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Abstract—Malware analysis is essential for understanding 

malicious software and developing effective detection strategies. 

Traditional detection methods, such as signature-based and 

heuristic-based approaches, often fail against evolving threats. 

To address this challenge, this study proposes a static analysis–

based malware detection system that employs thirteen classifiers, 

including Logistic Regression, K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), Naive Bayes, Decision Tree, 

Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA), Random Forest, Extra Trees, Gradient 

Boosting, AdaBoost, and LightGBM. The framework is built on a 

balanced dataset of 1,318 Windows Portable Executable (PE) 

files (674 malware, 644 benign), where the features are derived 

from shared API calls between benign and malicious files to 

ensure relevance and reduce redundancy. Experimental results 

show that the Extra Trees classifier achieved the highest 

accuracy of 98.14%, highlighting its effectiveness in detecting 

malware. Overall, this study provides a robust, data-driven 

approach that enhances static malware detection and contributes 

to strengthening cybersecurity against emerging threats. 

Keywords—Malware detection; static analysis; portable 

executable (PE) files; API calls; extra trees classifier 

I. INTRODUCTION 

Malware, short for "malicious software", represents a major 
threat to digital systems, ranging from financial losses and 
privacy breaches to operational disruptions in critical 
infrastructure [1]–[4]. Modern malware is increasingly 
sophisticated, driven by profit, espionage, and cyber warfare, 
and includes forms such as viruses, worms, trojans, 
ransomware, and spyware [5], [6]. Recent statistics highlight 
its scale: more than 90% of digital threats target the Windows 
operating system, with AV-TEST reporting 1.17 billion threats 
by mid-2024, while global cybercrime costs are projected to 
reach $10.5 trillion annually by 2025 [7], [8]. These figures 
underscore the urgent need for effective malware detection 
strategies. 

Traditional methods, such as signature-based and heuristic-
based detection, struggle to keep pace with polymorphic and 
zero-day malware [9]–[11]. As a result, static analysis, which 
inspects executables without execution, has emerged as a 
promising alternative, particularly when combined with 
machine learning for classification. 

Research Gap: Despite promising results, many prior static 
analysis methods rely on large and redundant feature sets, 
which increase computational overhead and reduce 
interpretability. Deep and ensemble learning models achieve 
high accuracy, but often lack scalability in real-world or 

resource-constrained environments. There is thus a need for 
lightweight and interpretable approaches that preserve strong 
detection performance while reducing redundancy. 

To address this gap, we propose a malware detection 
framework based on shared API calls, which represent the 
intersection of calls found in both benign and malicious 
Portable Executable (PE) files. This refined feature space 
highlights the most relevant behaviors, reduces dimensionality, 
and supports efficient classification. Using a balanced dataset 
of 1,318 PE files (674 malware, 644 benign), we evaluate 
thirteen classifiers and demonstrate that the Extra Trees 
ensemble achieves the highest accuracy of 98.14%. The 
contributions of this work lie in constructing a refined dataset 
of shared API calls that enhances interpretability and 
efficiency, conducting a comparative evaluation of multiple 
classifiers, and showing that Extra Trees provides the best 
trade-off between accuracy and computational cost, making it 
suitable for practical deployment. 

The remainder of this study is organized as follows: Section 
II reviews related work, covering metadata-based techniques, 
ensemble and hybrid approaches, and recent deep learning and 
graph-/transformer-based solutions, followed by the 
positioning of this study. Section III describes the proposed 
methodology, including dataset construction, API call 
extraction, shared-feature representation, preprocessing, the 
employed machine learning models, training and evaluation 
protocols, and the computing environment. Section IV presents 
the experimental results and provides a comprehensive 
discussion, including a comparative assessment against state-
of-the-art (SOTA) approaches, limitations of the proposed 
method, practical applicability, and future research directions. 
Finally, Section V concludes the study by summarizing the key 
findings and outlining directions for future research. 

II. RELATED WORK 

Research on static malware detection has explored a wide 
range of features and machine learning models. Existing 
approaches can be grouped into three main categories: 
metadata-based methods, ensemble and hybrid models, and 
deep learning methods, including recent transformer and 
graph-based solutions. 

