
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

404 | P a g e

www.ijacsa.thesai.org

Ensemble Learning for Multi-Class Android Malware

Detection: A Robust Framework for Family Level

Classification

Mana Saleh Al Reshan

Department of Information System-College of Computer Science and Information Systems, Najran University,

Najran 61441, Saudi Arabia

Emerging Trends and Technologies Lab (ETRL)-College of Computer Science and Information Systems, Najran University,

Najran 61441, Saudi Arabia

Abstract—The widespread popularity of Android devices has

made them a prime target for sophisticated and evolving

malware threats. Traditional malware detection techniques rely

on binary classification (malicious vs. benign), which fails to

capture the nuanced behavioral differences between malware

families, critical for threat intelligence and incident response. To

address this limitation, we propose a robust multi-class

classification approach for Android malware family detection,

leveraging ensemble learning and advanced feature selection

methods. Our system uses a hybrid feature extraction strategy

that combines Chi-Squared and Mutual Information techniques

to eliminate low-utility features and retain the most

discriminative attributes. These include flow-based metrics,

inter-arrival time (IAT), and session duration, key indicators of

malicious behavior. We evaluated five baseline classifiers

(Random Forest, Gradient Boosting, XGBoost, Extra Trees, and

Decision Trees) across three ensemble strategies (bagging, voting,

and stacking). Among these, the Stacking ensemble achieved the

highest overall performance, with 83% across all evaluation

metrics, accuracy, precision, recall, and F1-score, and a True

Negative Rate (TNR) of 93.34%. The framework also improves

the detection of minority malware families in imbalanced

datasets. These findings highlight the advantages of ensemble

learning for building scalable and reliable Android systems

suitable for real-world deployment.

Keywords—Malware detection; cyber threat; ML models;

feature selection; ensemble methods

I. INTRODUCTION

The rapid proliferation of intelligent mobile devices has
established Android as the dominant smartphone computing
platform. In 2020, global smartphone production reached
approximately 1.24 billion units, with Android accounting for
around 78.45% of the market share [1]. This dominance can be
attributed to its open-source architecture, affordability, and
extensive connectivity options, including Wi-Fi, Bluetooth, and
GPS. Additionally, Android’s support for third-party
application installation significantly enhances device
functionality.

However, this openness introduces critical security
vulnerabilities. Unlike Apple's tightly controlled ecosystem,
Android’s decentralized app distribution model facilitates the
spread of malicious applications beyond the official Google

Play Store. Despite Google's integrated malware scanning
systems, many harmful apps still manage to evade detection
[2]. The fragmented nature of the Android ecosystem further
compounds security challenges, increasing exposure to threats
such as data breaches and system-level attacks. In the third
quarter of 2021, the Kaspersky Security Network reported over
9.5 million blocked incidents involving mobile malware,
adware, and riskware. Common infection vectors include
malicious MMS messages, phishing emails, and compromised
applications. Users are particularly at risk when installing
unverified apps that embed malicious code or exploit system
vulnerabilities [3]. With Android powering approximately 70%
of global mobile devices, it remains a prime target for various
cyberattacks, including malware, ransomware, and spyware.
Frequently used apps like WhatsApp, Facebook, mobile
banking tools, and games are often exploited, placing user data
such as photos, contacts, messages, and financial information
at significant risk. This underscores the urgent need for
intelligent and reliable malware detection systems to safeguard
user privacy and device security.

Machine learning (ML), particularly ensemble learning
techniques, has shown great promise in malware classification
[4]. These methods enhance detection accuracy and offer
robustness against evasion techniques. Ensemble techniques
such as bagging, voting, and stacking combine the predictive
power of multiple classifiers, mitigating the weaknesses of
individual models and improving overall performance [5].

Unlike traditional single-classifier methods, such as
Decision Trees or Gradient Boosting, which are prone to
overfitting and poor generalization on large and varied
malware datasets, our ensemble learning methodology provides
tangible enhancements. For example, in a stacking ensemble
research on the AndMal 2020 dataset, the authors obtained
83% accuracy and a TNR of 93.4% for multi-class
classification, which beat traditional models hands down.
Similarly, recent deep-learning-based ensembles combining
CNN variants (ResNet, SENet, SEResNet) in "MFEMDroid"
have also yielded superior detection performance owing to
their complementary strengths. These results further
substantiate that ensemble methods, specifically stacking,
bagging, and voting, not only enhance detection precision and
reduce false positives but also are more robust against evasive

https://orcid.org/0000-0002-2266-9608

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

405 | P a g e

www.ijacsa.thesai.org

attacks. Further, in contrast to most existing research centering
on binary classification only, our framework contributes more
by allowing multi-family detection (Adware, Spyware,
SMS_Malware, Benign), enabling richer threat identification
and improved real-world applicability.

