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Abstract—The widespread popularity of Android devices has 

made them a prime target for sophisticated and evolving 

malware threats. Traditional malware detection techniques rely 

on binary classification (malicious vs. benign), which fails to 

capture the nuanced behavioral differences between malware 

families, critical for threat intelligence and incident response. To 

address this limitation, we propose a robust multi-class 

classification approach for Android malware family detection, 

leveraging ensemble learning and advanced feature selection 

methods. Our system uses a hybrid feature extraction strategy 

that combines Chi-Squared and Mutual Information techniques 

to eliminate low-utility features and retain the most 

discriminative attributes. These include flow-based metrics, 

inter-arrival time (IAT), and session duration, key indicators of 

malicious behavior. We evaluated five baseline classifiers 

(Random Forest, Gradient Boosting, XGBoost, Extra Trees, and 

Decision Trees) across three ensemble strategies (bagging, voting, 

and stacking). Among these, the Stacking ensemble achieved the 

highest overall performance, with 83% across all evaluation 

metrics, accuracy, precision, recall, and F1-score, and a True 

Negative Rate (TNR) of 93.34%. The framework also improves 

the detection of minority malware families in imbalanced 

datasets. These findings highlight the advantages of ensemble 

learning for building scalable and reliable Android systems 

suitable for real-world deployment. 

Keywords—Malware detection; cyber threat; ML models; 

feature selection; ensemble methods 

I. INTRODUCTION 

The rapid proliferation of intelligent mobile devices has 
established Android as the dominant smartphone computing 
platform. In 2020, global smartphone production reached 
approximately 1.24 billion units, with Android accounting for 
around 78.45% of the market share [1]. This dominance can be 
attributed to its open-source architecture, affordability, and 
extensive connectivity options, including Wi-Fi, Bluetooth, and 
GPS. Additionally, Android’s support for third-party 
application installation significantly enhances device 
functionality. 

However, this openness introduces critical security 
vulnerabilities. Unlike Apple's tightly controlled ecosystem, 
Android’s decentralized app distribution model facilitates the 
spread of malicious applications beyond the official Google 

Play Store. Despite Google's integrated malware scanning 
systems, many harmful apps still manage to evade detection 
[2]. The fragmented nature of the Android ecosystem further 
compounds security challenges, increasing exposure to threats 
such as data breaches and system-level attacks. In the third 
quarter of 2021, the Kaspersky Security Network reported over 
9.5 million blocked incidents involving mobile malware, 
adware, and riskware. Common infection vectors include 
malicious MMS messages, phishing emails, and compromised 
applications. Users are particularly at risk when installing 
unverified apps that embed malicious code or exploit system 
vulnerabilities [3]. With Android powering approximately 70% 
of global mobile devices, it remains a prime target for various 
cyberattacks, including malware, ransomware, and spyware. 
Frequently used apps like WhatsApp, Facebook, mobile 
banking tools, and games are often exploited, placing user data 
such as photos, contacts, messages, and financial information 
at significant risk. This underscores the urgent need for 
intelligent and reliable malware detection systems to safeguard 
user privacy and device security. 

Machine learning (ML), particularly ensemble learning 
techniques, has shown great promise in malware classification 
[4]. These methods enhance detection accuracy and offer 
robustness against evasion techniques. Ensemble techniques 
such as bagging, voting, and stacking combine the predictive 
power of multiple classifiers, mitigating the weaknesses of 
individual models and improving overall performance [5]. 

Unlike traditional single-classifier methods, such as 
Decision Trees or Gradient Boosting, which are prone to 
overfitting and poor generalization on large and varied 
malware datasets, our ensemble learning methodology provides 
tangible enhancements. For example, in a stacking ensemble 
research on the AndMal 2020 dataset, the authors obtained 
83% accuracy and a TNR of 93.4% for multi-class 
classification, which beat traditional models hands down. 
Similarly, recent deep-learning-based ensembles combining 
CNN variants (ResNet, SENet, SEResNet) in "MFEMDroid" 
have also yielded superior detection performance owing to 
their complementary strengths. These results further 
substantiate that ensemble methods, specifically stacking, 
bagging, and voting, not only enhance detection precision and 
reduce false positives but also are more robust against evasive 
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attacks. Further, in contrast to most existing research centering 
on binary classification only, our framework contributes more 
by allowing multi-family detection (Adware, Spyware, 
SMS_Malware, Benign), enabling richer threat identification 
and improved real-world applicability. 