A. PE Header and Metadata Features 

Balram et al. [12] evaluated six classifiers, including 
Support Vector Machine, Logistic Regression, Random Forest, 
and XGBoost, on string-based and PE header features. Their 
findings showed that string features, when combined with 
XGBoost and hybrid models, provided superior accuracy. 
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Similarly, Baldangombo et al. [13] analyzed PE headers, DLL 
names, and API calls, reporting that PE header features alone 
could achieve up to 99% accuracy with the J48 classifier while 
maintaining low computational overhead. These studies 
highlight the effectiveness of handcrafted metadata features but 
also underscore their limitations in scalability and adaptability 
to evolving threats. 

B. Ensemble and Hybrid Models 

Azeez et al. [14] proposed an ensemble framework that 
integrated fully connected dense Artificial Neural Networks 
(ANNs) and 1D-CNNs, with Extra Trees serving as a final-
stage classifier. Their approach outperformed conventional 
classifiers in accuracy and robustness. Shijo and Salim [15] 
combined static and dynamic analysis, using Printable Strings 
Information (PSI) along with API call sequences extracted 
from the Cuckoo Sandbox, and achieved 98.7% accuracy with 
Support Vector Machine (SVM) and Random Forest. Yousuf 
et al. [16] further improved performance by integrating 
multiple feature sets, including DLL names, API calls, PE 
headers, and section attributes, and applying ensemble 
techniques such as Majority Voting, Stack Generalization, and 
AdaBoost, achieving 99.5% accuracy. These works 
demonstrate the benefits of combining diverse features and 
models, though often at the cost of increased complexity. 

C. Deep Learning and Graph-/Transformer-Based Methods 

Deep learning techniques have also been widely adopted in 
malware detection. Bensaoud and Kalita [17] proposed a 
CNN–LSTM model trained on 8-gram sequences, achieving an 
SOTA accuracy of 99.91%. More recent studies (2021 to 2025) 
have introduced advanced architectures based on transformers 
and graph neural networks (GNNs). Trizna et al. [18] applied a 
Transformer model with self-attention to dynamic API-call 
behaviors, improving detection accuracy while enhancing 
interpretability through attention visualization. Similarly, 
Seneviratne et al. [19] leveraged Vision Transformers in a self-
supervised setup on image-based malware representations, 
achieving around 97% accuracy. 

In the graph-based domain, GNNs are increasingly used to 
capture structural relationships in executables. Mohammadiana 
et al. [20] combined graph reduction techniques with 
GNNExplainer to enable efficient and interpretable malware 
detection on function and control-flow graphs. Shokouhinejad 
et al. [21] proposed a stacked GNN framework where multiple 
base learners are trained on PE control-flow graphs and 
integrated via an attention-based meta-learner, significantly 
improving both classification accuracy and explainability. 
Additionally, Tang [22] introduced a hybrid GNN-based model 
that fuses static and dynamic features, reporting a 4 to 7% 
performance gain over existing baselines on the EMBER and 
VirusShare datasets. 

These works demonstrate the potential of deep learning, 
transformers, and GNNs for achieving high detection accuracy 
while also improving interpretability. However, their 
computational requirements are often high, making them less 
practical for deployment in resource-constrained environments. 

D. Positioning of this Work 

While prior studies demonstrate that traditional machine 
learning, ensembles, and deep learning can achieve high 
malware detection accuracy, they often rely on large or 
redundant feature sets or demand high computational 
resources. In contrast, the proposed framework focuses on a 
lightweight subset of shared API calls between benign and 
malicious executables. This design reduces redundancy, 
improves interpretability, and provides a practical balance 
between accuracy and efficiency, making it suitable for real-
world deployment in static malware detection. 

III. METHODOLOGY 

This section details the data sources and selection criteria, 
the API-call extraction pipeline, the construction of the shared-
call feature space, the preprocessing steps, the learning models 
and hyperparameters, and the training and evaluation protocol 
used in this study. The objective is to provide a complete and 
reproducible description of the static-analysis workflow. 
Table I presents the dataset overview. 

