
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

432 | P a g e

www.ijacsa.thesai.org

Shared API Call Insights for Optimized Malware

Detection in Portable Executable Files

Mehdi Kmiti, Jallal Eddine Moussaoui, Khalid El Gholami, Yassine Maleh

LaSTI Laboratory-National School of Applied Sciences Khouribga, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract—Malware analysis is essential for understanding

malicious software and developing effective detection strategies.

Traditional detection methods, such as signature-based and

heuristic-based approaches, often fail against evolving threats.

To address this challenge, this study proposes a static analysis–

based malware detection system that employs thirteen classifiers,

including Logistic Regression, K-Nearest Neighbors (KNN),

Support Vector Machine (SVM), Naive Bayes, Decision Tree,

Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), Random Forest, Extra Trees, Gradient

Boosting, AdaBoost, and LightGBM. The framework is built on a

balanced dataset of 1,318 Windows Portable Executable (PE)

files (674 malware, 644 benign), where the features are derived

from shared API calls between benign and malicious files to

ensure relevance and reduce redundancy. Experimental results

show that the Extra Trees classifier achieved the highest

accuracy of 98.14%, highlighting its effectiveness in detecting

malware. Overall, this study provides a robust, data-driven

approach that enhances static malware detection and contributes

to strengthening cybersecurity against emerging threats.

Keywords—Malware detection; static analysis; portable

executable (PE) files; API calls; extra trees classifier

I. INTRODUCTION

Malware, short for "malicious software", represents a major
threat to digital systems, ranging from financial losses and
privacy breaches to operational disruptions in critical
infrastructure [1]–[4]. Modern malware is increasingly
sophisticated, driven by profit, espionage, and cyber warfare,
and includes forms such as viruses, worms, trojans,
ransomware, and spyware [5], [6]. Recent statistics highlight
its scale: more than 90% of digital threats target the Windows
operating system, with AV-TEST reporting 1.17 billion threats
by mid-2024, while global cybercrime costs are projected to
reach $10.5 trillion annually by 2025 [7], [8]. These figures
underscore the urgent need for effective malware detection
strategies.

Traditional methods, such as signature-based and heuristic-
based detection, struggle to keep pace with polymorphic and
zero-day malware [9]–[11]. As a result, static analysis, which
inspects executables without execution, has emerged as a
promising alternative, particularly when combined with
machine learning for classification.

Research Gap: Despite promising results, many prior static
analysis methods rely on large and redundant feature sets,
which increase computational overhead and reduce
interpretability. Deep and ensemble learning models achieve
high accuracy, but often lack scalability in real-world or

resource-constrained environments. There is thus a need for
lightweight and interpretable approaches that preserve strong
detection performance while reducing redundancy.

To address this gap, we propose a malware detection
framework based on shared API calls, which represent the
intersection of calls found in both benign and malicious
Portable Executable (PE) files. This refined feature space
highlights the most relevant behaviors, reduces dimensionality,
and supports efficient classification. Using a balanced dataset
of 1,318 PE files (674 malware, 644 benign), we evaluate
thirteen classifiers and demonstrate that the Extra Trees
ensemble achieves the highest accuracy of 98.14%. The
contributions of this work lie in constructing a refined dataset
of shared API calls that enhances interpretability and
efficiency, conducting a comparative evaluation of multiple
classifiers, and showing that Extra Trees provides the best
trade-off between accuracy and computational cost, making it
suitable for practical deployment.

The remainder of this study is organized as follows: Section
II reviews related work, covering metadata-based techniques,
ensemble and hybrid approaches, and recent deep learning and
graph-/transformer-based solutions, followed by the
positioning of this study. Section III describes the proposed
methodology, including dataset construction, API call
extraction, shared-feature representation, preprocessing, the
employed machine learning models, training and evaluation
protocols, and the computing environment. Section IV presents
the experimental results and provides a comprehensive
discussion, including a comparative assessment against state-
of-the-art (SOTA) approaches, limitations of the proposed
method, practical applicability, and future research directions.
Finally, Section V concludes the study by summarizing the key
findings and outlining directions for future research.

II. RELATED WORK

Research on static malware detection has explored a wide
range of features and machine learning models. Existing
approaches can be grouped into three main categories:
metadata-based methods, ensemble and hybrid models, and
deep learning methods, including recent transformer and
graph-based solutions.

A. PE Header and Metadata Features

Balram et al. [12] evaluated six classifiers, including
Support Vector Machine, Logistic Regression, Random Forest,
and XGBoost, on string-based and PE header features. Their
findings showed that string features, when combined with
XGBoost and hybrid models, provided superior accuracy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

433 | P a g e

www.ijacsa.thesai.org

Similarly, Baldangombo et al. [13] analyzed PE headers, DLL
names, and API calls, reporting that PE header features alone
could achieve up to 99% accuracy with the J48 classifier while
maintaining low computational overhead. These studies
highlight the effectiveness of handcrafted metadata features but
also underscore their limitations in scalability and adaptability
to evolving threats.