This research proposes and evaluates an Android malware 
detection framework that employs various ensemble learning 
methods to classify malware samples into families. The 
primary objective is to enhance detection reliability, reduce 
false positives, and bolster mobile cybersecurity. 

Given the widespread use of Android smartphones, this 
study addresses a critical challenge in mobile security. By 
applying ensemble learning to classify malware into families, 
the proposed framework facilitates early threat identification 
and contributes to the development of intelligent, automated 
defense mechanisms. The findings are valuable to researchers, 
cybersecurity professionals, and mobile developers aiming to 
enhance the security of mobile environments. 

Key Contributions: 

 We obtained an Android malware dataset from the 
Kaggle repository. We utilized the Android Malware 
Dataset from Kaggle, consisting of 355,630 records 
with 85 features. Categorized into four families: 
Spyware, Adware, SMS_Malware, and Bengin. 

 The dataset was preprocessed by handling null values, 
removing duplicates and irrelevant data, and applying 
label encoding to categorical features. 

 Feature selection was performed using Chi-square and 
Mutual Information (MI) techniques to retain the most 
relevant features. 

 We trained and evaluated five baseline machine 
learning classifiers: Random Forest (RF), Gradient 
Boosting (GB), Extreme Gradient Boosting (XGB), 
Extra Trees (ET), and Decision Tree (DT). In addition, 
we implemented and assessed three ensemble methods: 
stacking, bagging, and voting. 

 This study presents a reproducible framework that can 
serve as a foundation for future research in mobile 
cybersecurity and intelligent malware detection. 

The remainder of the study is structured as follows: 
Section II reviews related work on Android malware and 
Machine learning approach. Section III describes the dataset, 
preprocessing steps, and feature selection used in this study.  
Section IV presents the experimental results and provides 
comparative studies. Section V concludes the study and 
outlines the future direction. 

II. RELATED WORK 

An algorithm for malware detection was proposed in this 
work [6]. Two Android malware datasets, including 
CICAndMal2017 and Drebin, were selected for conducting 
research. To detect malware attacks, the researchers 
implemented support vector machine (SVM), K-nearest 
neighbors (KNN), Linear Discriminant Analysis (LDA), Long 
Short Term Memory (LSTM), and Conventional Neural 

Network-Long Short Term Memory (CNN-LSTM).  The 
highest accuracy rate, which is 100% was obtained by the 
SVM model using the CICAndMal2017 dataset. 

This research conducted a systematic literature review to 
examine deep learning for malware attack detection. Their 
research spans 2014 to 2021, and they identified a total of 123 
studies. They found 40.1% (53) of studies were deep learning-
based. To fulfill their goal, some research questions were 
established [7]. 

Malicious pattern analysis can help reverse the misuse of 
online applications, such as banking and various social media 
apps. In study [8], an IOS malware categorization model was 
proposed, which is capable of detecting 30 patterns of 
phylogenetic. Out of 150mobile apps, only 7 apps were 
identified by the classifier. 

Android Malware grayscale image representation 
visualization methods were proposed [9]. The authors utilize 
both global and local features for better performance. It was 
observed that local features such as manifest, dex-arc, produce 
poor accuracies between 65.16% and 93.56%. However, orb 
features take low computational time for feature selection, 
training extraction model training, and malware sample 
detection. 

