30,52 

44 22 23,16 

45 29 33,36 

46 27 25,81 

47 26,5 28,36 

48 24,5 23,35 

49 29 32,58 

50 26 30,12 

51 30 35,62 

52 20 20,02 

53 23 23,16 

54 23 24,92 

55 25,5 26,30 

56 23 23,65 

57 29 32,97 

58 29 26,79 

59 22 20,80 

60 30 29,53 

61 24 25,90 

62 29,5 29,63 

63 24 25,51 

64 31 31,4 

65 30 32,18 

66 32 34,05 

67 29 29,14 

68 31,5 33,85 

69 28 29,24 

70 26 26,79 

71 20,5 21,88 

72 26 27,08 

73 22,5 25,61 

74 26 25,71 

The overall system accuracy can be seen in Table IV, which 
provides a breakdown of the system's accuracy when tested on 
a dataset of 72 individuals using Google Colab as the training 
and inference platform. 

TABLE IV.  ACCURACY DISTRIBUTION 

Total Data 72 Individuals 

0 - 1 cm Results 21 Individuals 

1 - 2 cm Results 20 Individuals 

Results > 2 cm 31 Individuals 

The distribution of results presented in Table IV elucidates 
the system's overall accuracy profile and identifies key 
limitations. While a substantial proportion of MUAC 
predictions achieve high accuracy (29.2% exhibiting a 0–1 cm 
difference from actual values) and moderate precision (27.8% 
with a 1–2 cm difference), the considerable percentage (43.1%) 
of predictions deviating by more than 2 cm suggests a lack of 
uniform precision across the study population. This 
inconsistency in performance could plausibly arise from various 
factors. These may include disparities in lighting conditions 
during image acquisition, instances of occlusion affecting the 
arm region, or natural variations in the anatomical appearance of 
the MUAC region across individuals, all of which can adversely 
affect the performance of the underlying Mask R–CNN model 
responsible for object detection and segmentation. 

An evaluation was conducted using the Mean Absolute Error 
(MAE) metric, as defined in Eq. (2), to assess system 
performance quantitatively. This metric computes the mean 
absolute deviations of the system-generated measurements and 
the manual (ground truth) measurements for all individuals in 
the dataset. The analysis yielded an MAE of 2.31 cm. This 
result, representing the average discrepancy between the 
system's estimates and the actual values, highlights the necessity 
for additional improvements to improve the system’s 
measurement precision. 

E. Top-Down Panoptic Segmentation Approach 

The system's measurement process was visualized using 
Detectron2's Visualizer, a dedicated utility for illustrating the 
outcomes of object detection and segmentation procedures. This 
tool graphically depicts the boundaries and masks of detected 
objects (specifically the upper arm in this context), 
superimposing key measurement indicators, such as diagonal 
and horizontal lines, onto the segmented areas. Such visual 
outputs are invaluable for qualitatively evaluating the system's 
detection and segmentation performance. Furthermore, they 
play a critical role in validating quantitative measurements by 
enabling direct comparison with ground truth data, which 
ultimately supports the assessment of the system's output 
reliability. 

 
Fig. 9. Top-down detection and segmentation results for individual 52. 

Fig. 9 is an example case with an estimated MUAC 
measurement that is the closest to the ground truth. The length 
of the diagonal line intersecting the detected mask area is 84 
pixels. Meanwhile, the horizontal line bisecting the mask is 120 
pixels long. The measurement results in pixel units are then 
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converted into centimeter (cm) units using a conversion factor, 
where 1 cm is equivalent to 16 pixels [derived from Eq. (3)]. 

After the conversion, it is found that the length of the 
diagonal line intersecting the mask (from the front image) is 5.25 
cm, while the length of the horizontal line intersecting the mask 
(from the side image) is 7.5 cm. Next, these values are used in, 
as shown in Eq. (1), the elliptical formula to calculate the overall 
MUAC, which is 20.0175 cm. 

For further examples, the following two instances are system 
MUAC measurements with a significant difference from the 
corresponding ground truth MUAC. 

 
Fig. 10. Top-down detection and segmentation results for individual 48. 

Fig. 10 illustrates an example of an image showing the result 
of a MUAC measurement that deviates by 1 to 2 cm from the 
ground truth value. In the image, the length of the diagonal line 
intersecting the detected mask area is 98 pixels (converted to 
6.125 cm). Meanwhile, the length of the horizontal line bisecting 
the mask is 140 pixels (converts to 8.75 cm). Based on the data 
presented in Table III, the ground truth of individual 48 is 24.5 
cm. Thus, the difference between the computed result and the 
ground truth is 1.15 cm. 

 
Fig. 11. Top-down detection and segmentation results for individual 13. 

In another case, Fig. 11 is an example of images with the 
results of a MUAC measurement with a difference of > 2 cm 
compared to the actual MUAC measurement. The diagonal line 
intersecting the mask is 346 pixels (converts to 21.65 cm), while 
the horizontal line intersecting the mask is 209 pixels (converts 
to 13.06 cm). Plugging these values into the elliptical formula, 
we get the circumference measurement of 54.46 cm. 

