
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

440 | P a g e

www.ijacsa.thesai.org

Intrusion Detection Using Machine Learning and

Deep Learning

Fatima Jobran ALzaher, Asma AlJarullah

Department of Informatics and Computer Systems, King Khalid University, 61421, Alfara, Abha, Saudi Arabia

Abstract—As cyberattacks grow in prevalence, Intrusion

Detection Systems (IDS) have become critical for securing

network infrastructures. This study proposes an efficient IDS

framework utilizing both machine learning (ML) and deep

learning (DL) algorithms. The framework is evaluated on the “NF-

UNSW-NB15-v2” dataset, which comprises a blend of normal and

malicious traffic. A diverse set of advanced models—including

Deep Neural Networks (DNN), Long Short-Term Memory

(LSTM) networks, eXtreme Gradient Boosting (XGBoost),

Random Forest (RF), and K-Nearest Neighbors (KNN)—is

deployed for intrusion detection. The approach encompasses both

binary classification (normal vs. malicious) and multi-class

classification (specific attack categories). Preprocessing steps

include feature standardization using StandardScaler, class

imbalance correction via SMOTE, and dimensionality reduction

through Principal Component Analysis (PCA). Results show that

Random Forest and XGBoost models achieve high accuracy in

binary classification with F1-scores approaching 0.97, while

XGBoost attains the best macro F1-score (0.71) in multi-class

tasks. Additionally, RF and XGBoost demonstrate the fastest

inference times, underscoring their suitability for real-time

deployment. This work contributes a scalable and optimized IDS

pipeline for enhancing cybersecurity resilience.

Keywords—Cybersecurity; cyber-attack; intrusion detection

system; machine learning; deep learning

I. INTRODUCTION

In recent years, the cyber world witnessed the most
phenomenal increase ever of cyber threats that targeted
individuals, businesses, and governments. The cost of
cybercrime at the global level is anticipated at $9.5 trillion by
2024, which amounts to $26 billion per day or $18 million per
minute [1]. The growing rate of cybercrime emphasizes the need
for proper cybersecurity controls.

Small and medium-sized businesses are most vulnerable
with 69% of these experiencing at least one cyber-attack within
the past year [1]. Yet 80% of the SMBs are largely
unimplemented with the utilization of Privileged Access
Management solutions while fewer than 60% of the enterprises
are using vital cybersecurity practices of password managers,
two-factor authentication, and cybersecurity education [1]. The
shift toward remote work amplified the fear of security since
72% of businesses are concerned about the danger it presents
and 80% of cybersecurity professionals confirm that the danger
increased since 2020 [1].

Phishing and ransomware attacks grew more complex and
more numerous. Security professionals saw 62% more phishing
assaults within the recent years with 79% of account takeover

attacks originating from the type of phishing attack that occurs
with the use of phish emails [1]. The ransomware attacks grew
with 70% of the attacks focusing on the small business market
and the number of ransomware teams actively present more than
doubling year over year [1].

Adversaries now leverage automation and AI to accelerate
reconnaissance, weaponization, and evasion, fueling an arms
race that compels defenders to adopt more adaptive, data-driven
countermeasures [2].

Traditional intrusion detection systems (IDS) that rely on
static signatures or hand-crafted rules struggle with previously
unseen or rapidly morphing threats [3]. Machine learning (ML)
and artificial intelligence (AI) enable dynamic threat modeling,
anomaly detection, and behavioral analysis, allowing IDSs to
generalize to novel attacks while reducing false positives [3].