A. Data Sources and Selection Criteria 

The corpus comprises 1,318 Windows PE files: 674 
malware samples obtained from VirusShare (2012 to 2024) and 
644 benign executables collected from the 
C:\Windows\System32 directory of a Windows 10 installation. 
Duplicates at the file and feature-vector levels were removed. 
To limit class bias and facilitate clear performance estimation, 
the dataset was balanced via random undersampling of the 
majority class, yielding 714 unique samples (357 benign, 357 
malware). The final feature matrix contains 559 columns: 558 
binary API-call indicators and one label column. 
Rationale: a balanced setting supports robust classifier 
comparison without prevalence-driven bias, while focusing on 
static features enables scalable, execution-free analysis [23]-
[27]. 

TABLE I DATASET OVERVIEW 

_c_exit SetLastError VariantUnit CopyFileW … Class 

1 0 0 1 … 1 

0 0 1 0 … 1 

1 1 0 1 … 0 

0 1 1 1 … 0 

0 0 1 0 … 1 

B. API-Call Extraction Pipeline 

API calls were obtained through a two-stage static 
workflow: 

1) Import table parsing using pefile to enumerate 

imported functions and their DLLs; normalization unified 

function aliases (e.g., CopyFileA/W) and handled forwarded 

exports. 

2) Disassembly using the Capstone framework to scan 

code sections for call instructions and resolve additional API 

references not declared in the import table (e.g., late binding, 

indirect calls). Extracted names were canonicalized to 

DLL.Function form (e.g., KERNEL32.CopyFileW), lower-

cased, and filtered to exclude non-WinAPI stubs and compiler 

intrinsics. The output of this stage is a per-file multiset of API 
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call identifiers [28]-[35]. Fig. 1 shows the steps of data 

collection process. 

 

Fig. 1. Data collection process steps. 

C. Shared-Call Feature Construction 

Let B and M denote the sets of unique API calls observed 
in benign and malware subsets, respectively. The shared 
feature set is defined as: 

S = B ∩ M  

Each file i is represented by a binary vector xi ∈ {0,1}∣S∣, 
where xi,j = 1 if API sj ∈ S appears in file i, and 0 otherwise. 
Stacking all N files yields X ∈ {0,1}N×∣S∣. Limiting features 
to S reduces redundancy and emphasizes behaviorally relevant 
calls common to both classes. 

Pseudo-code (shared-call construction) 

1) Extract API sets Af  for each file f 

2) Compute B = ⋃f ∈ benign Af, M=⋃f ∈ malware Af 

3) Set S = B ∩ M 

4) For each file f, form xf [j] = 1{sj ∈ Af} for all sj ∈ S 

5) Concatenate all xf to obtain X. 

a) Practical advantage: This representation filters out 

API calls unique to one class, thereby reducing 

dimensionality, mitigating dataset sparsity, and emphasizing 

behaviorally significant features. Compared with using the full 

API space, this method enhances computational efficiency, 

supports faster training, and highlights generalizable patterns 

for malware detection. 

D. Preprocessing 

Duplicate vectors were removed to ensure one instance per 
unique API profile. Missing indicators were treated as absence 
(0). The dataset was then shuffled and split into 70% training / 

30% testing with stratification by class. No numerical scaling 
was applied to binary indicators. Where appropriate (e.g., 
SVM, LR), class weights were set to balanced [36]-[42]. Fig. 2 
presents the data preprocessing steps. 

E. Machine Learning Models and Parameters 

To evaluate the effectiveness of shared-API-call-based 
static malware detection, a diverse set of classification 
algorithms was implemented, covering traditional learners, 
ensemble methods, and neural networks. Each classifier was 
trained on the binary feature vectors derived from Section III-
C, with performance assessed via 5-fold stratified cross-
validation and a 30% independent test set. Hyperparameters 
were selected based on widely adopted defaults or light grid 
search to balance performance and computational efficiency. 

 

Fig. 2. Data preprocessing steps. 
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The classifiers are grouped into three categories: traditional 
baselines, ensemble learners, and deep learning models. A 
summary of libraries and configurations are presented in Table 
II to Table IV. 