This research proposes and evaluates an Android malware
detection framework that employs various ensemble learning
methods to classify malware samples into families. The
primary objective is to enhance detection reliability, reduce
false positives, and bolster mobile cybersecurity.

Given the widespread use of Android smartphones, this
study addresses a critical challenge in mobile security. By
applying ensemble learning to classify malware into families,
the proposed framework facilitates early threat identification
and contributes to the development of intelligent, automated
defense mechanisms. The findings are valuable to researchers,
cybersecurity professionals, and mobile developers aiming to
enhance the security of mobile environments.

Key Contributions:

 We obtained an Android malware dataset from the
Kaggle repository. We utilized the Android Malware
Dataset from Kaggle, consisting of 355,630 records
with 85 features. Categorized into four families:
Spyware, Adware, SMS_Malware, and Bengin.

 The dataset was preprocessed by handling null values,
removing duplicates and irrelevant data, and applying
label encoding to categorical features.

 Feature selection was performed using Chi-square and
Mutual Information (MI) techniques to retain the most
relevant features.

 We trained and evaluated five baseline machine
learning classifiers: Random Forest (RF), Gradient
Boosting (GB), Extreme Gradient Boosting (XGB),
Extra Trees (ET), and Decision Tree (DT). In addition,
we implemented and assessed three ensemble methods:
stacking, bagging, and voting.

 This study presents a reproducible framework that can
serve as a foundation for future research in mobile
cybersecurity and intelligent malware detection.

The remainder of the study is structured as follows:
Section II reviews related work on Android malware and
Machine learning approach. Section III describes the dataset,
preprocessing steps, and feature selection used in this study.
Section IV presents the experimental results and provides
comparative studies. Section V concludes the study and
outlines the future direction.

II. RELATED WORK

An algorithm for malware detection was proposed in this
work [6]. Two Android malware datasets, including
CICAndMal2017 and Drebin, were selected for conducting
research. To detect malware attacks, the researchers
implemented support vector machine (SVM), K-nearest
neighbors (KNN), Linear Discriminant Analysis (LDA), Long
Short Term Memory (LSTM), and Conventional Neural

Network-Long Short Term Memory (CNN-LSTM). The
highest accuracy rate, which is 100% was obtained by the
SVM model using the CICAndMal2017 dataset.

This research conducted a systematic literature review to
examine deep learning for malware attack detection. Their
research spans 2014 to 2021, and they identified a total of 123
studies. They found 40.1% (53) of studies were deep learning-
based. To fulfill their goal, some research questions were
established [7].

Malicious pattern analysis can help reverse the misuse of
online applications, such as banking and various social media
apps. In study [8], an IOS malware categorization model was
proposed, which is capable of detecting 30 patterns of
phylogenetic. Out of 150mobile apps, only 7 apps were
identified by the classifier.

Android Malware grayscale image representation
visualization methods were proposed [9]. The authors utilize
both global and local features for better performance. It was
observed that local features such as manifest, dex-arc, produce
poor accuracies between 65.16% and 93.56%. However, orb
features take low computational time for feature selection,
training extraction model training, and malware sample
detection.

With the growing popularity of Android smartphones,
malware threats are receiving increased attention. This study
[10] introduces MLDroid, a web-based framework for
detecting Android malware through dynamic analysis.
MLDroid identifies relevant features using feature selection
techniques and trains models using various machine learning
approaches. The system was evaluated on over 500,000 real-
world apps. Results show that integrating four techniques, such
as deep learning, Farthest First Clustering, Y-MLP, and a
nonlinear ensemble decision tree forest, along with rough set-
based feature selection, achieved a high malware detection rate
of 98.8%.

The growing use of Android devices has led to the
emergence of sophisticated malware that employs complex
obfuscation techniques, making static analysis alone
inadequate for effective detection. Although dynamic analysis
can uncover evasive behaviors, it is resource-intensive and
limited in execution path coverage. To overcome these
limitations, a hybrid detection approach combining static and
dynamic analysis was proposed. A publicly available dataset
containing 352 static and 323 dynamic features was developed
to support both binary and multiclass classification. Irrelevant
features were removed using the Information Gain algorithm.
Experimental results demonstrated that the hybrid method
significantly outperformed individual analyses, with the
Random Forest classifier achieving 98.53% accuracy for
binary classification and 90.1% for multiclass classification
[11].