With the growing popularity of Android smartphones, 
malware threats are receiving increased attention. This study 
[10] introduces MLDroid, a web-based framework for 
detecting Android malware through dynamic analysis. 
MLDroid identifies relevant features using feature selection 
techniques and trains models using various machine learning 
approaches. The system was evaluated on over 500,000 real-
world apps. Results show that integrating four techniques, such 
as deep learning, Farthest First Clustering, Y-MLP, and a 
nonlinear ensemble decision tree forest, along with rough set-
based feature selection, achieved a high malware detection rate 
of 98.8%. 

The growing use of Android devices has led to the 
emergence of sophisticated malware that employs complex 
obfuscation techniques, making static analysis alone 
inadequate for effective detection. Although dynamic analysis 
can uncover evasive behaviors, it is resource-intensive and 
limited in execution path coverage. To overcome these 
limitations, a hybrid detection approach combining static and 
dynamic analysis was proposed. A publicly available dataset 
containing 352 static and 323 dynamic features was developed 
to support both binary and multiclass classification. Irrelevant 
features were removed using the Information Gain algorithm. 
Experimental results demonstrated that the hybrid method 
significantly outperformed individual analyses, with the 
Random Forest classifier achieving 98.53% accuracy for 
binary classification and 90.1% for multiclass classification 
[11]. 

Android malware is a persistent and growing threat, 
affecting industries like healthcare, banking, transportation, 
government, and e-commerce. It became challenging to 
classify malicious apps.  This study [12] proposed two ML-
enabled dynamic analysis methods: one to categorize malware 
by category and the other by family. With the CCCS-CIC-
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AndMal2020 dataset that contains 14 malware categories and 
180 families, the proposed models were more than 96% 
accurate in detecting categories and more than 99% accurate in 
detecting families. 

As Android devices gain popularity, malware detection and 
family categorization have become the most important research 
topics. Although static and dynamic analysis are most 
commonly used, they are based on complicated processes. In 
this work [13], the researchers present a hybrid approach 
optimized for multi-feature data to detect and categorize 
Android malware. Static analysis makes use of permissions and 
intents, three feature selection techniques being tested, with the 
best results from Chi-Square, yielding a 95.04% detection rate 
using a Random Forest classifier. Main static features were 
also tested for more information. In dynamic analysis, as 
opposed to previous methods involving one-way HTTP or 
transport-layer traffic, the researchers maintained complete 
session-level protocol layers. The Res7LSTM model was 
subsequently used to further classify uncertain samples. 
Experimental results indicate that the proposed method 
enhances malware family classification accuracy from 71.48% 
(previous work) to 99% by taking advantage of session-based, 
multi-layer traffic analysis with high accuracy using fewer 
static features. 

Malware family classification categorizes similar malware 
instances into families to determine their behavioral patterns 
and facilitate recovery. A permission-based classification 
technique with both native and native/custom Android 
permissions is proposed [14]. Experiments were performed on 
the DREBIN dataset with various classifiers and tested using 
accuracy, macro F1-score, balanced accuracy (BAC), and 
Matthews correlation coefficient (MCC), the latter two 
measures being appropriate for imbalanced datasets. The 
results indicated that: i) tailor-made permissions enhanced 
classification performance, ii) accuracy and BAC varied up to 
3.67% despite having the same model, and iii) LightGBM and 
AdaBoost performed better than other classifiers. 

The detection and categorization of Android malware 
families must be automated to reduce the workload of security 
analysts. While various machine learning and deep learning 
techniques exist, the rapid growth of mobile applications 
necessitates faster and more accurate solutions. This study 
proposes a scalable method that significantly improves both 
detection accuracy and analysis speed. Evaluated on large-
scale datasets, the proposed approach achieves an F-measure of 
99.71%, a low false positive rate of 0.37%, and processes 
300,000 samples in just 3.3 hours. For malware family 
classification across 28 families, it achieves an F-measure of 
97.5%, a precision of 96.55%, and a recall of 98.64%. 
Comparative results demonstrate that our approach 
outperforms previous methods in both efficiency and 
effectiveness [15]. 

III. RESEARCH METHODOLOGY 

This section presents a detailed description of the entire 
pipeline employed for Android Malware families’ 
classification, comprising dataset preprocessing, feature 
selection, data splitting, training and testing of baseline 
classifiers, and the ensemble methods, as shown in Fig. 1. 