1) Traditional machine learning models: These models 

serve as interpretable baselines, providing insight into linear 

separability and low-complexity decision boundaries. 

TABLE II TRADITIONAL MACHINE LEARNING MODELS 

Model Library 
Hyperparameters / 

Notes 
Practical Rationale 

Logistic 
Regression 

scikit-
learn 

solver='liblinear', 

penalty='l2', C=1.0, 

random_state=42 

Robust linear baseline; 

efficient on sparse 

binary features 

K-Nearest 

Neighbors 
(KNN) 

scikit-

learn 

n_neighbors=5, 

weights='uniform', 
metric='minkowski' 

Captures local 
neighborhoods; 

sensitive to feature 

sparsity 

SVM 
scikit-

learn 

C=1.0, kernel='rbf', 

gamma='scale' 

Strong nonlinear 

decision boundary; 

benchmark for high-
dimensional data 

Naive Bayes 
scikit-

learn 
Default parameters 

Probabilistic, fast 

baseline for binary data 

Desicion 

Tree 

scikit-

learn 

criterion='gini', 

random_state=42 

Provides 
interpretability; prone 

to overfitting 

Linear 

Discriminant 

Analysis 
(LDA) 

scikit-

learn 
Default parameters 

Tests linear 

discriminants; assumes 

Gaussian feature 
distribution 

Quadratic 
Discriminant 

Analysis 

(QDA) 

scikit-

learn 
Default parameters 

Quadratic boundary; 

serves as generative 
baseline 

2) Ensemble learning models: Ensembles aggregate 

multiple weak learners to improve generalization. These 

models are particularly suited for binary, high-dimensional 

spaces, like API call vectors. 

TABLE III ENSEMBLE LEARNING MODELS 

Model Library 
Hyperparameters / 

Notes 
Practical Rationale 

Random 
Forest 

scikit-learn 
n_estimators=100, 
random_state=42 

Reduces variance via 

bagging; robust 

baseline 

Extra Trees scikit-learn 
n_estimators=100, 

random_state=42 

Increased 
randomization; faster 

training 

Gradient 

Boosting 
scikit-learn 

n_estimators=100, 

learning_rate=0.1, 

random_state=42 

Strong baseline for 

structured data; 

balances bias/variance 

AdaBoost scikit-learn 

n_estimators=50, 

learning_rate=1.0, 

random_state=42 

Emphasizes difficult 
samples; reduces bias 

LightGBM LightGBM Default parameters 

Gradient boosting 

optimized for large 
sparse binary features 

3) Deep learning models: Deep learning models are 

increasingly applied in malware detection due to their ability 

to capture complex, nonlinear relationships among features. In 

this study, a feedforward ANN was implemented as a 

representative deep learning baseline. The ANN directly 

ingests binary API-call feature vectors, enabling it to learn 

higher-order dependencies beyond the capacity of linear or 

tree-based classifiers. 

TABLE IV DEEP LEARNING MODELS 

Model Library Hyperparameters / Notes 
Practical 

Rationale 

ANN 
Keras / 

TensorFlow 

• Input: 559 nodes (one per 

API call)  

• Hidden layers: [256, 128], 
activation='relu'  

• Dropout: 0.5  

• Output: 1 node, 
activation='sigmoid'  

• Optimizer: Adam  

• Loss: Binary Crossentropy  

• Epochs: 50  

• Batch size: 32 

Baseline neural 

network for binary 
feature vectors 

F. Training and Evaluation Protocol 

The dataset was partitioned into 70% training and 30% 
testing with stratified sampling to preserve class balance. 
Model selection and stability were assessed using 5-fold 
stratified cross-validation on the training portion; final results 
were reported on the independent test set. Unless otherwise 
stated, a fixed threshold of 0.5 on the predicted 
probability/score was used to compute threshold-dependent 
metrics (OA, TNR, FPR). AUC was computed from the ROC 
curve and is threshold-independent. All experiments used 
identical splits and fixed random seeds for reproducibility. 