Despite notable advancements in IDS research, a critical
limitation persists across most studies: the insufficient handling
of class imbalance, which leads to poor detection rates for
minority attack types. Previous works have primarily focused on
maximizing overall accuracy, often at the expense of rare class
detection, resulting in inflated performance metrics dominated
by frequent categories. Furthermore, inconsistencies in
preprocessing pipelines, a lack of standardized evaluation on
modern NetFlow-based datasets like NF-UNSW-NB15-v2, and
the limited integration of a diverse set of both machine and deep
learning techniques within a single, optimized framework limit
the robustness and practical applicability of existing IDS
solutions. This study aims to bridge these gaps by proposing an
integrated pipeline that combines SMOTE-based class
balancing, PCA-driven feature reduction, and a comprehensive
evaluation of multiple ML and DL models to enhance minority
class detection and overall performance on the NF-UNSW-
NB15-v2 dataset.

The remainder of the paper is organized as follows. Section
II reviews related work on ML/DL-based IDS. Section III details
the methodology, including the dataset, preprocessing
(standardization, imbalance handling, dimensionality reduction,
and train–test split), model specifications, and evaluation
metrics. Section IV reports the experimental results for both
binary and multi-class settings and examines inference-time
performance for real-time applicability. Section V discusses key
findings, practical implications, and limitations. Section VI
concludes and outlines directions for future research.

II. RELATED WORK

Kasongo and Sun [4] conducted a performance analysis of
Intrusion Detection Systems (IDS) by applying a feature

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

441 | P a g e

www.ijacsa.thesai.org

selection algorithm to the UNSW-NB15 dataset. They
emphasized the importance of reducing feature dimensionality
to enhance IDS accuracy. The study used five machine learning
classifiers—SVM, KNN, Logistic Regression, Artificial Neural
Networks (ANN), and Decision Trees (DT)—and showed that
XGBoost-based feature selection significantly improved model
performance, especially for DTs. However, the study did not
address class imbalance, which led to lower F1-scores for
minority classes.

Kumar et al. [5] proposed an integrated rule-based IDS using
both the UNSW-NB15 and RTNITP18 datasets. Their approach
employed Decision Tree classifiers (C5, CHAID, CART, and
QUEST) to detect five attack types: Generic, Probe, DoS,
Exploit, and Normal. The study reported improved accuracy and
reduced false alarm rates through rule-based modeling and
information gain-based feature selection. Nonetheless, it lacked
proper handling of class imbalance and yielded low precision
and recall for critical attack types.

More et al. [6] compared several supervised ML techniques
for identifying deceitful emails with filtering approaches and
through use of the WEKA toolset. The work identifies a
weakness in conventional Bayesian filtering, effective in spam
filtering but not in high false positive cases. To counteract,
several classifiers, such as RF and SVM, have been incorporated
and utilized for enhancing accuracy and minimizing false
positives in classification. In its use, feature extraction via Naïve
Bayes and an evaluation tool developed in WEKA facilitated
testing of numerous algorithms for classification in a thorough
manner. Experimental tests showed that RF and SVM
performed better in enhancing positive and negative actual
values and overall accuracy over 96%. The work identifies the
use of hybrid classification approaches in improving deceitful
message detection and minimizing security threats posed
through spammers.

Tahri et al. [7] have designed an IDS with ML algorithms for
enhancing network security. As communications through
electronic means have increased, IDS proves to be a useful tool
for discovering hostile activity in network communications. In
the current work, three classifiers, Naïve Bayes, SVM, and
KNN, have been compared for performance with two
benchmark datasets, namely, “NSL-KDD” and “UNSW-
NB15”. In part one of work, three classifiers have been
compared with the use of “UNSW-NB15”, and then for a proper
analysis, best-performing algorithm is utilized for testing with
“NSL-KDD”. As per work, SVM outperforms all classifiers in
terms of accuracy consistently, with 97.77% accuracy for
“UNSW-NB15” and 97.29% accuracy for NSL-KDD. In
conclusion, SVM proves to be an effective intrusion detection
classifier, and future work will attempt to make its processing
efficient and integrate it in real-time security tools such as a
firewall.