 

Fig. 1. Proposed research methodology. 

A. Dataset 

We downloaded the Android Malware dataset from Kaggle 
[16]. The dataset was comprised of (355630 x 85) records. The 
dataset contains four families, such as Adware, Spyware, 
SMS_malware, and Bengin, as depicted in Fig. 2. 

 

Fig. 2. Android families. 

B. Preprocessing and Analysis 

A non-informative timestamp column was removed, as it 
did not contribute any meaningful value to the training process. 
To prepare the dataset for machine learning algorithms, 
categorical features were encoded using the Label Encoding 
technique. Each categorical column was converted into a 
numerical format by assigning a unique integer to every 
distinct category. Missing values were either filled or removed, 
as appropriate, to maintain consistency and data integrity. After 
encoding, the dataset was separated into feature variables (X) 
and target labels (y). A final check for missing values in the 
feature set was conducted to ensure data completeness before 
model training and feature selection. These preprocessing steps 
ensured that the data was clean, fully numeric, and suitable for 
both statistical analysis and machine learning applications [17]. 

C. Feature Selection 

To enhance model performance and reduce computational 
complexity, feature selection was performed using two 
statistical techniques: the Chi-Squared Test and Mutual 
Information. 

1) Chi-Square test: The Chi-Squared test is a statistical 

hypothesis test used to assess the independence between 

categorical features (attributes) and the target class. In the 

context of feature selection, it assesses whether the actual 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

407 | P a g e  

www.ijacsa.thesai.org 

frequency distribution of a feature significantly differs from the 

expected distribution assuming that the feature is statistically 

independent of the target variable [18]. Mathematically, the 

Chi-Squared statistic for a feature 𝑓 is defined, as shown in 

Eq. (1): 

𝑍2  = ∑ ∑
(𝑀𝑖𝑘 −𝑃𝑖𝑘)2

𝑃𝑖𝑘

𝑑
𝑘=1

𝑡
𝑖=1    (1) 

where, 

M𝑖k : Signifies the observed frequency of category 𝑖  of 
features 𝑓 with class labels 𝑘 

Pik characterizes the expected count of frequency assuming 
independence. 

𝒌: Depicts the number of feature categories 

𝒅: Shows the number of class labels 

Fig. 3 demonstrates the selected features by their Chi-
Squared scores, highlighting their relevance for classification. 
Top features such as Flow Bytes/s, Flow IAT Std, and various 
Inter-Arrival Time (IAT) metrics are essential for 
distinguishing normal traffic from anomalies or attacks. The 
prominence of IAT-related features (e.g., Fwd IAT Total, Bwd 
IAT Mean) underscores the importance of packet timing in 
detecting abnormal patterns linked to malicious activity. 
Metrics like Flow Bytes/s and Packet Length Variance help 
identify unusual data rates and packet sizes, often seen in 
network intrusions. Active and Idle time features further reveal 
session-level behavior, aiding in the detection of stealthy 
threats. The high Chi-Squared values (up to 10th) reflect the 
strong discriminatory power of these features. These 
statistically selected features provide a solid foundation for 
enhancing intrusion detection and traffic classification through 
machine learning. 

 

Fig. 3. Selected features using the Chi-Square method. 

To enhance feature selection beyond the limitations of Chi-
Squared analysis, Mutual Information (MI) was employed to 
capture both linear and non-linear dependencies between 
features and the target variable. This approach helps optimize 
the feature set by removing less informative attributes, 
particularly in scenarios involving complex network traffic 
patterns.  

2) Mutual information feature selection: Mutual 

Information (MI) was used to quantify the amount of shared 

information between each feature and the target variable. 

Unlike the Chi-Squared test, MI can capture both linear and 

non-linear relationships. MI scores were computed for all 

features, and the top 20 with the highest scores were selected 

[19]. 