Android malware is a persistent and growing threat,
affecting industries like healthcare, banking, transportation,
government, and e-commerce. It became challenging to
classify malicious apps. This study [12] proposed two ML-
enabled dynamic analysis methods: one to categorize malware
by category and the other by family. With the CCCS-CIC-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

406 | P a g e

www.ijacsa.thesai.org

AndMal2020 dataset that contains 14 malware categories and
180 families, the proposed models were more than 96%
accurate in detecting categories and more than 99% accurate in
detecting families.

As Android devices gain popularity, malware detection and
family categorization have become the most important research
topics. Although static and dynamic analysis are most
commonly used, they are based on complicated processes. In
this work [13], the researchers present a hybrid approach
optimized for multi-feature data to detect and categorize
Android malware. Static analysis makes use of permissions and
intents, three feature selection techniques being tested, with the
best results from Chi-Square, yielding a 95.04% detection rate
using a Random Forest classifier. Main static features were
also tested for more information. In dynamic analysis, as
opposed to previous methods involving one-way HTTP or
transport-layer traffic, the researchers maintained complete
session-level protocol layers. The Res7LSTM model was
subsequently used to further classify uncertain samples.
Experimental results indicate that the proposed method
enhances malware family classification accuracy from 71.48%
(previous work) to 99% by taking advantage of session-based,
multi-layer traffic analysis with high accuracy using fewer
static features.

Malware family classification categorizes similar malware
instances into families to determine their behavioral patterns
and facilitate recovery. A permission-based classification
technique with both native and native/custom Android
permissions is proposed [14]. Experiments were performed on
the DREBIN dataset with various classifiers and tested using
accuracy, macro F1-score, balanced accuracy (BAC), and
Matthews correlation coefficient (MCC), the latter two
measures being appropriate for imbalanced datasets. The
results indicated that: i) tailor-made permissions enhanced
classification performance, ii) accuracy and BAC varied up to
3.67% despite having the same model, and iii) LightGBM and
AdaBoost performed better than other classifiers.

The detection and categorization of Android malware
families must be automated to reduce the workload of security
analysts. While various machine learning and deep learning
techniques exist, the rapid growth of mobile applications
necessitates faster and more accurate solutions. This study
proposes a scalable method that significantly improves both
detection accuracy and analysis speed. Evaluated on large-
scale datasets, the proposed approach achieves an F-measure of
99.71%, a low false positive rate of 0.37%, and processes
300,000 samples in just 3.3 hours. For malware family
classification across 28 families, it achieves an F-measure of
97.5%, a precision of 96.55%, and a recall of 98.64%.
Comparative results demonstrate that our approach
outperforms previous methods in both efficiency and
effectiveness [15].

III. RESEARCH METHODOLOGY

This section presents a detailed description of the entire
pipeline employed for Android Malware families’
classification, comprising dataset preprocessing, feature
selection, data splitting, training and testing of baseline
classifiers, and the ensemble methods, as shown in Fig. 1.

Fig. 1. Proposed research methodology.

A. Dataset

We downloaded the Android Malware dataset from Kaggle
[16]. The dataset was comprised of (355630 x 85) records. The
dataset contains four families, such as Adware, Spyware,
SMS_malware, and Bengin, as depicted in Fig. 2.

Fig. 2. Android families.

B. Preprocessing and Analysis

A non-informative timestamp column was removed, as it
did not contribute any meaningful value to the training process.
To prepare the dataset for machine learning algorithms,
categorical features were encoded using the Label Encoding
technique. Each categorical column was converted into a
numerical format by assigning a unique integer to every
distinct category. Missing values were either filled or removed,
as appropriate, to maintain consistency and data integrity. After
encoding, the dataset was separated into feature variables (X)
and target labels (y). A final check for missing values in the
feature set was conducted to ensure data completeness before
model training and feature selection. These preprocessing steps
ensured that the data was clean, fully numeric, and suitable for
both statistical analysis and machine learning applications [17].

C. Feature Selection

To enhance model performance and reduce computational
complexity, feature selection was performed using two
statistical techniques: the Chi-Squared Test and Mutual
Information.

1) Chi-Square test: The Chi-Squared test is a statistical

hypothesis test used to assess the independence between

categorical features (attributes) and the target class. In the

context of feature selection, it assesses whether the actual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

407 | P a g e

www.ijacsa.thesai.org

frequency distribution of a feature significantly differs from the

expected distribution assuming that the feature is statistically

independent of the target variable [18]. Mathematically, the

Chi-Squared statistic for a feature 𝑓 is defined, as shown in

Eq. (1):

𝑍2 = ∑ ∑
(𝑀𝑖𝑘 −𝑃𝑖𝑘)2

𝑃𝑖𝑘

𝑑
𝑘=1

𝑡
𝑖=1 (1)

where,

M𝑖k : Signifies the observed frequency of category 𝑖 of
features 𝑓 with class labels 𝑘

Pik characterizes the expected count of frequency assuming
independence.