B. Ensemble and Hybrid Models

Azeez et al. [14] proposed an ensemble framework that
integrated fully connected dense Artificial Neural Networks
(ANNs) and 1D-CNNs, with Extra Trees serving as a final-
stage classifier. Their approach outperformed conventional
classifiers in accuracy and robustness. Shijo and Salim [15]
combined static and dynamic analysis, using Printable Strings
Information (PSI) along with API call sequences extracted
from the Cuckoo Sandbox, and achieved 98.7% accuracy with
Support Vector Machine (SVM) and Random Forest. Yousuf
et al. [16] further improved performance by integrating
multiple feature sets, including DLL names, API calls, PE
headers, and section attributes, and applying ensemble
techniques such as Majority Voting, Stack Generalization, and
AdaBoost, achieving 99.5% accuracy. These works
demonstrate the benefits of combining diverse features and
models, though often at the cost of increased complexity.

C. Deep Learning and Graph-/Transformer-Based Methods

Deep learning techniques have also been widely adopted in
malware detection. Bensaoud and Kalita [17] proposed a
CNN–LSTM model trained on 8-gram sequences, achieving an
SOTA accuracy of 99.91%. More recent studies (2021 to 2025)
have introduced advanced architectures based on transformers
and graph neural networks (GNNs). Trizna et al. [18] applied a
Transformer model with self-attention to dynamic API-call
behaviors, improving detection accuracy while enhancing
interpretability through attention visualization. Similarly,
Seneviratne et al. [19] leveraged Vision Transformers in a self-
supervised setup on image-based malware representations,
achieving around 97% accuracy.

In the graph-based domain, GNNs are increasingly used to
capture structural relationships in executables. Mohammadiana
et al. [20] combined graph reduction techniques with
GNNExplainer to enable efficient and interpretable malware
detection on function and control-flow graphs. Shokouhinejad
et al. [21] proposed a stacked GNN framework where multiple
base learners are trained on PE control-flow graphs and
integrated via an attention-based meta-learner, significantly
improving both classification accuracy and explainability.
Additionally, Tang [22] introduced a hybrid GNN-based model
that fuses static and dynamic features, reporting a 4 to 7%
performance gain over existing baselines on the EMBER and
VirusShare datasets.

These works demonstrate the potential of deep learning,
transformers, and GNNs for achieving high detection accuracy
while also improving interpretability. However, their
computational requirements are often high, making them less
practical for deployment in resource-constrained environments.

D. Positioning of this Work

While prior studies demonstrate that traditional machine
learning, ensembles, and deep learning can achieve high
malware detection accuracy, they often rely on large or
redundant feature sets or demand high computational
resources. In contrast, the proposed framework focuses on a
lightweight subset of shared API calls between benign and
malicious executables. This design reduces redundancy,
improves interpretability, and provides a practical balance
between accuracy and efficiency, making it suitable for real-
world deployment in static malware detection.

III. METHODOLOGY

This section details the data sources and selection criteria,
the API-call extraction pipeline, the construction of the shared-
call feature space, the preprocessing steps, the learning models
and hyperparameters, and the training and evaluation protocol
used in this study. The objective is to provide a complete and
reproducible description of the static-analysis workflow.
Table I presents the dataset overview.

A. Data Sources and Selection Criteria

The corpus comprises 1,318 Windows PE files: 674
malware samples obtained from VirusShare (2012 to 2024) and
644 benign executables collected from the
C:\Windows\System32 directory of a Windows 10 installation.
Duplicates at the file and feature-vector levels were removed.
To limit class bias and facilitate clear performance estimation,
the dataset was balanced via random undersampling of the
majority class, yielding 714 unique samples (357 benign, 357
malware). The final feature matrix contains 559 columns: 558
binary API-call indicators and one label column.
Rationale: a balanced setting supports robust classifier
comparison without prevalence-driven bias, while focusing on
static features enables scalable, execution-free analysis [23]-
[27].

TABLE I DATASET OVERVIEW

_c_exit SetLastError VariantUnit CopyFileW … Class

1 0 0 1 … 1

0 0 1 0 … 1

1 1 0 1 … 0

0 1 1 1 … 0

0 0 1 0 … 1

B. API-Call Extraction Pipeline

API calls were obtained through a two-stage static
workflow:

1) Import table parsing using pefile to enumerate

imported functions and their DLLs; normalization unified

function aliases (e.g., CopyFileA/W) and handled forwarded

exports.

2) Disassembly using the Capstone framework to scan

code sections for call instructions and resolve additional API

references not declared in the import table (e.g., late binding,

indirect calls). Extracted names were canonicalized to

DLL.Function form (e.g., KERNEL32.CopyFileW), lower-

cased, and filtered to exclude non-WinAPI stubs and compiler

intrinsics. The output of this stage is a per-file multiset of API

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

434 | P a g e

www.ijacsa.thesai.org

call identifiers [28]-[35]. Fig. 1 shows the steps of data

collection process.