Fig. 4 presents a hierarchical listing of network traffic 
features sorted by their Mutual Information scores, indicating 
their predictive relevance to the target variable (e.g., intrusion 
detection). The top-ranked feature is Flow ID, followed by key 
metrics such as Fwd Avg Bytes/Bulk, Packet Length Mean, 
and Avg Bwd Segment Size, each with related sub-features 
indented beneath. These attributes represent various aspects of 
network behavior, including flow identifiers, packet size 
distributions, data transfer characteristics, and traffic dynamics. 
A supporting (though currently blank) tabular structure appears 
to outline threshold-based MI scores, likely intended to guide 
the selection of highly informative features. This step plays a 
critical role in building more accurate and robust machine 
learning models for network traffic classification and security 
analysis. 

 

Fig. 4. Selected features using the MI method. 

D. Model Development 

We trained and evaluated four baseline classifiers, such as 
RF, ET, GB, XGB, and DT. To enhance predictive accuracy 
and robustness, we also implemented ensemble methods 
including stacking, bagging, and voting. Algorithm 1 
demonstrates the training and testing mechanism of baseline 
and ensemble methods. 

Algorithm-1: Training and Evolution of Baseline Classifiers 

Input:    Selected features set 

Output: evaluation metrics for each baseline classifier 
Begin: 

1. Split the dataset into features (X) and Target label (Y) 

2. Apply train_test_split on X and Y with stratification 
3. Define baseline classifiers 

 RF 

 DT 

 ET 

 GB 

 XGB 
4. For each baseline classifier: 

 Train model 

 Compute evaluation metrics: 

o Accuracy, precision, recall, F2 score, 

TNR 
o Confusion matrix 

5. Train ensemble methods on trained baseline classifiers 
6. Repeat Step 4 for each ensemble method 

end 
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IV. RESULTS AND DISCUSSION 

The experiments in this study were performed on Windows 
10 using Kaggle Notebook. The dataset was divided into 
training (70%) and test (30%) sets, with stratification to 
maintain the original label distribution, as depicted in Table I 
below. 

TABLE I DIVISION OF SAMPLES 

Training Samples Testing samples Total Samples 

248938 106688 355626 

TABLE II PERFORMANCE EVALUATION OF ML MODELS 

ML models Accuracy Precision Recall F1 score TNR 

RF 81% 81% 81% 80% 92.37% 

GB 70% 70% 70% 66% 87.95% 

ET 79% 79% 79% 79% 91.72% 

DT 79% 79% 79% 79% 91.92% 

XGB 77% 77% 77% 77% 91.05% 

Stacking 83% 82% 80% 8% 93.34% 

Bagging 80% 89% 80% 80% 92.13% 

Voting 82% 82% 82% 82% 92.95% 

Table II presents the comparative performance of various 
machine learning models evaluated on a multi-class 
classification problem. Among the evaluated models, the 
Stacking classifier demonstrates the best overall performance, 
achieving 83% across accuracy, precision, recall, and F1 score, 
along with the highest true negative rate (TNR) of 93.34%. 
This reflects its strong generalization and balanced class 
discrimination, likely due to its ability to aggregate diverse 
base learners and optimize their combined predictions. Voting 
(82%) and RF (81%) also perform well across all metrics, 
benefiting from ensemble techniques that reduce variance and 
enhance stability. Bagging, while showing slightly lower 
accuracy (80%), achieves the highest precision (89%), 
indicating confident positive predictions, albeit with a trade-off 
in recall. ET (79%), DT (79%), and XGBoost (77%) yield 
moderate, balanced results but are outperformed by more 
advanced ensemble methods. GB exhibits the weakest 
performance, with 70% accuracy and the lowest F1 score 
(66%), possibly due to overfitting or suboptimal parameter 
tuning. Overall, ensemble approaches, especially stacking and 
voting, offer superior predictive performance and robustness, 
while single models and simpler boosting methods lag in 
capturing complex class relationships. 