𝒌: Depicts the number of feature categories

𝒅: Shows the number of class labels

Fig. 3 demonstrates the selected features by their Chi-
Squared scores, highlighting their relevance for classification.
Top features such as Flow Bytes/s, Flow IAT Std, and various
Inter-Arrival Time (IAT) metrics are essential for
distinguishing normal traffic from anomalies or attacks. The
prominence of IAT-related features (e.g., Fwd IAT Total, Bwd
IAT Mean) underscores the importance of packet timing in
detecting abnormal patterns linked to malicious activity.
Metrics like Flow Bytes/s and Packet Length Variance help
identify unusual data rates and packet sizes, often seen in
network intrusions. Active and Idle time features further reveal
session-level behavior, aiding in the detection of stealthy
threats. The high Chi-Squared values (up to 10th) reflect the
strong discriminatory power of these features. These
statistically selected features provide a solid foundation for
enhancing intrusion detection and traffic classification through
machine learning.

Fig. 3. Selected features using the Chi-Square method.

To enhance feature selection beyond the limitations of Chi-
Squared analysis, Mutual Information (MI) was employed to
capture both linear and non-linear dependencies between
features and the target variable. This approach helps optimize
the feature set by removing less informative attributes,
particularly in scenarios involving complex network traffic
patterns.

2) Mutual information feature selection: Mutual

Information (MI) was used to quantify the amount of shared

information between each feature and the target variable.

Unlike the Chi-Squared test, MI can capture both linear and

non-linear relationships. MI scores were computed for all

features, and the top 20 with the highest scores were selected

[19].

Fig. 4 presents a hierarchical listing of network traffic
features sorted by their Mutual Information scores, indicating
their predictive relevance to the target variable (e.g., intrusion
detection). The top-ranked feature is Flow ID, followed by key
metrics such as Fwd Avg Bytes/Bulk, Packet Length Mean,
and Avg Bwd Segment Size, each with related sub-features
indented beneath. These attributes represent various aspects of
network behavior, including flow identifiers, packet size
distributions, data transfer characteristics, and traffic dynamics.
A supporting (though currently blank) tabular structure appears
to outline threshold-based MI scores, likely intended to guide
the selection of highly informative features. This step plays a
critical role in building more accurate and robust machine
learning models for network traffic classification and security
analysis.

Fig. 4. Selected features using the MI method.

D. Model Development

We trained and evaluated four baseline classifiers, such as
RF, ET, GB, XGB, and DT. To enhance predictive accuracy
and robustness, we also implemented ensemble methods
including stacking, bagging, and voting. Algorithm 1
demonstrates the training and testing mechanism of baseline
and ensemble methods.

Algorithm-1: Training and Evolution of Baseline Classifiers

Input: Selected features set

Output: evaluation metrics for each baseline classifier
Begin:

1. Split the dataset into features (X) and Target label (Y)

2. Apply train_test_split on X and Y with stratification
3. Define baseline classifiers

 RF

 DT

 ET

 GB

 XGB
4. For each baseline classifier:

 Train model

 Compute evaluation metrics:

o Accuracy, precision, recall, F2 score,

TNR
o Confusion matrix

5. Train ensemble methods on trained baseline classifiers
6. Repeat Step 4 for each ensemble method

end

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

408 | P a g e

www.ijacsa.thesai.org

IV. RESULTS AND DISCUSSION

The experiments in this study were performed on Windows
10 using Kaggle Notebook. The dataset was divided into
training (70%) and test (30%) sets, with stratification to
maintain the original label distribution, as depicted in Table I
below.