Fig. 1. Data collection process steps.

C. Shared-Call Feature Construction

Let B and M denote the sets of unique API calls observed
in benign and malware subsets, respectively. The shared
feature set is defined as:

S = B ∩ M

Each file i is represented by a binary vector xi ∈ {0,1}∣S∣,
where xi,j = 1 if API sj ∈ S appears in file i, and 0 otherwise.
Stacking all N files yields X ∈ {0,1}N×∣S∣. Limiting features
to S reduces redundancy and emphasizes behaviorally relevant
calls common to both classes.

Pseudo-code (shared-call construction)

1) Extract API sets Af for each file f

2) Compute B = ⋃f ∈ benign Af, M=⋃f ∈ malware Af

3) Set S = B ∩ M

4) For each file f, form xf [j] = 1{sj ∈ Af} for all sj ∈ S

5) Concatenate all xf to obtain X.

a) Practical advantage: This representation filters out

API calls unique to one class, thereby reducing

dimensionality, mitigating dataset sparsity, and emphasizing

behaviorally significant features. Compared with using the full

API space, this method enhances computational efficiency,

supports faster training, and highlights generalizable patterns

for malware detection.

D. Preprocessing

Duplicate vectors were removed to ensure one instance per
unique API profile. Missing indicators were treated as absence
(0). The dataset was then shuffled and split into 70% training /

30% testing with stratification by class. No numerical scaling
was applied to binary indicators. Where appropriate (e.g.,
SVM, LR), class weights were set to balanced [36]-[42]. Fig. 2
presents the data preprocessing steps.

E. Machine Learning Models and Parameters

To evaluate the effectiveness of shared-API-call-based
static malware detection, a diverse set of classification
algorithms was implemented, covering traditional learners,
ensemble methods, and neural networks. Each classifier was
trained on the binary feature vectors derived from Section III-
C, with performance assessed via 5-fold stratified cross-
validation and a 30% independent test set. Hyperparameters
were selected based on widely adopted defaults or light grid
search to balance performance and computational efficiency.

Fig. 2. Data preprocessing steps.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

435 | P a g e

www.ijacsa.thesai.org

The classifiers are grouped into three categories: traditional
baselines, ensemble learners, and deep learning models. A
summary of libraries and configurations are presented in Table
II to Table IV.

1) Traditional machine learning models: These models

serve as interpretable baselines, providing insight into linear

separability and low-complexity decision boundaries.

TABLE II TRADITIONAL MACHINE LEARNING MODELS

Model Library
Hyperparameters /

Notes
Practical Rationale

Logistic
Regression

scikit-
learn

solver='liblinear',

penalty='l2', C=1.0,

random_state=42

Robust linear baseline;

efficient on sparse

binary features

K-Nearest

Neighbors
(KNN)

scikit-

learn

n_neighbors=5,

weights='uniform',
metric='minkowski'

Captures local
neighborhoods;

sensitive to feature

sparsity

SVM
scikit-

learn

C=1.0, kernel='rbf',

gamma='scale'

Strong nonlinear

decision boundary;

benchmark for high-
dimensional data

Naive Bayes
scikit-

learn
Default parameters

Probabilistic, fast

baseline for binary data

Desicion

Tree

scikit-

learn

criterion='gini',

random_state=42

Provides
interpretability; prone

to overfitting

Linear

Discriminant

Analysis
(LDA)

scikit-

learn
Default parameters

Tests linear

discriminants; assumes

Gaussian feature
distribution

Quadratic
Discriminant

Analysis

(QDA)

scikit-

learn
Default parameters

Quadratic boundary;

serves as generative
baseline

2) Ensemble learning models: Ensembles aggregate

multiple weak learners to improve generalization. These

models are particularly suited for binary, high-dimensional

spaces, like API call vectors.

TABLE III ENSEMBLE LEARNING MODELS

Model Library
Hyperparameters /

Notes
Practical Rationale

Random
Forest

scikit-learn
n_estimators=100,
random_state=42

Reduces variance via

bagging; robust

baseline

Extra Trees scikit-learn
n_estimators=100,

random_state=42

Increased
randomization; faster

training

Gradient

Boosting
scikit-learn

n_estimators=100,

learning_rate=0.1,

random_state=42

Strong baseline for

structured data;

balances bias/variance

AdaBoost scikit-learn

n_estimators=50,

learning_rate=1.0,

random_state=42

Emphasizes difficult
samples; reduces bias

LightGBM LightGBM Default parameters

Gradient boosting

optimized for large
sparse binary features

3) Deep learning models: Deep learning models are

increasingly applied in malware detection due to their ability

to capture complex, nonlinear relationships among features. In

this study, a feedforward ANN was implemented as a

representative deep learning baseline. The ANN directly

ingests binary API-call feature vectors, enabling it to learn

higher-order dependencies beyond the capacity of linear or

tree-based classifiers.