TABLE III CROSS-VALIDATION 

ML models Accuracy (CV =5) Mean Std 

RF 87% ± 0.0008 

GB 88% ± 0.0011 

ET 86% ± 0.0007 

DT 83% ± 0.0007 

XGB 84% ± 0.0009 

Stacking 89% ± 0.0003 

Bagging 84% ± 0.0009 

Voting 85% ± 0.0012 

To ensure the robustness of the ML model, 5-fold stratified 
cross-validation was performed. Table III describes the 
performance of ML classifiers and ensemble methods. The 
analysis illustrated that ensemble methods outperformed 
individual learners consistently. Among the baseline classifiers, 
GB (88%), RF (87%), and ET (86%) demonstrated robust 
predictive accuracy, while the lone DT ranked lower at 83% 
because of its greater overfitting tendency. XGBoost (84%) 
performed competitively, but could not surpass GB within this 
dataset. Ensemble methods improved results even more, with 
the highest accuracy achieved by the Stacking Classifier (89%) 
and lowest variance (±0.0003), performing superior 
generalization through diverse base learners via a meta-model. 
Bagging (84%) and Voting (85%) produced incremental 
improvements over single classifiers, but were inferior to 
stacking. The uniformly low standard deviations between 
models reflect consistently stable and dependable performance, 
and stacking proves to be the most stable and dependable 
means for deployment. 

 

Fig. 5. Confusion matrix for ML models. 

Fig. 5 represents the performance of the RF and DT models 
over unseen test data using confusion matrices. In Fig. 5(a), the 
RF model correctly classified 85995 out of the total samples 
(106688) with 20693 misclassifications, demonstrating high 
predictive accuracy. Similarly, Fig. 5(b) shows the DT model's 
confusion matrix, with 84501 correct predictions and 22187 
misclassifications.  The superior performance of the RF model 
compared to the DT model is expected, given RF's ensemble 
nature. By combining the predictions of multiple decision trees 
through bootstrap aggregation (bagging) and random feature 
selection, RF reduces variance and improves generalization to 
unseen data. In contrast, a single DT is more prone to 
overfitting, often capturing noise in the training set. The 
confusion matrix results further demonstrate that the RF model 
more effectively handles class boundaries, resulting in fewer 
misclassifications than the DT model. 

 

Fig. 6. Performance evaluation of classifiers. 
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Fig. 6(a) presents the confusion matrix for the ET classifier. 
The model demonstrated high predictive accuracy for class 1 
and class 2, with 20,151 and 24,703 correct predictions, 
respectively. However, it showed significant misclassification 
between class 0 and class 2: 8,257 class 0 instances were 
incorrectly predicted as class 2, and 9,968 class 2 instances 
were misclassified as class 0, indicating notable overlap 
between these two classes. Fig. 6(b) shows the confusion 
matrix for the GB model. It correctly identified 20,214 class 1 
and 19,274 class 2 samples, but exhibited greater confusion 
between class 0 and class 2 than Extra Trees, misclassifying 
15,428 class 2 instances as class 0 and 11,031 class 0 instances 
as class 2. Both models performed poorly on class 3, with 
substantial dispersion across incorrect classes, indicating 
limited discriminative power for this class. Both models 
consistently underperform on class 3, with predictions for this 
class dispersed across the other categories. This suggests that 
class 3 may be underrepresented in the training data or lacks 
sufficiently distinctive features, making it difficult for the 
models to learn clear decision boundaries. The consistently 
poor classification performance for class 3 underscores a 
fundamental limitation in the dataset, either in terms of class 
imbalance or inadequate feature representation for this class. 

 

Fig. 7. Performance evaluation of ML models over unseen data. 

Fig. 7(a) and Fig. 7(b) compare the performance of 
XGBoost and the Stacking classifier. XGBoost performs well 
on classes 1 and 2, with 20,143 and 23,518 correct predictions, 
respectively, as depicted in Fig. 7(a). However, in Fig. 7(b), it 
shows significant confusion between class 0 and class 2, 
misclassifying 9,310 class 0 instances as class 2 and 11,012 
class 2 instances as class 0. This indicates overlapping feature 
space or weak decision boundaries between these classes. In 
contrast, the Stacking classifier demonstrates stronger overall 
performance. It substantially increases correct predictions for 
class 0 (36,564) and class 2 (26,770), while reducing 
misclassifications between them. Additionally, it improves 
classification for class 3, correctly identifying 5,117 instances, 
suggesting better generalization and improved handling of 
minority classes through ensemble learning. Overall, the 
Stacking model achieves more balanced classification and 
effectively addresses the limitations observed in XGBoost. 