TABLE I DIVISION OF SAMPLES

Training Samples Testing samples Total Samples

248938 106688 355626

TABLE II PERFORMANCE EVALUATION OF ML MODELS

ML models Accuracy Precision Recall F1 score TNR

RF 81% 81% 81% 80% 92.37%

GB 70% 70% 70% 66% 87.95%

ET 79% 79% 79% 79% 91.72%

DT 79% 79% 79% 79% 91.92%

XGB 77% 77% 77% 77% 91.05%

Stacking 83% 82% 80% 8% 93.34%

Bagging 80% 89% 80% 80% 92.13%

Voting 82% 82% 82% 82% 92.95%

Table II presents the comparative performance of various
machine learning models evaluated on a multi-class
classification problem. Among the evaluated models, the
Stacking classifier demonstrates the best overall performance,
achieving 83% across accuracy, precision, recall, and F1 score,
along with the highest true negative rate (TNR) of 93.34%.
This reflects its strong generalization and balanced class
discrimination, likely due to its ability to aggregate diverse
base learners and optimize their combined predictions. Voting
(82%) and RF (81%) also perform well across all metrics,
benefiting from ensemble techniques that reduce variance and
enhance stability. Bagging, while showing slightly lower
accuracy (80%), achieves the highest precision (89%),
indicating confident positive predictions, albeit with a trade-off
in recall. ET (79%), DT (79%), and XGBoost (77%) yield
moderate, balanced results but are outperformed by more
advanced ensemble methods. GB exhibits the weakest
performance, with 70% accuracy and the lowest F1 score
(66%), possibly due to overfitting or suboptimal parameter
tuning. Overall, ensemble approaches, especially stacking and
voting, offer superior predictive performance and robustness,
while single models and simpler boosting methods lag in
capturing complex class relationships.

TABLE III CROSS-VALIDATION

ML models Accuracy (CV =5) Mean Std

RF 87% ± 0.0008

GB 88% ± 0.0011

ET 86% ± 0.0007

DT 83% ± 0.0007

XGB 84% ± 0.0009

Stacking 89% ± 0.0003

Bagging 84% ± 0.0009

Voting 85% ± 0.0012

To ensure the robustness of the ML model, 5-fold stratified
cross-validation was performed. Table III describes the
performance of ML classifiers and ensemble methods. The
analysis illustrated that ensemble methods outperformed
individual learners consistently. Among the baseline classifiers,
GB (88%), RF (87%), and ET (86%) demonstrated robust
predictive accuracy, while the lone DT ranked lower at 83%
because of its greater overfitting tendency. XGBoost (84%)
performed competitively, but could not surpass GB within this
dataset. Ensemble methods improved results even more, with
the highest accuracy achieved by the Stacking Classifier (89%)
and lowest variance (±0.0003), performing superior
generalization through diverse base learners via a meta-model.
Bagging (84%) and Voting (85%) produced incremental
improvements over single classifiers, but were inferior to
stacking. The uniformly low standard deviations between
models reflect consistently stable and dependable performance,
and stacking proves to be the most stable and dependable
means for deployment.

Fig. 5. Confusion matrix for ML models.

Fig. 5 represents the performance of the RF and DT models
over unseen test data using confusion matrices. In Fig. 5(a), the
RF model correctly classified 85995 out of the total samples
(106688) with 20693 misclassifications, demonstrating high
predictive accuracy. Similarly, Fig. 5(b) shows the DT model's
confusion matrix, with 84501 correct predictions and 22187
misclassifications. The superior performance of the RF model
compared to the DT model is expected, given RF's ensemble
nature. By combining the predictions of multiple decision trees
through bootstrap aggregation (bagging) and random feature
selection, RF reduces variance and improves generalization to
unseen data. In contrast, a single DT is more prone to
overfitting, often capturing noise in the training set. The
confusion matrix results further demonstrate that the RF model
more effectively handles class boundaries, resulting in fewer
misclassifications than the DT model.

Fig. 6. Performance evaluation of classifiers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

409 | P a g e

www.ijacsa.thesai.org

Fig. 6(a) presents the confusion matrix for the ET classifier.
The model demonstrated high predictive accuracy for class 1
and class 2, with 20,151 and 24,703 correct predictions,
respectively. However, it showed significant misclassification
between class 0 and class 2: 8,257 class 0 instances were
incorrectly predicted as class 2, and 9,968 class 2 instances
were misclassified as class 0, indicating notable overlap
between these two classes. Fig. 6(b) shows the confusion
matrix for the GB model. It correctly identified 20,214 class 1
and 19,274 class 2 samples, but exhibited greater confusion
between class 0 and class 2 than Extra Trees, misclassifying
15,428 class 2 instances as class 0 and 11,031 class 0 instances
as class 2. Both models performed poorly on class 3, with
substantial dispersion across incorrect classes, indicating
limited discriminative power for this class. Both models
consistently underperform on class 3, with predictions for this
class dispersed across the other categories. This suggests that
class 3 may be underrepresented in the training data or lacks
sufficiently distinctive features, making it difficult for the
models to learn clear decision boundaries. The consistently
poor classification performance for class 3 underscores a
fundamental limitation in the dataset, either in terms of class
imbalance or inadequate feature representation for this class.

Fig. 7. Performance evaluation of ML models over unseen data.