Musa et al. [8] review the application of ML algorithms in
IDS for enhancing network security through observation of
traffic and intrusion activity, and IDS is distinguished between
anomaly-based and signature-based detection, with the first
identifying abnormalities in behavior and the second employing
predefined attack signatures. Various types of ML approaches,
including single, hybrid, and ensemble classifiers, are contrasted

and compared over seven datasets, with the consequence that
single classifiers fall below both ensemble and hybrid classifiers
in terms of accuracy and detection performance. Comparison
between algorithms including SVM, DTs, RF, and Neural
Networks identifies that ensemble approaches, including
stacking classifiers, have a significant impact in intrusion
detection improvement. Challenges include feature selection
improvement, testing over a range of and updated datasets, and
minimizing false positive values. Optimizing hybrid models,
minimizing computational overload, and enhancing real-time
intrusion capabilities have been suggested for future work,
according to the authors.

Samantaray et al. in [9] conducted a comparative study on
ML model implementation in intrusion detection in IoT-based
networks. The research is centered on increasing threats in the
security of IoT networks and the need to utilize efficient IDS in
order to mitigate them. The research uses the “UNSW-NB15
(DS-1)” and “NF-UNSW-NB15 (DS-2)” datasets in comparing
models based on ML like SVM, KNN, Logistic Regression,
Naïve Bayes, DT, and RF. The feature scaling is based on a
method involving the usage of the MaxAbsScaler algorithm in
order to increase efficiency in classification. The results
highlight the usage of the RF classifier in achieving the highest
precision in generating the most accurate outcome with a gain in
the rate of detection from 60% to 94% in the DS-2 dataset. The
research focuses on efficiency in ML usage in intrusion
detection and supports future research on implementation with
improved feature selection and DL.

Sayed et al. in [10] conducted research with a focus on
optimizing the efficiency of DNN-driven IoT intrusion detection
systems (IDS). Because the IoT devices are under threat and
there is a limitation in the process ability and in features in
security, the researchers provided two CNN models, namely
IoTCNN and MyCNN, with a purpose to classify intrusion in
the network. The "NF-UNSW-NB15-v2" dataset was used in the
research, and the stream network data was converted into RGB
images in order to train the models. Results indicated the
efficiency of the models in the detection of various intrusion
types, and in the majority of intrusion categories, the precision
of the models improved. The research confirms the efficiency of
anomaly-based IoT security based on DL and calls for
improvement in the handling of imbalances in the class and the
optimization of the hyperparameters.

Table I provides a structured summary of key related studies,
highlighting the datasets, methodologies, and performance
metrics used, which helps position the present work within the
broader landscape of IDS research.

Despite notable advancements in IDS research, a recurring
limitation across most studies is the insufficient handling of
class imbalance and the resulting poor detection of minority
attack types. Previous works primarily focused on improving
overall accuracy without explicitly addressing the critical
challenge of rare class detection, often leading to inflated
performance metrics dominated by frequent attack categories. In
addition, inconsistencies in preprocessing, lack of standardized
evaluation on newer datasets, and limited integration of deep
learning techniques further limit the robustness of existing IDS
solutions. Building on these gaps, this research proposes an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

442 | P a g e

www.ijacsa.thesai.org

integrated approach combining SMOTE-based class balancing,
PCA-driven feature selection, ML/DL modeling to enhance

minority class detection and overall intrusion detection
performance on the NF-UNSW-NB15-v2 dataset [20].

TABLE I. SUMMARY OF RELATED WORK

Year Research Title Dataset

Machine

Learning /

Deep

Learning

Model(s)

Preprocessing
Classification

Type

Performance

Metrics
Findings Limitations

Ref

2020

Performance
analysis of IDS

using a feature

selection
method on

UNSW-NB15

UNSW-

NB15 [21]

SVM,

KNN,

Logistic
Regression,

ANN,

Decision
Tree

Min-Max

normalization;
Feature

selection with

XGBoost

Binary and

Multi-class

Binary: Accuracy

90.85%, Precision

80.33%, Recall
98.38%, F1-score

88.45%

Multi-class: Accuracy
77.51%, Precision

79.50%, Recall

77.53%, F1-score
77.28%

Feature
selection

(XGBoost)

improved ML
model

performance.