Metrics. Four complementary measures were reported: 

a) Overall Accuracy (OA): proportion of correctly 

classified samples. 

b) True Negative Rate (TNR): proportion of benign files 

correctly identified as benign. 

c) False Positive Rate (FPR): proportion of benign files 

misclassified as malware. 

d) Area Under the ROC Curve (AUC): probability that a 

randomly chosen malware sample receives a higher score than 

a randomly chosen benign sample; operationally computed 

from the ROC via the trapezoidal rule. 

All equations are referenced: 

𝑂𝐴 =
TP + TN

TP + TN + FP + FN
               (1) 

𝑇𝑁𝑅 =
TN

TN + FP
                (2) 

𝐹𝑃𝑅 =
FP

FP + TN
= 1 − 𝑇𝑁𝑅              (3) 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(τ) × dFPR(τ) 
1

0
, 𝑊𝑖𝑡ℎ 𝑇𝑃𝑅 =  

TP(τ)

TP(τ) + FN(τ)
(4) 

G. Reproducibility and Computing Environment 

The experiments were conducted on a workstation 
equipped with an Intel Core i5-12450H CPU (8 cores, up to 4.4 
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GHz), 16 GB DDR4 RAM, an NVIDIA RTX 2050 GPU (4 
GB), and a 512 GB SSD, running Windows 11. 

The malware detection pipeline was implemented in 
Python 3.9. Key libraries and frameworks included: 

pefile for parsing PE headers and extracting imported 
functions. 

Capstone disassembly engine for recovering additional API 
call references from executable code sections. 

pandas for data handling and feature structuring. 

scikit-learn for implementing classical machine learning 
classifiers and evaluation procedures. 

TensorFlow/Keras for training and evaluating the ANN. 

All random seeds were fixed across experiments to ensure 
reproducibility. Identical training or test splits were maintained 
for all models to guarantee fair comparison. 

IV. RESULTS AND DISCUSSION 

A. Results 

Thirteen classifiers were evaluated to identify the most 
effective algorithms for malware detection using shared API-
call features. Table V summarizes the performance across four 
key metrics: Overall Accuracy (1), True Negative Rate (2), 
False Positive Rate (3), and Area Under the ROC Curve (4) 
[43]-[46]. 

The Extra Trees classifier achieved the highest overall 
accuracy (OA = 98.14%) and a strong AUC of 98.19%, 
confirming its suitability for handling high-dimensional, sparse 
binary feature vectors. The ANN achieved the highest AUC 
(99.50%), reflecting excellent discriminatory power between 
benign and malicious samples, although its OA was slightly 
lower at 97.67%. 

Other strong performers included Logistic Regression (OA 
= 97.67%, AUC = 97.75%) and AdaBoost (OA = 97.67%, 

AUC = 97.69%). Gradient Boosting also performed 
competitively (OA = 97.21%, AUC = 97.31%), while Random 
Forest and LightGBM both reached OA = 96.74%. Traditional 
classifiers such as Naïve Bayes, LDA, and QDA 
underperformed, with OA below 85%, highlighting their 
limitations in modeling nonlinear feature interactions. 

Notably, the Decision Tree classifier achieved an FPR of 
0% (3), although its OA and AUC (95.35% and 95.61%) were 
lower than ensemble-based methods. 

Table V shows the performance comparison of classifiers 
using FPR (3), TNR (2), OA (1), and AUC (4). 

TABLE V PERFORMANCE COMPARISON OF DETECTORS 

Algorithm FPR (%) TNR (%) AUC (%) OA (%) 

Naïve Bayes 3.25 13.49 83.82 83.26 

Logistic 
Regression 

0.46 1.86 97.75 97.67 

LDA 20 17.67 62.05 62.33 

SVM 0.93 2.79 96.38 96.28 

QDA 19.06 14.42 66.11 66.51 

KNN 0.93 4.18 95.06 94.88 

Decision Trees 0 4.65 95.61 95.35 

ANN 0.93 1.39 99.50 97.67 

Random Forest 0.46 2.79 96.87 96.74 

Extra Trees 0.46 1.39 98.19 98.14 

AdaBoost 0.93 1.39 97.69 97.67 

Gradient 
Boosting 

0.46 2.32 97.31 97.21 

LightGBM 0.46 2.79 96.87 96.74 

To evaluate the contribution of the proposed approach 
relative to prior studies, Table VI presents a comparative 
analysis. It contrasts the performance of the shared API-call-
based Extra Trees classifier results with traditional string- and 
header-based approaches, as well as recent SOTA methods 
such as deep ensembles, hybrid static–dynamic frameworks, 
and attention-based models. 