Fig. 7(a) and Fig. 7(b) compare the performance of
XGBoost and the Stacking classifier. XGBoost performs well
on classes 1 and 2, with 20,143 and 23,518 correct predictions,
respectively, as depicted in Fig. 7(a). However, in Fig. 7(b), it
shows significant confusion between class 0 and class 2,
misclassifying 9,310 class 0 instances as class 2 and 11,012
class 2 instances as class 0. This indicates overlapping feature
space or weak decision boundaries between these classes. In
contrast, the Stacking classifier demonstrates stronger overall
performance. It substantially increases correct predictions for
class 0 (36,564) and class 2 (26,770), while reducing
misclassifications between them. Additionally, it improves
classification for class 3, correctly identifying 5,117 instances,
suggesting better generalization and improved handling of
minority classes through ensemble learning. Overall, the
Stacking model achieves more balanced classification and
effectively addresses the limitations observed in XGBoost.

Fig. 8. Confusion matrix for ensemble methods.

The confusion matrices compare the bagging and voting
classifiers. Fig. 8(a) shows the confusion matrix for the
Bagging Classifier, where the classifier is showing high
accuracy for class 0 (36,057 correct predictions) with fewer
overall misclassifications. The Voting Classifier slightly
improves correct predictions for class 0 (36,466) but introduces
greater confusion, notably misclassifying 7,311 class 0
instances as class 1, as represented in Fig. 8(b). Diagonal
entries indicate correct classifications, while off-diagonal
entries represent errors. Bagging uses bootstrap aggregation to
reduce variance and produce stable predictions. In contrast,
voting combines outputs from diverse models, enhancing
generalization but sometimes increasing misclassification
between closely related classes. These results illustrate the
trade-off between model diversity and predictive stability in
ensemble methods.

The baseline classifier comparison provides key insights
into performance across standard evaluation metrics, as
represented in Fig. 9. Among the five models, RF, GB, ET,
DT, and XGB. The XGBoost demonstrates the strongest
performance, achieving the highest accuracy (92.37%) along
with solid precision (81%), recall (81%), and F1 score (80%).
This is largely due to its advanced regularization, gradient-
based optimization, and ability to capture complex patterns
while mitigating overfitting. All ensemble methods (RF, GB,
ET, and XGB) outperform the single Decision Tree, which
shows the lowest accuracy (87.95%) and reduced precision,
recall, and F1 scores (all around 70%). This highlights the
benefit of ensemble learning in enhancing generalization by
combining multiple learners. ET (91.92%) and Random Forest
(91.05%) also perform well, leveraging random feature
selection and ensemble averaging to improve robustness. GB
(91.72%), while slightly behind XGBoost, still delivers strong
performance but lacks some of XGBoost's advanced
optimization features, which likely explains the gap. In
summary, XGBoost emerges as the most effective classifier,
though other ensemble methods remain competitive. While the
Decision Tree model is simple and interpretable, it lacks the
predictive power needed for applications requiring high
accuracy.

Fig. 9. Comparison of ML classifiers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

410 | P a g e

www.ijacsa.thesai.org

Fig. 10. Comparison of ensemble methods.

Fig. 10 depicts the comparison of three ensemble methods
to determine the most effective approach. Key metrics,
including accuracy, precision, recall, F1 score, and true
negative rate (TNR), are used to evaluate performance, with
values such as 92.95%, 92.13%, and 93.34% indicating strong
results in individual configurations. Ensemble techniques,
namely stacking, bagging, and voting, are also assessed for
their ability to enhance model robustness by combining
multiple classifiers. The inclusion of varying percentages (e.g.,
30%, 25%, 20%) suggests an investigation into data split ratios
or classifier weighting, aimed at further optimizing
performance. Consistent precision values, such as 82%, 80%,
and 83% across different ensemble methods, highlight the
stability and reliability of these approaches. Overall, the
analysis underscores the importance of selecting appropriate
evaluation metrics and ensemble strategies to maximize
classifier accuracy and predictive performance.