TABLE IV DEEP LEARNING MODELS

Model Library Hyperparameters / Notes
Practical

Rationale

ANN
Keras /

TensorFlow

• Input: 559 nodes (one per

API call)

• Hidden layers: [256, 128],
activation='relu'

• Dropout: 0.5

• Output: 1 node,
activation='sigmoid'

• Optimizer: Adam

• Loss: Binary Crossentropy

• Epochs: 50

• Batch size: 32

Baseline neural

network for binary
feature vectors

F. Training and Evaluation Protocol

The dataset was partitioned into 70% training and 30%
testing with stratified sampling to preserve class balance.
Model selection and stability were assessed using 5-fold
stratified cross-validation on the training portion; final results
were reported on the independent test set. Unless otherwise
stated, a fixed threshold of 0.5 on the predicted
probability/score was used to compute threshold-dependent
metrics (OA, TNR, FPR). AUC was computed from the ROC
curve and is threshold-independent. All experiments used
identical splits and fixed random seeds for reproducibility.

Metrics. Four complementary measures were reported:

a) Overall Accuracy (OA): proportion of correctly

classified samples.

b) True Negative Rate (TNR): proportion of benign files

correctly identified as benign.

c) False Positive Rate (FPR): proportion of benign files

misclassified as malware.

d) Area Under the ROC Curve (AUC): probability that a

randomly chosen malware sample receives a higher score than

a randomly chosen benign sample; operationally computed

from the ROC via the trapezoidal rule.

All equations are referenced:

𝑂𝐴 =
TP + TN

TP + TN + FP + FN
 (1)

𝑇𝑁𝑅 =
TN

TN + FP
 (2)

𝐹𝑃𝑅 =
FP

FP + TN
= 1 − 𝑇𝑁𝑅 (3)

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(τ) × dFPR(τ)
1

0
, 𝑊𝑖𝑡ℎ 𝑇𝑃𝑅 =

TP(τ)

TP(τ) + FN(τ)
(4)

G. Reproducibility and Computing Environment

The experiments were conducted on a workstation
equipped with an Intel Core i5-12450H CPU (8 cores, up to 4.4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

436 | P a g e

www.ijacsa.thesai.org

GHz), 16 GB DDR4 RAM, an NVIDIA RTX 2050 GPU (4
GB), and a 512 GB SSD, running Windows 11.

The malware detection pipeline was implemented in
Python 3.9. Key libraries and frameworks included:

pefile for parsing PE headers and extracting imported
functions.

Capstone disassembly engine for recovering additional API
call references from executable code sections.

pandas for data handling and feature structuring.

scikit-learn for implementing classical machine learning
classifiers and evaluation procedures.

TensorFlow/Keras for training and evaluating the ANN.

All random seeds were fixed across experiments to ensure
reproducibility. Identical training or test splits were maintained
for all models to guarantee fair comparison.

IV. RESULTS AND DISCUSSION

A. Results

Thirteen classifiers were evaluated to identify the most
effective algorithms for malware detection using shared API-
call features. Table V summarizes the performance across four
key metrics: Overall Accuracy (1), True Negative Rate (2),
False Positive Rate (3), and Area Under the ROC Curve (4)
[43]-[46].

The Extra Trees classifier achieved the highest overall
accuracy (OA = 98.14%) and a strong AUC of 98.19%,
confirming its suitability for handling high-dimensional, sparse
binary feature vectors. The ANN achieved the highest AUC
(99.50%), reflecting excellent discriminatory power between
benign and malicious samples, although its OA was slightly
lower at 97.67%.

Other strong performers included Logistic Regression (OA
= 97.67%, AUC = 97.75%) and AdaBoost (OA = 97.67%,

AUC = 97.69%). Gradient Boosting also performed
competitively (OA = 97.21%, AUC = 97.31%), while Random
Forest and LightGBM both reached OA = 96.74%. Traditional
classifiers such as Naïve Bayes, LDA, and QDA
underperformed, with OA below 85%, highlighting their
limitations in modeling nonlinear feature interactions.

Notably, the Decision Tree classifier achieved an FPR of
0% (3), although its OA and AUC (95.35% and 95.61%) were
lower than ensemble-based methods.

Table V shows the performance comparison of classifiers
using FPR (3), TNR (2), OA (1), and AUC (4).