TABLE VI COMPARATIVE ANALYSIS OF THE PROPOSED METHOD AND EXISTING MALWARE DETECTION APPROACHES 

Study Features used Model / Architecture OA (%) Interpretability Complexity Notes 

Proposed Method 

(Extra Trees) 

Shared API call 

vectors 
Extra Trees Classifier 98.14 High Low 

Lightweight and fast; effective for 

sparse binary features 

Balram, et al. [12] String Hybrid (LR/XGB) 98 Moderate High 
Highest accuracy; longer execution 

time 

Baldangombo et al. 

[13] 
PE Headers J48 99 High Moderate 

Best standalone feature set; uses 

PCA 

Azeez et al. [14] PE Headers 
Ensemble (7 NNs + 
ExtraTrees) 

100 Low Very High 
Best performance; requires stacked 
ensemble training 

Shijo and Salim 

[15] 

Integrated (PSI + 

API 3/4-grams) 
SVM 98.7 Low Very High 

Best accuracy; combines 

static/dynamic strengths 

Yousuf et al. [16] 
PE Header + PE 
Section 

(Integrated) 

Random Forest, Stack 

Gen 
99.5 Medium 

Moderate-

High 

Uses IG/PCA for feature selection; 

combines static structural features. 

Bensaoud and 

Kalita [17] 

API Calls + 

Opcodes (8-
grams) 

CNN-LSTM-3 99.91 Medium High 
Combines CNN for spatial features 

and LSTM for sequential patterns. 

Trizna et al. [18] 
Dynamic API call 

traces 

Self-Attention 

(Nebula) 
99.8 Medium High 

SOTA dynamic analysis; resource-

intensive 

Seneviratne et al. 

[19] 

Malware images 
(transformed 

binaries) 

Vision Transformer 

(Self-Supervised) 
97 Low Very High 

Requires GPU-heavy training; less 

interpretable 
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Mohammadian et 

al. [20] 

Graph-based API 

dependency 
features 

Graph Reduction + 

Explainable Learning 
95.4 High High 

Improves explainability; complex 

preprocessing 

Shokouhinejad et 

al. [21] 

Graph-based 

features 

Explainable Ensemble 

Learning 
86.14 High High 

Balances interpretability with high 

accuracy 

J. Tang [22] 
Static + Dynamic 
fusion 

Hybrid ML Ensemble > 95 Medium Very High 
Strong accuracy but requires both 
runtime and static environments 

The Receiver Operating Characteristic (ROC) curve for the 
Extra Trees classifier is shown in Fig. 3, illustrating its balance 
of high OA and AUC with low FPR. 

Fig. 3 presents the ROC curve of the Extra Trees classifier, 
evaluated with OA (1), AUC (4), TNR (2), and FPR (3). 

 

Fig. 3. ROC curve using extra trees classifier. 

B. Discussion 

The results confirm the effectiveness of tree-based 
ensemble models for static malware detection in sparse, binary 
feature spaces. The Extra Trees classifier offers the best 
balance between accuracy and interpretability, while the ANN 
model demonstrates superior AUC performance, suggesting 
that deep learning techniques can better capture subtle feature 
interactions. 

In comparison with existing studies, the proposed 
framework offers several practical advantages, notably in terms 
of lightweight architecture, reduced feature redundancy, and 
improved computational efficiency. For instance, Azeez et al. 
[14] employed a complex ensemble of seven neural networks 
combined with Extra Trees to attain near-perfect detection 
accuracy, resulting in significant training overhead and 
deployment challenges. In contrast, the present approach 
circumvents such complexity, enhancing scalability and ease of 
integration. Furthermore, while Shijo and Salim [15] relied on 
sandboxed environments to extract dynamic behavioral 
features, the proposed static-only methodology eliminates the 
need for runtime execution, thereby simplifying 
implementation while maintaining competitive detection 
performance. 