No class

imbalance

handling;
poor F1-

scores for

minority
classes.

[4]

2020

An integrated

rule-based

intrusion

detection system
on UNSW-

NB15 and

RTNITP18

UNSW-
NB15 [21],

RTNITP18

[5]

Decision

Trees (C5,

CHAID,
CART,

QUEST)

Feature

selection using
Information

Gain; K-

Means
clustering

Multi-class

Accuracy 84.83%,

Approximate F1-
score 68.13%

Rule-based
modeling

reduced false

alarms in IDS.

No class

imbalance

handling;
low

precision

and recall
for critical

attacks.

[5]

2015

Evaluation of
deceptive mails

using filtering &

WEKA

SpamBase

[22], Ling-
Spam [23],

Enron [24],

PU1 [25],
PU2 [25]

Random

Forest,

SVM,
Naïve

Bayes

Tokenization;

Feature
extraction;

Term

Frequency
normalization

Binary

Accuracy: RF 98.9%,

SVM 98.4%, NB
93.2%

Ensemble
models

(Random

Forest) achieved
high

classification

accuracy.

No class

imbalance
handling;

no minority

class
evaluation.

[6]

2022

Intrusion

Detection

System using
machine

learning

algorithms

UNSW-

NB15 [21],
NSL-KDD

[26]

SVM,

KNN,
Naïve

Bayes

Feature

selection using
mutual

information;

Binary and
Multi-class

Binary: SVM

Accuracy 97.78%
Multi-class: SVM

Accuracy 97.29%

SVM achieved

high accuracy

on IDS datasets
without heavy

feature

engineering.

No class

imbalance

handling;
no minority

class

evaluation.

[7]

2020

Review of

machine

learning
techniques for

IDS across

different
datasets

KDDCup'99
[27], NSL-

KDD [26],

Kyoto2006+
[28], AWID

[29], CIC-

IDS2017
[30],

UNSW-

NB15 [21],
UGR'16

[31]

SVM,

Random
Forest,

Decision

Tree, KNN,
ANN,

XGBoost,

AdaBoost

Dataset-

specific
feature

engineering;

Standard
normalization

or scaling

where needed

Binary and

Multi-class

Binary: Ensemble

models achieved

>99% Accuracy
Multi-class: Accuracy

~0.99, Macro F1

~0.89

Ensemble

methods (e.g.,

XGBoost)
consistently

outperformed

individual
classifiers.

No class
imbalance

handling;

no minority
class

evaluation.

[8]

2024

Comparative

assessment of
ML algorithms

in IoT-based

network
intrusion

detection

UNSW-

NB15 (DS-

1), NF-
UNSW-

NB15 (DS-

2) [20]

SVM,
KNN,

Logistic

Regression,
Naïve

Bayes,

Random
Forest

MaxAbsScaler
normalization

Multi-class
Accuracy: RF 60%
(DS-1), 94% (DS-2)

Feature scaling

(MaxAbsScaler)
improved IDS

model stability.

No class

imbalance

handling;
no minority

class

evaluation.

[9]

2022

Augmenting IoT

intrusion

detection system
performance

using deep

neural networks

NF-UNSW-

NB15-v2

[20]

CNN

FFT-based

NetFlow

transformation
to RGB

images; Image

normalization

Multi-class

Accuracy ~99%

(frequent classes);
poor F1-scores for

minority classes

CNNs using

NetFlow-to-
image

transformation

achieved high
accuracy for

frequent attacks.

No class

imbalance
handling;

poor F1-

scores for
minority

classes.