 

Fig. 8. Confusion matrix for ensemble methods. 

The confusion matrices compare the bagging and voting 
classifiers. Fig. 8(a) shows the confusion matrix for the 
Bagging Classifier, where the classifier is showing high 
accuracy for class 0 (36,057 correct predictions) with fewer 
overall misclassifications. The Voting Classifier slightly 
improves correct predictions for class 0 (36,466) but introduces 
greater confusion, notably misclassifying 7,311 class 0 
instances as class 1, as represented in Fig. 8(b). Diagonal 
entries indicate correct classifications, while off-diagonal 
entries represent errors. Bagging uses bootstrap aggregation to 
reduce variance and produce stable predictions. In contrast, 
voting combines outputs from diverse models, enhancing 
generalization but sometimes increasing misclassification 
between closely related classes. These results illustrate the 
trade-off between model diversity and predictive stability in 
ensemble methods. 

The baseline classifier comparison provides key insights 
into performance across standard evaluation metrics, as 
represented in Fig. 9. Among the five models, RF, GB, ET, 
DT, and XGB. The XGBoost demonstrates the strongest 
performance, achieving the highest accuracy (92.37%) along 
with solid precision (81%), recall (81%), and F1 score (80%). 
This is largely due to its advanced regularization, gradient-
based optimization, and ability to capture complex patterns 
while mitigating overfitting. All ensemble methods (RF, GB, 
ET, and XGB) outperform the single Decision Tree, which 
shows the lowest accuracy (87.95%) and reduced precision, 
recall, and F1 scores (all around 70%). This highlights the 
benefit of ensemble learning in enhancing generalization by 
combining multiple learners. ET (91.92%) and Random Forest 
(91.05%) also perform well, leveraging random feature 
selection and ensemble averaging to improve robustness. GB 
(91.72%), while slightly behind XGBoost, still delivers strong 
performance but lacks some of XGBoost's advanced 
optimization features, which likely explains the gap. In 
summary, XGBoost emerges as the most effective classifier, 
though other ensemble methods remain competitive. While the 
Decision Tree model is simple and interpretable, it lacks the 
predictive power needed for applications requiring high 
accuracy. 

 

Fig. 9. Comparison of ML classifiers. 
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Fig. 10. Comparison of ensemble methods. 

Fig. 10 depicts the comparison of three ensemble methods 
to determine the most effective approach. Key metrics, 
including accuracy, precision, recall, F1 score, and true 
negative rate (TNR), are used to evaluate performance, with 
values such as 92.95%, 92.13%, and 93.34% indicating strong 
results in individual configurations. Ensemble techniques, 
namely stacking, bagging, and voting, are also assessed for 
their ability to enhance model robustness by combining 
multiple classifiers. The inclusion of varying percentages (e.g., 
30%, 25%, 20%) suggests an investigation into data split ratios 
or classifier weighting, aimed at further optimizing 
performance. Consistent precision values, such as 82%, 80%, 
and 83% across different ensemble methods, highlight the 
stability and reliability of these approaches. Overall, the 
analysis underscores the importance of selecting appropriate 
evaluation metrics and ensemble strategies to maximize 
classifier accuracy and predictive performance. 