TABLE V PERFORMANCE COMPARISON OF DETECTORS

Algorithm FPR (%) TNR (%) AUC (%) OA (%)

Naïve Bayes 3.25 13.49 83.82 83.26

Logistic
Regression

0.46 1.86 97.75 97.67

LDA 20 17.67 62.05 62.33

SVM 0.93 2.79 96.38 96.28

QDA 19.06 14.42 66.11 66.51

KNN 0.93 4.18 95.06 94.88

Decision Trees 0 4.65 95.61 95.35

ANN 0.93 1.39 99.50 97.67

Random Forest 0.46 2.79 96.87 96.74

Extra Trees 0.46 1.39 98.19 98.14

AdaBoost 0.93 1.39 97.69 97.67

Gradient
Boosting

0.46 2.32 97.31 97.21

LightGBM 0.46 2.79 96.87 96.74

To evaluate the contribution of the proposed approach
relative to prior studies, Table VI presents a comparative
analysis. It contrasts the performance of the shared API-call-
based Extra Trees classifier results with traditional string- and
header-based approaches, as well as recent SOTA methods
such as deep ensembles, hybrid static–dynamic frameworks,
and attention-based models.

TABLE VI COMPARATIVE ANALYSIS OF THE PROPOSED METHOD AND EXISTING MALWARE DETECTION APPROACHES

Study Features used Model / Architecture OA (%) Interpretability Complexity Notes

Proposed Method

(Extra Trees)

Shared API call

vectors
Extra Trees Classifier 98.14 High Low

Lightweight and fast; effective for

sparse binary features

Balram, et al. [12] String Hybrid (LR/XGB) 98 Moderate High
Highest accuracy; longer execution

time

Baldangombo et al.

[13]
PE Headers J48 99 High Moderate

Best standalone feature set; uses

PCA

Azeez et al. [14] PE Headers
Ensemble (7 NNs +
ExtraTrees)

100 Low Very High
Best performance; requires stacked
ensemble training

Shijo and Salim

[15]

Integrated (PSI +

API 3/4-grams)
SVM 98.7 Low Very High

Best accuracy; combines

static/dynamic strengths

Yousuf et al. [16]
PE Header + PE
Section

(Integrated)

Random Forest, Stack

Gen
99.5 Medium

Moderate-

High

Uses IG/PCA for feature selection;

combines static structural features.

Bensaoud and

Kalita [17]

API Calls +

Opcodes (8-
grams)

CNN-LSTM-3 99.91 Medium High
Combines CNN for spatial features

and LSTM for sequential patterns.

Trizna et al. [18]
Dynamic API call

traces

Self-Attention

(Nebula)
99.8 Medium High

SOTA dynamic analysis; resource-

intensive

Seneviratne et al.

[19]

Malware images
(transformed

binaries)

Vision Transformer

(Self-Supervised)
97 Low Very High

Requires GPU-heavy training; less

interpretable

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

437 | P a g e

www.ijacsa.thesai.org

Mohammadian et

al. [20]

Graph-based API

dependency
features

Graph Reduction +

Explainable Learning
95.4 High High

Improves explainability; complex

preprocessing

Shokouhinejad et

al. [21]

Graph-based

features

Explainable Ensemble

Learning
86.14 High High

Balances interpretability with high

accuracy

J. Tang [22]
Static + Dynamic
fusion

Hybrid ML Ensemble > 95 Medium Very High
Strong accuracy but requires both
runtime and static environments

The Receiver Operating Characteristic (ROC) curve for the
Extra Trees classifier is shown in Fig. 3, illustrating its balance
of high OA and AUC with low FPR.

Fig. 3 presents the ROC curve of the Extra Trees classifier,
evaluated with OA (1), AUC (4), TNR (2), and FPR (3).

Fig. 3. ROC curve using extra trees classifier.

B. Discussion

The results confirm the effectiveness of tree-based
ensemble models for static malware detection in sparse, binary
feature spaces. The Extra Trees classifier offers the best
balance between accuracy and interpretability, while the ANN
model demonstrates superior AUC performance, suggesting
that deep learning techniques can better capture subtle feature
interactions.

In comparison with existing studies, the proposed
framework offers several practical advantages, notably in terms
of lightweight architecture, reduced feature redundancy, and
improved computational efficiency. For instance, Azeez et al.
[14] employed a complex ensemble of seven neural networks
combined with Extra Trees to attain near-perfect detection
accuracy, resulting in significant training overhead and
deployment challenges. In contrast, the present approach
circumvents such complexity, enhancing scalability and ease of
integration. Furthermore, while Shijo and Salim [15] relied on
sandboxed environments to extract dynamic behavioral
features, the proposed static-only methodology eliminates the
need for runtime execution, thereby simplifying
implementation while maintaining competitive detection
performance.

Balram et al. [12] and Baldangombo et al. [13] reported
strong results using string- and header-based features but did
not emphasize interpretability or feature reduction. Yousuf et
al. [16] achieved an impressive 99.5% accuracy through
feature fusion and advanced ensemble techniques; however,
this came at the cost of increased system complexity.

More recent advances, such as self-attention models [18],
[19] and explainable graph-based frameworks [20], [21],
achieve high accuracy and improved interpretability but require
significant computational resources, making them less suitable
for lightweight or real-time deployments. Hybrid feature fusion
approaches, such as that proposed by Tang [22], demonstrate
the value of combining static and dynamic features but
introduce additional integration challenges.