[10]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

443 | P a g e

www.ijacsa.thesai.org

III. METHODOLOGY

The methodology for this project is structured into several
essential steps, as depicted in Fig. 1.

The proposed method for intrusion detection using deep
learning (DL) and machine learning (ML) follows a structured
pipeline:

1) Dataset: The NF-UNSW-NB15 dataset is used,

comprising a combination of normal and malicious network

traffic. It provides a realistic foundation for evaluating intrusion

detection models.

Preprocessing Steps:

 Standardization: Normalizes the data to have the same
feature scaling.

 PCA (Principal Component Analysis): Reduces
dimensionality in a way that maximizes computational
efficiency while retaining significant features.

 Oversampling: Balances the dataset and treats
imbalances in classes, optimizing performance on
minority attack classes.

2) Model training: Preprocessed data is fed to ML (e.g.,

XGBoost, RF, KNN) and DL (e.g., DNN, LSTM) models for

training.

3) Evaluation metrics: Model performance is evaluated

using conventional metrics, including accuracy, precision,

recall, F1-score, and AUC-ROC, to ensure robust and

comprehensive assessment of intrusion detection effectiveness.

B. Dataset

The NetFlow-based variant of the UNSW-NB15 dataset,
referred to as NF-UNSW-NB15, incorporates additional flow-
level features and is labeled according to specific attack
categories. The original dataset comprises 2,390,275 network
flow records, including 95,053 attacks (3.98%) and 2,295,222
benign flows (96.02%). These attack records are further divided
into nine subtypes, as summarized in Table II [19]. For this
study, the dataset was obtained from Kaggle, where the official
version was uploaded by the author after removing duplicate
rows, reducing the total count to 1,986,745. Therefore, the
dataset used in this research is consistent with the original
release, except for the exclusion of duplicates to improve data
integrity and processing efficiency.

Mohanad Sarhan et al. [20] proposed a standardized feature
set for network intrusion detection datasets to improve detection
performance through the application of machine learning
techniques. Their approach leverages NetFlow v9 features,
which are widely supported by network devices and proven to
be effective for traffic analysis. The proposed feature set
includes 43 numerical, flow-based attributes designed to
facilitate accurate and consistent detection of security events. By
promoting dataset standardization, this feature set simplifies
model evaluation, enhances compatibility for dataset merging,
and supports real-world deployment of intrusion detection
systems.

Fig. 1. Proposed method.

TABLE II. ATTACK TYPES IN “NF-UNSW-NB15”

Class Count Description

Benign 2295222 Normal, non-malicious network traffic.

Fuzzers 22310 An attack where large volumes of random data are sent to a system to cause crashes and identify security vulnerabilities.

Analysis 2299 A category of threats targeting web applications through ports, emails, and scripts.

Backdoor 2169 A method that bypasses security mechanisms by responding to specially crafted client requests.

DoS 5794 An attack that overwhelms a system’s resources to disrupt access to its data or services.

Exploits 31551 Sequences of commands used to manipulate a system by exploiting known vulnerabilities.

Generic 16560 A cryptographic attack that causes collisions in block cipher encryption.

Reconnaissance 12779 Also known as probing, this technique involves gathering information about a network host.

Shellcode 1427 Malicious code designed to take control of a victim’s system.

Worms 164 Self-replicating attacks that spread across multiple computers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

444 | P a g e

www.ijacsa.thesai.org

TABLE III. FEATURES IN “NF-UNSW-NB15”