A. Discussion

The increased popularity of Android phones made them a
favorite target among malicious applications, thus rapidly
increasing malware on Android. Traditional detection systems
typically perform binary classification (malicious vs. benign),
overlooking the nuanced distinctions between malware
families and differences that are crucial for threat intelligence,
incident response, and forensic analysis [20] [21]. Addressing
this gap, our study introduces a multi-class classification
framework to differentiate between Android malware families
using ML and ensemble-based models. As indicated in
Table II, ensemble methods, specifically stacking, consistently
outperformed baseline standalone models. The Stacking
classifier obtained 83% in all the evaluation metrics (accuracy,
precision, recall, F1-score) and a maximum TNR of 93.34%,
validating its better generalization ability. Confusion matrix
analyses also reveal the virtues and vices of separate classifiers.
Models such as Random Forest and Extra Trees performed
well with high accuracy for dominant families (e.g., Class 1
and Class 2), but struggled with minority classes (e.g., Class 3),
revealing an ongoing class imbalance problem. Interestingly,
Stacking demonstrated better performance with
underrepresented classes, correctly classifying 5,117 examples
of Class 3 and illustrating that it was capable of detecting
intricate, non-linear relationships. Feature selection had an
essential impact on model performance. Employing a hybrid

technique incorporating Chi-Squared and Mutual Information
algorithms, we found discriminative features like Flow Bytes/s,
inter-arrival time (IAT) metrics, and session-based duration
corresponding to behavioral patterns of various malware
families. The dual-method strategy allowed dimensionality
reduction to be done in an efficient manner without losing
interpretability and enhancing model accuracy. Decision Trees
were the worst-performing classifiers among all because of
overfitting and the poor learning capacity of complex data
patterns. Conversely, Voting classifiers and XGBoost yielded
close-to-optimal performance, further supporting the efficacy
of aggregation and boosting on high-variance, imbalanced
datasets, such as Android malware. Ensemble learning
supplemented with careful feature selection is an effective
approach to steady multi-class Android malware detection,
especially in real-world environments where data imbalance
and intricate decision boundaries are prevalent.

V. CONCLUSION

This work presents an efficient and scalable machine
learning architecture for multi-class Android malware family
classification, addressing the limitations of traditional binary
detection approaches. By leveraging ensemble learning,
specifically the stacking method and a hybrid feature selection
strategy combining Chi-Squared and Mutual Information
techniques, the system achieves high accuracy, strong
generalizability, and robustness to data imbalance. Empirical
results demonstrate that the Stacking classifier outperforms
both individual models and other ensemble techniques,
achieving 83% across all evaluation metrics and the highest
TNR of 93.34%. Notably, it significantly improves the
detection of minority malware families, making it well-suited
for real-world threat environments characterized by
imbalanced class distributions and complex behavioral
patterns. These findings validate the effectiveness of ensemble-
based approaches and principled feature engineering in
malware detection and provide a solid foundation for
advancing automated and intelligent mobile security systems.
Future work will focus on expanding the dataset, incorporating
dynamic analysis features, and integrating deep learning
models to further enhance detection accuracy and threat
response capabilities.

VI. FUTURE WORK

While the present study demonstrates the efficacy of
ensemble learning for Android malware detection, various
promising research directions remain unexplored. To begin
with, expanding the dataset to include newer and varied
malware samples, such as zero-day attacks, would make the
model more robust against changing threats. Second, the
incorporation of dynamic analysis capabilities like system
calls, network traffic, and runtime activity might supplement
the static capabilities employed in this research to give a better
understanding of malware activity. Third, combining ensemble
techniques with deep learning frameworks (like CNNs, RNNs,
or combination models) might further enhance detection rates,
particularly in dealing with intricate temporal and behavioral
patterns. Additionally, future efforts need to tackle adversarial
robustness, as malware developers more and more use evasion
and obfuscation mechanisms to defeat machine learning-based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

411 | P a g e

www.ijacsa.thesai.org

detectors. Research on federated and distributed learning
methods is also a promising direction, enabling collaborative
malware detection on devices without compromising user
privacy. Finally, using explainable AI (XAI) techniques would
add more transparency and trust in detection outcomes, which
is extremely essential for cybersecurity professionals when
deploying tools in critical real-world settings.

REFERENCES

[1] M. Huang, “Press Center - Yearly 5G Smartphone Production Projected
to Exceed 200 Million Units Thanks to Smartphone Brands’ Proactive
Push in 2H20, Says TrendForce | TrendForce - Market research, price
trend of DRAM, NAND Flash, LEDs, TFT-LCD and green energy, PV,”
TrendForce. Accessed: Jul. 02, 2025. [Online]. Available:
https://www.trendforce.com/presscenter/news/20200722-10398.html

[2] O. N. Elayan and A. M. Mustafa, “Android Malware Detection Using
Deep Learning,” Procedia Computer Science, vol. 184, pp. 847–852,
Jan. 2021, doi: 10.1016/j.procs.2021.03.106.

[3] “IT threat evolution in Q3 2021. Mobile statistics.” Accessed: Jul. 02,
2025. [Online]. Available: https://securelist.com/it-threat-evolution-in-
q3-2021-mobile-statistics/105020/

[4] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of
Android Malware Detection Approaches Based on Machine Learning,”
IEEE Access, vol. 8, pp. 124579–124607, 2020, doi:
10.1109/ACCESS.2020.3006143.