Overall, the proposed method achieves high accuracy
(98.14% overall accuracy) and excellent discrimination
(99.50% AUC) while using a compact and interpretable feature
set of 558 shared API calls.

LIMITATIONS

As with most static approaches, the method may be less
effective against heavily obfuscated or polymorphic malware
and could face challenges related to concept drift, where
emerging malware families exhibit behaviors not represented
in the training data. Additionally, the moderate dataset size
may limit generalization to large-scale, real-world scenarios.

PRACTICAL APPLICABILITY

Despite these limitations, the proposed framework is fast,
lightweight, and interpretable, making it suitable for endpoint
security systems and resource-constrained environments,
where dynamic analysis is infeasible.

FUTURE WORK

Future research should focus on extending the analysis to
larger and more imbalanced datasets would provide stronger
evidence of generalizability. Moreover, integrating hybrid
static–dynamic features could enhance resilience against
obfuscation and adversarial evasion. Finally, exploring
advanced architectures, such as CNN-LSTM hybrids or
transformer-based models, may offer additional improvements
in robustness and scalability.

V. CONCLUSION

This study presented a lightweight and interpretable
malware detection framework that leverages shared API call
behaviors extracted from benign and malicious PE files.
Thirteen classifiers were systematically evaluated on a
balanced dataset of 1,318 samples, demonstrating that high
detection accuracy can be achieved with carefully selected
static features. Among the evaluated models, the Extra Trees
classifier achieved the best overall accuracy (98.14%), while
maintaining high interpretability and computational efficiency.
The ANN reached the highest AUC (99.50%), highlighting the
ability of shallow deep learning models to capture nonlinear
feature interactions. Overall, tree-based ensemble methods
proved most effective for high-dimensional binary API-call
features, offering a strong balance between detection power,
efficiency, and interpretability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

438 | P a g e

www.ijacsa.thesai.org

In comparison with recent SOTA approaches such as
hybrid CNN-LSTM models, graph-based learning, and
transformer-based architectures, the proposed framework
provides a more practical and resource-efficient solution.
While those models often achieve higher accuracy on larger
datasets, they typically introduce greater computational
overhead and reduced interpretability. In contrast, the
presented framework achieves competitive results while
remaining lightweight, making it suitable for deployment in
resource-constrained or real-time environments.

Despite these strengths, the study has several limitations.
The exclusive reliance on static analysis may reduce robustness
against highly obfuscated or adversarial malware, while the use
of a moderately sized, balanced dataset limits generalizability
to real-world malware distributions, which are often large-scale
and highly imbalanced. Issues such as concept drift, adversarial
evasion, and scalability in high-volume environments remain
open challenges.

Future work should extend this research by validating the
framework on larger and more diverse datasets, integrating
dynamic and hybrid features, and investigating advanced
ensemble or deep learning architectures such as CNN-LSTMs
and transformer-based models. Additional directions include
enhancing resilience against adversarial evasion techniques,
addressing concept drift in evolving threat landscapes, and
optimizing scalability for high-throughput detection scenarios.
These improvements would strengthen both the theoretical and
practical impact of the proposed approach, ensuring its
continued relevance in modern malware detection.

REFERENCES

[1] Symantec Corporation, “Internet Security Threat Report,” Rep. 22,
Mountain View, CA, USA, Apr. 2017. [Online]. Available:
https://www.symantec.com/security-center

[2] S. Anderson, “Understanding the financial impact of cyber-attacks on
businesses,” *J. Inf. Secur. Appl.*, vol. 40, pp. 133–142, Mar. 2018, doi:
10.1016/j.jisa.2018.02.009.

[3] W. Stallings and L. Brown, *Computer Security: Principles and
Practice*, 4th ed. Boston, MA, USA: Pearson, 2018. [Online].
Available:
https://www.pearsonhighered.com/assets/preface/0/1/3/2/0132775069.pd
f

[4] M. Ahmad, “A study on ransomware attacks and their impact on the
cybersecurity landscape,” *Int. J. Adv. Res. Comput. Sci.*, vol. 10, no.
4, pp. 285–292, Dec. 2019, doi: 10.26483/ijarcs.v10i4.6477.

[5] D. Harley and A. Lee, *Viruses Revealed*. New York, NY, USA:
Osborne/McGraw-Hill, 2001. [Online]. Available:
https://archive.org/details/virusesrevealed00harl

[6] R. A. Grimes, *Hacking the Hacker: Learn from the Experts Who Take
Down Hackers*. Indianapolis, IN, USA: Wiley, 2017.

[7] IBM Security, *Cost of a Data Breach Report*, Armonk, NY, USA:
IBM, 2024. [Online]. Available: https://www.ibm.com/reports/data-
breach

[8] AV-TEST Institute, *Malware Statistics*, Magdeburg, Germany, 2024.
[Online]. Available: https://www.av-test.org/en/statistics/malware/

[9] W. Tang *et al*., “Hybrid analysis framework for large-scale malware
detection using machine learning,” *Comput. Secur.*, vol. 98, p.
102014, May 2020, doi: 10.1016/j.cose.2020.102014.