V. DISCUSSION 

The results of the IoU calculation in Table I shows that the 
model achieves reasonably good accuracy. The average for IoU 
calculation results for images taken from the front reaches 0.82, 

which is quite close to 1. The average IoU calculation results for 
images taken from the side reach 0.77, shows that the model is 
better at detecting pictures taken from the front than those taken 
from the side. 

In Table III, the actual MUAC of individual 52 is 20 cm. So, 
the calculation result in this case has a difference of about 0.15 
cm with the ground truth. The difference is not too high due to 
the person doing a moderately good pose where the arm is raised 
high enough so that the system can detect the upper arm well. 
The person also raises their sleeves, so that the upper arm is 
more straightforward to detect. 

In some cases, as seen with individual 13, there is a notable 
variation between the estimated MUAC and the ground truth. In 
the case of individual 13, the size difference reaches 25.96 cm. 
This size difference is important because the system does not 
detect the upper arm correctly. As can be seen in Fig. 11, the 
system detects the upper arm on the person's left hand. This 
detection error is caused by the individual wearing a white shirt 
that resembles the background color of the picture. Furthermore, 
the participant's sleeve remained unraised, a circumstance that 
posed an additional challenge to the system's ability to perform 
accurate detection and segmentation of the target region. 

Future Work: Building on our error analysis—evidenced by 
the front- versus side-view IoU gap (0.82 vs. 0.77) and failures 
such as individual 13, where clothing–background similarity 
and unraised sleeves led to mis-segmentation—we outline four 
concrete directions with measurable targets: 1) Robustness to 

clothing–background similarity and atypical poses: targeted 

augmentations (color/texture jitter, occlusion/cutout, pose 
perturbation), hard-negative mining, and boundary-refinement 

heads; target ≥ +0.03 absolute IoU on side view and ≥ 20% 

reduction in MUAC errors > 2 cm. 2) Calibration beyond site-
specific objects: ablate the current outlet-based scaling against 
portable fiducials (checkerboard/ArUco) and reference-

free/self-calibrating options; target ≤ 1.5× variance relative to 

the best method and < 5% catastrophic scale failures. 3) View 
fusion and measurement modeling: benchmark the current 
ellipse formulation against (a) robust statistics over multiple per-
view cuts and (b) a small interpretable regressor from per-view 

mask features; target ≥  0.3 cm MAE reduction without 

sacrificing interpretability. 4) Real-time, on-device deployment 
and prospective validation: compress the model 
(pruning/quantization), profile on mobile hardware, and run a 
head-to-head study against trained operators using standardized 

MUAC tapes; target ≤ 200 ms end-to-end latency per view with 

≤  +0.2 cm MAE degradation versus desktop, intraclass 

correlation ≥  0.9, and Bland–Altman limits of agreement 

within ±3 cm [29]. 

VI. CONCLUSION 

The Mask R-CNN model accurately detects the upper arm 
and other body parts. This shows good potential for object 
segmentation, especially in the case of MUAC measurement. 
Based on the IoU calculation, 0.82 was obtained for images 
taken from the front angle and 0.77 for pictures taken from the 
side. These high IoU values indicate that the applied Mask R-
CNN model can produce segmentations close to the annotated 
ground truth mask, especially in images that meet the image 
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standards. This value also indicates that the model can detect 
upper-arm objects better when the image is taken from the front. 
This result supports the effectiveness of the system for MUAC 
measurement. 

The MUAC measurement results obtained through the 
digital imaging system show variations in accuracy depending 
on the quality of the image. As seen in Fig. 9, when the photos 
are taken with closer compliance to the image standard, the 
system measurements can closely resemble the manual 
measurements (higher accuracy). However, significant 
differences between system measurements and manual 
measurements can occur, as shown in Fig. 10 and Fig. 11, 
indicating that the system's accuracy will decrease, if the 
individual does not show the upper arm clearly and the color of 
the sleeve matches or resembles the background color. 

Capturing images with a frontal viewing angle, proper 
distance, and adequate lighting tends to produce more accurate 
measurement results. This emphasizes the importance of quality 
and consistency in the image capture process to ensure that the 
automated measurement system can provide accurate and 
reliable results. 

Evaluation using the Mean Absolute Error (MAE) metric 
resulted in an average error of 2.31 cm between system 
measurements and manual measurements. Of the 72 image 
samples tested, 21 individuals (29.2%) had measurement 
differences of 0-1 cm, 20 individuals (27.8%) had differences of 
1-2 cm, and 31 individuals (43.1%) had differences of more than 
2 cm. Thus, further development is expected to overcome the 
problems found in this study and improve the performance and 
accuracy of the MUAC detection and measurement system. 

This study has several limitations. The dataset is modest and 
was collected under a standardized imaging protocol, which may 
limit generalizability. Pixel-to-centimeter calibration depends 
on a wall power-outlet reference that may not be available or 
standardized across sites. MUAC estimation fuses paired front- 
and side-view measurements via an ellipse approximation, 
making the final circumference susceptible to view-specific 
errors. The pipeline is also sensitive to clothing/background 
similarity and pose. Future work will expand data diversity and 
size, explore reference-free calibration, and strengthen the 
robustness of the segmentation and measurement pipeline. 
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