Balram et al. [12] and Baldangombo et al. [13] reported 
strong results using string- and header-based features but did 
not emphasize interpretability or feature reduction. Yousuf et 
al. [16] achieved an impressive 99.5% accuracy through 
feature fusion and advanced ensemble techniques; however, 
this came at the cost of increased system complexity. 

More recent advances, such as self-attention models [18], 
[19] and explainable graph-based frameworks [20], [21], 
achieve high accuracy and improved interpretability but require 
significant computational resources, making them less suitable 
for lightweight or real-time deployments. Hybrid feature fusion 
approaches, such as that proposed by Tang [22], demonstrate 
the value of combining static and dynamic features but 
introduce additional integration challenges. 

Overall, the proposed method achieves high accuracy 
(98.14% overall accuracy) and excellent discrimination 
(99.50% AUC) while using a compact and interpretable feature 
set of 558 shared API calls. 

LIMITATIONS 

As with most static approaches, the method may be less 
effective against heavily obfuscated or polymorphic malware 
and could face challenges related to concept drift, where 
emerging malware families exhibit behaviors not represented 
in the training data. Additionally, the moderate dataset size 
may limit generalization to large-scale, real-world scenarios. 

PRACTICAL APPLICABILITY 

Despite these limitations, the proposed framework is fast, 
lightweight, and interpretable, making it suitable for endpoint 
security systems and resource-constrained environments, 
where dynamic analysis is infeasible. 

FUTURE WORK 

Future research should focus on extending the analysis to 
larger and more imbalanced datasets would provide stronger 
evidence of generalizability. Moreover, integrating hybrid 
static–dynamic features could enhance resilience against 
obfuscation and adversarial evasion. Finally, exploring 
advanced architectures, such as CNN-LSTM hybrids or 
transformer-based models, may offer additional improvements 
in robustness and scalability. 

V. CONCLUSION 

This study presented a lightweight and interpretable 
malware detection framework that leverages shared API call 
behaviors extracted from benign and malicious PE files. 
Thirteen classifiers were systematically evaluated on a 
balanced dataset of 1,318 samples, demonstrating that high 
detection accuracy can be achieved with carefully selected 
static features. Among the evaluated models, the Extra Trees 
classifier achieved the best overall accuracy (98.14%), while 
maintaining high interpretability and computational efficiency. 
The ANN reached the highest AUC (99.50%), highlighting the 
ability of shallow deep learning models to capture nonlinear 
feature interactions. Overall, tree-based ensemble methods 
proved most effective for high-dimensional binary API-call 
features, offering a strong balance between detection power, 
efficiency, and interpretability. 
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In comparison with recent SOTA approaches such as 
hybrid CNN-LSTM models, graph-based learning, and 
transformer-based architectures, the proposed framework 
provides a more practical and resource-efficient solution. 
While those models often achieve higher accuracy on larger 
datasets, they typically introduce greater computational 
overhead and reduced interpretability. In contrast, the 
presented framework achieves competitive results while 
remaining lightweight, making it suitable for deployment in 
resource-constrained or real-time environments. 

Despite these strengths, the study has several limitations. 
The exclusive reliance on static analysis may reduce robustness 
against highly obfuscated or adversarial malware, while the use 
of a moderately sized, balanced dataset limits generalizability 
to real-world malware distributions, which are often large-scale 
and highly imbalanced. Issues such as concept drift, adversarial 
evasion, and scalability in high-volume environments remain 
open challenges. 

Future work should extend this research by validating the 
framework on larger and more diverse datasets, integrating 
dynamic and hybrid features, and investigating advanced 
ensemble or deep learning architectures such as CNN-LSTMs 
and transformer-based models. Additional directions include 
enhancing resilience against adversarial evasion techniques, 
addressing concept drift in evolving threat landscapes, and 
optimizing scalability for high-throughput detection scenarios. 
These improvements would strengthen both the theoretical and 
practical impact of the proposed approach, ensuring its 
continued relevance in modern malware detection. 
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