[10] A. Aghaei-Foroushani and M. Zincir-Heywood, “A comprehensive
study of evasive malware techniques and their implications for current
detection tools,” *Comput. Commun.*, vol. 145, pp. 241–260, Dec.
2019, doi: 10.1016/j.comcom.2019.06.014.

[11] S. Krishnan, Y. C. Tian, J. Sun, and H. Y. Liu, “Heuristic-based
detection of code obfuscation malware,” *IEEE Access*, vol. 8, pp.
7198–7207, Dec. 2020, doi: 10.1109/ACCESS.2020.2972442.

[12] N. Balram, G. Hsieh, and C. McFall, “Static malware analysis using
machine learning algorithms on APT1 dataset with string and PE header
features,” in *Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI)*, Las
Vegas, NV, USA, Dec. 2019, pp. 90–95, doi:
10.1109/CSCI49370.2019.00022.

[13] U. Baldangombo, N. Jambaljav, and S.-J. Horng, “A static malware
detection system using data mining methods,” *arXiv*,
arXiv:1308.2831, Aug. 2013. [Online]. Available:
http://arxiv.org/abs/1308.2831

[14] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti, and R.
Damasevicius, “Windows PE malware detection using ensemble
learning,” *Appl. Sci.*, vol. 11, no. 4, Art. no. 1477, 2021, doi:
10.3390/app11041477.

[15] P. V. Shijo and A. Salim, “Integrated static and dynamic analysis for
malware detection,” *Procedia Comput. Sci.*, vol. 46, pp. 804–811,
2015, doi: 10.1016/j.procs.2015.02.149.

[16] M. I. Yousuf, I. Anwer, A. Riasat, K. T. Zia, and S. Kim, “Windows
malware detection based on static analysis with multiple features,”
PeerJ Comput. Sci., vol. 9, p. e1319, Apr. 2023, doi: 10.7717/peerj-
cs.1319.

[17] A. Bensaoud and J. Kalita, “CNN-LSTM and transfer learning models
for malware classification based on opcodes and API calls,” *Knowl.-
Based Syst.*, vol. 290, p. 111543, Apr. 2024, doi:
10.1016/j.knosys.2024.111543.

[18] D. Trizna, “Nebula: Self-attention for dynamic malware analysis,”
arXiv, vol. abs/2310.10664, Oct. 2023. [Online]. Available:
https://arxiv.org/abs/2310.10664

[19] S. Seneviratne, R. Shariffdeen, S. Rasnayaka, and N. Kasthuriarachchi,
“Self-supervised vision transformers for malware detection,” arXiv, vol.
abs/2208.07049, Aug. 2022. [Online]. Available:
https://arxiv.org/abs/2208.07049

[20] H. Mohammadian, G. Higgins, S. Ansong, R. Razavi-Far, and A. A.
Ghorbani, “Explainable malware detection through integrated graph
reduction and learning techniques,” arXiv, vol. abs/2412.03634, Dec.
2024. [Online]. Available: https://arxiv.org/abs/2412.03634

[21] H. Shokouhinejad, R. Razavi-Far, G. Higgins, and A. A. Ghorbani,
“Explainable ensemble learning for graph-based malware detection,”
arXiv, vol. abs/2508.09801, Aug. 2025. [Online]. Available:
https://arxiv.org/abs/2508.09801

[22] J. Tang, “Fusion of static and dynamic features for malware detection,”
Proc. ACE Conf., pp. 1–8, Jul. 2025. [Online]. Available:
https://direct.ewa.pub/proceedings/ace/article/view/24689

[23] P. Dong, Z. Wang, and J. Cheng, “A new static malware detection
method using features of PE headers,” *J. Comput. Syst. Sci.*, vol. 89,
pp. 449–464, May 2017, doi: 10.1016/j.jcss.2017.05.001.

[24] F. Schuster *et al*., “Malware Zoo: A dataset of executable and online
malware samples for academic and industrial research,” in *Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS)*, pp. 781–796, 2017,
doi: 10.1145/3133956.3134073.

[25] VirusShare, “Comprehensive Repository of Malware Samples.”
[Online]. Available: https://virusshare.com

[26] F. Rafique and M. K. Luhach, “PE file format features for malware
detection: A systematic review,” *IEEE Access*, vol. 10, pp. 3035–
3044, Jan. 2022, doi: 10.1109/ACCESS.2022.3140032.

[27] A. Mosse, J. Howard, and G. Hill, “Analysis of API calls in portable
executable (PE) files for threat analysis,” in *Proc. ACM SIGSAC Conf.
Artif. Intell. Cybersecurity*, pp. 55–64, 2019.