[5] D. Gupta and R. Rani, “Improving malware detection using big data and
ensemble learning,” Computers & Electrical Engineering, vol. 86, p.
106729, Sep. 2020, doi: 10.1016/j.compeleceng.2020.106729.

[6] H. Alkahtani and T. H. H. Aldhyani, “Artificial Intelligence Algorithms
for Malware Detection in Android-Operated Mobile Devices,” Sensors,
vol. 22, no. 6, Art. no. 6, Jan. 2022, doi: 10.3390/s22062268.

[7] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep Learning for
Android Malware Defenses: A Systematic Literature Review,” ACM
Comput. Surv., vol. 55, no. 8, p. 153:1-153:36, Dec. 2022, doi:
10.1145/3544968.

[8] M. Mohd Saudi, M. A. Husainiamer, A. Ahmad, and M. Y. I. Idris, “iOS
mobile malware analysis: a state-of-the-art,” J Comput Virol Hack Tech,
vol. 20, no. 4, pp. 533–562, Nov. 2024, doi: 10.1007/s11416-023-00477-
y.

[9] H. M. Ünver and K. Bakour, “Android malware detection based on
image-based features and machine learning techniques,” SN Appl. Sci.,
vol. 2, no. 7, p. 1299, Jun. 2020, doi: 10.1007/s42452-020-3132-2.

[10] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android
malware detection using machine learning techniques,” Neural Comput
& Applic, vol. 33, no. 10, pp. 5183–5240, May 2021, doi:
10.1007/s00521-020-05309-4.

[11] M. Dhalaria and E. Gandotra, "A hybrid approach for Android malware
detection and family classification," IJIMAI, vol. 6, no. 6, pp. 174–188,
2021.

[12] A. H. E. Fiky, A. E. Shenawy, and M. A. Madkour, “Android Malware
Category and Family Detection and Identification using Machine
Learning,” Jul. 05, 2021, arXiv: arXiv:2107.01927. doi:
10.48550/arXiv.2107.01927.

[13] C. Ding, N. Luktarhan, B. Lu, and W. Zhang, “A Hybrid Analysis-Based
Approach to Android Malware Family Classification,” Entropy, vol. 23,
no. 8, Art. no. 8, Aug. 2021, doi: 10.3390/e23081009.

[14] M. Kim, D. Kim, C. Hwang, S. Cho, S. Han, and M. Park, “Machine-
Learning-Based Android Malware Family Classification Using Built-In
and Custom Permissions,” Applied Sciences, vol. 11, no. 21, Art. no. 21,
Jan. 2021, doi: 10.3390/app112110244.

[15] B. Sun, T. Takahashi, T. Ban, and D. Inoue, “Detecting Android
Malware and Classifying Its Families in Large-scale Datasets,” ACM
Trans. Manage. Inf. Syst., vol. 13, no. 2, p. 12:1-12:21, Oct. 2021, doi:
10.1145/3464323.

[16] “Android Malware Detection.” Accessed: Jul. 02, 2025. [Online].
Available: https://www.kaggle.com/datasets/subhajournal/android-
malware-detection

[17] A. Parashar, A. Parashar, W. Ding, M. Shabaz, and I. Rida, “Data
preprocessing and feature selection techniques in gait recognition: A
comparative study of machine learning and deep learning approaches,”
Pattern Recognition Letters, vol. 172, pp. 65–73, Aug. 2023, doi:
10.1016/j.patrec.2023.05.021.

[18] I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion detection model
using fusion of chi-square feature selection and multi class SVM,”
Journal of King Saud University - Computer and Information Sciences,
vol. 29, no. 4, pp. 462–472, Oct. 2017, doi:
10.1016/j.jksuci.2015.12.004.

[19] L. Hu, L. Gao, Y. Li, P. Zhang, and W. Gao, “Feature-specific mutual
information variation for multi-label feature selection,” Information
Sciences, vol. 593, pp. 449–471, May 2022, doi:
10.1016/j.ins.2022.02.024.

[20] A. Alhogail and R. A. Alharbi, “Effective ML-Based Android Malware
Detection and Categorization,” Electronics, vol. 14, no. 8, Art. no. 8,
Jan. 2025, doi: 10.3390/electronics14081486.

[21] A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “An in-
depth review of machine learning based Android malware detection,”
Computers & Security, vol. 121, p. 102833, Oct. 2022, doi:
10.1016/j.cose.2022.102833.