A. Discussion 

The increased popularity of Android phones made them a 
favorite target among malicious applications, thus rapidly 
increasing malware on Android. Traditional detection systems 
typically perform binary classification (malicious vs. benign), 
overlooking the nuanced distinctions between malware 
families and differences that are crucial for threat intelligence, 
incident response, and forensic analysis [20] [21].  Addressing 
this gap, our study introduces a multi-class classification 
framework to differentiate between Android malware families 
using ML and ensemble-based models. As indicated in 
Table II, ensemble methods, specifically stacking, consistently 
outperformed baseline standalone models. The Stacking 
classifier obtained 83% in all the evaluation metrics (accuracy, 
precision, recall, F1-score) and a maximum TNR of 93.34%, 
validating its better generalization ability. Confusion matrix 
analyses also reveal the virtues and vices of separate classifiers. 
Models such as Random Forest and Extra Trees performed 
well with high accuracy for dominant families (e.g., Class 1 
and Class 2), but struggled with minority classes (e.g., Class 3), 
revealing an ongoing class imbalance problem. Interestingly, 
Stacking demonstrated better performance with 
underrepresented classes, correctly classifying 5,117 examples 
of Class 3 and illustrating that it was capable of detecting 
intricate, non-linear relationships. Feature selection had an 
essential impact on model performance. Employing a hybrid 

technique incorporating Chi-Squared and Mutual Information 
algorithms, we found discriminative features like Flow Bytes/s, 
inter-arrival time (IAT) metrics, and session-based duration 
corresponding to behavioral patterns of various malware 
families. The dual-method strategy allowed dimensionality 
reduction to be done in an efficient manner without losing 
interpretability and enhancing model accuracy. Decision Trees 
were the worst-performing classifiers among all because of 
overfitting and the poor learning capacity of complex data 
patterns. Conversely, Voting classifiers and XGBoost yielded 
close-to-optimal performance, further supporting the efficacy 
of aggregation and boosting on high-variance, imbalanced 
datasets, such as Android malware. Ensemble learning 
supplemented with careful feature selection is an effective 
approach to steady multi-class Android malware detection, 
especially in real-world environments where data imbalance 
and intricate decision boundaries are prevalent. 

V. CONCLUSION 

This work presents an efficient and scalable machine 
learning architecture for multi-class Android malware family 
classification, addressing the limitations of traditional binary 
detection approaches. By leveraging ensemble learning, 
specifically the stacking method and a hybrid feature selection 
strategy combining Chi-Squared and Mutual Information 
techniques, the system achieves high accuracy, strong 
generalizability, and robustness to data imbalance. Empirical 
results demonstrate that the Stacking classifier outperforms 
both individual models and other ensemble techniques, 
achieving 83% across all evaluation metrics and the highest 
TNR of 93.34%. Notably, it significantly improves the 
detection of minority malware families, making it well-suited 
for real-world threat environments characterized by 
imbalanced class distributions and complex behavioral 
patterns. These findings validate the effectiveness of ensemble-
based approaches and principled feature engineering in 
malware detection and provide a solid foundation for 
advancing automated and intelligent mobile security systems. 
Future work will focus on expanding the dataset, incorporating 
dynamic analysis features, and integrating deep learning 
models to further enhance detection accuracy and threat 
response capabilities. 

VI. FUTURE WORK 

While the present study demonstrates the efficacy of 
ensemble learning for Android malware detection, various 
promising research directions remain unexplored. To begin 
with, expanding the dataset to include newer and varied 
malware samples, such as zero-day attacks, would make the 
model more robust against changing threats. Second, the 
incorporation of dynamic analysis capabilities like system 
calls, network traffic, and runtime activity might supplement 
the static capabilities employed in this research to give a better 
understanding of malware activity. Third, combining ensemble 
techniques with deep learning frameworks (like CNNs, RNNs, 
or combination models) might further enhance detection rates, 
particularly in dealing with intricate temporal and behavioral 
patterns. Additionally, future efforts need to tackle adversarial 
robustness, as malware developers more and more use evasion 
and obfuscation mechanisms to defeat machine learning-based 
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detectors. Research on federated and distributed learning 
methods is also a promising direction, enabling collaborative 
malware detection on devices without compromising user 
privacy. Finally, using explainable AI (XAI) techniques would 
add more transparency and trust in detection outcomes, which 
is extremely essential for cybersecurity professionals when 
deploying tools in critical real-world settings. 
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