[28] E. Andriesse, X. Fratantonio, A. Sasse, and C. Kruegel, “Practical binary
code analysis using Capstone,” in *Proc. IEEE Secur. Privacy
Workshops (SPW)*, pp. 1–7, 2018, doi: 10.1109/SPW.2018.00010.

[29] V. Talib and S. Girkar, “Detection of malware through API call
sequence and classification techniques,” *J. Netw. Comput. Appl.*, vol.
50, pp. 129–143, Jun. 2018, doi: 10.1016/j.jnca.2017.03.015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

439 | P a g e

www.ijacsa.thesai.org

[30] G. D'Angelo and R. Di Pietro, “Unsupervised detection of malware via
dynamic and static disassembly analysis,” in *Proc. IEEE TrustCom*,
pp. 91–99, Aug. 2016, doi: 10.1109/TrustCom.2016.016.

[31] Capstone, “Capstone: Lightweight Multi-Architecture Disassembly
Framework.” [Online]. Available: https://www.capstone-engine.org

[32] M. Saud, U. Mahbub, and A. Anwar, “Analysis of portable executable
(PE) file metadata for malware classification using static analysis,” in
Proc. ACM SIGSAC Conf. Artif. Intell. Cybersecurity, pp. 104–113,
2019, doi: 10.1145/3313407.3314009.

[33] S. Kariyappa and H. Ambre, “Static malware analysis with PE parsing:
Exploring Python libraries like pefile for threat modeling,” *Int. J. Adv.
Comput. Sci. Appl. (IJACSA)*, vol. 10, no. 4, pp. 45–54, Apr. 2019,
doi: 10.14569/IJACSA.2019.010042.

[34] P. Sun and Y. Wang, “Binary malware classification using supervised
machine learning and API feature analysis,” in *Proc. ACM Int. Conf.
Inf. Knowl. Manage. (CIKM)*, pp. 1555–1562, 2017, doi:
10.1145/3132847.3133071.

[35] F. Santos, C. G. Comin, and A. Capurro, “Static analysis of Windows
malware using Capstone disassembly for API call extraction,” *IEEE
Access*, vol. 8, pp. 6504–6517, Jan. 2020, doi:
10.1109/ACCESS.2019.2963872.

[36] W. Tang, S. Yan, and Z. Yan, “Hybrid data preprocessing for robust
malware detection using API features,” *IEEE Access*, vol. 9, pp.
34177–34187, Mar. 2021, doi: 10.1109/ACCESS.2021.3060497.

[37] D. Borkin, A. Némethová, G. Michaľčonok, and K. Maiorov, “Impact of
data normalization on classification model accuracy,” Res. Pap. Fac.
Mater. Sci. Technol. Slovak Univ. Technol., vol. 27, no. 45, pp. 79–84,
Sep. 2019, doi: 10.2478/rput-2019-0029.

[38] D. Mohaisen and O. Alrawi, “AMAL: High-level comprehensive
malware analysis and data preprocessing framework,” in *Proc. ACM
SIGSAC Symp. Inf., Comput. Commun. Secur. (Asia CCS)*, pp. 101–
111, Jun. 2014.

[39] P. C. Zhu and Y. X. Zhou, “Practical data augmentation and cleaning for
malware analysis,” *J. Comput. Theor. Nanosci.*, vol. 14, no. 1, pp.
134–141, Jan. 2017, doi: 10.1166/jctn.2017.6861.

[40] D. Kong and G. Yan, “Discerning malware program structure through
API sequence similarity,” in *Proc. IEEE Secur. Privacy Symp.*, pp.
512–522, May 2013, doi: 10.1109/SP.2013.40.

[41] N. Japkowicz and M. Shah, *Evaluating Learning Algorithms: A
Classification Perspective*. Cambridge, U.K.: Cambridge Univ. Press,
2011.

[42] F. Schuster and G. Jacob, “Machine learning-based data cleaning in
malware detection pipelines,” *Comput. Secur.*, vol. 70, pp. 79–87,
Sep. 2017, doi: 10.1016/j.cose.2017.06.009.

[43] P. Vemuri, B. Mukherjee, and M. M. S. Poonkodi, “Comparative
analysis of machine learning classifiers for malware detection,” *IEEE
Trans. Emerg. Topics Comput.*, vol. 5, no. 4, pp. 476–489, Dec. 2017,
doi: 10.1109/TETC.2016.2602621.

[44] H. Zhang, W. Dai, and Y. Xu, “Malware detection using random forest
and decision tree classifiers,” *Comput. Secur.*, vol. 60, pp. 23–31, Oct.
2016, doi: 10.1016/j.cose.2016.04.004.

[45] J. Brownlee, *Master Machine Learning Algorithms: Discover How
They Work and Implement Them from Scratch*, 2nd ed. Victoria,
Australia: Machine Learning Mastery, 2019.

[46] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in *Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.*, pp.
785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