 Field Name Data Type Description

1 IPV4_SRC_ADDR String Source IPv4 address

2 IPV4_DST_ADDR String Destination IPv4 address

3 L4_SRC_PORT Integer Source port number for IPv4

4 L4_DST_PORT Integer Destination port number for IPv4

5 PROTOCOL Integer Byte value representing the IP protocol identifier

6 L7_PROTO Integer Numeric identifier for the Layer 7 protocol

7 IN_BYTES Integer Total incoming bytes

8 OUT_BYTES Integer Total outgoing bytes

9 IN_PKTS Integer Count of incoming packets

10 OUT_PKTS Integer Count of outgoing packets

11 FLOW_DURATION_MILLISECONDS Float Duration of the flow in milliseconds

12 TCP_FLAGS Integer Aggregated TCP flags

13 CLIENT_TCP_FLAGS Integer Aggregated TCP flags from the client side

14 SERVER_TCP_FLAGS Integer Aggregated TCP flags from the server side

15 DURATION_IN Float Duration of the client-to-server stream (in milliseconds)

16 DURATION_OUT Float Duration of the server-to-client stream (in milliseconds)

17 MIN_TTL Integer Minimum Time-to-Live (TTL) value observed in the flow

18 MAX_TTL Integer Maximum Time-to-Live (TTL) value observed in the flow

19 LONGEST_FLOW_PKT Integer Size (in bytes) of the longest packet in the flow

20 SHORTEST_FLOW_PKT Integer Size (in bytes) of the shortest packet in the flow

21 MIN_IP_PKT_LEN Integer Length of the smallest observed IP packet in the flow

22 MAX_IP_PKT_LEN Integer Length of the largest observed IP packet in the flow

23 SRC_TO_DST_SECOND_BYTES Float Rate of bytes sent from source to destination (bytes per second)

24 DST_TO_SRC_SECOND_BYTES Float Rate of bytes sent from destination to source (bytes per second)

25 RETRANSMITTED_IN_BYTES Integer Count of retransmitted TCP bytes from source to destination

26 RETRANSMITTED_IN_PKTS Integer Count of retransmitted TCP packets from source to destination

27 RETRANSMITTED_OUT_BYTES Integer Count of retransmitted TCP bytes from destination to source

28 RETRANSMITTED_OUT_PKTS Integer Count of retransmitted TCP packets from destination to source

29 SRC_TO_DST_AVG_THROUGHPUT Float Average throughput (bps) from source to destination

30 DST_TO_SRC_AVG_THROUGHPUT Float Average throughput (bps) from destination to source

31 NUM_PKTS_UP_TO_128_BYTES Integer Number of packets with an IP size of 128 bytes or less

32 NUM_PKTS_128_TO_256_BYTES Integer Number of packets with an IP size between 128 and 256 bytes

33 NUM_PKTS_256_TO_512_BYTES Integer Number of packets with an IP size between 256 and 512 bytes

34 NUM_PKTS_512_TO_1024_BYTES Integer Number of packets with an IP size between 512 and 1024 bytes

35 NUM_PKTS_1024_TO_1514_BYTES Integer Number of packets with an IP size between 1024 and 1514 bytes

36 TCP_WIN_MAX_IN Integer Maximum TCP window size from source to destination

37 TCP_WIN_MAX_OUT Integer Maximum TCP window size from destination to source

38 ICMP_TYPE Integer ICMP type combined with ICMP code (ICMP Type * 256 + ICMP Code)

39 ICMP_IPV4_TYPE Integer ICMP type identifier for IPv4

40 DNS_QUERY_ID Integer Transaction ID of a DNS query

41 DNS_QUERY_TYPE Integer Type of DNS query (e.g., 1 = A, 2 = NS, etc.)

42 DNS_TTL_ANSWER Integer Time-to-Live (TTL) value of the first A record, if available

43 FTP_COMMAND_RET_CODE Integer Return code for an FTP client command

Table III lists the feature set of the NF-UNSW-NB15
dataset, detailing the flow characteristics captured for intrusion
detection analysis.

Fig. 2 illustrates the significant class imbalance in the
dataset, with benign (normal) traffic overwhelmingly
dominating all categories of malicious traffic. Among the attack

types, “Exploits” and “Fuzzers” appear most frequently, while
others such as “Reconnaissance,” “DoS,” and especially
“Worms” occur far less often. This imbalance poses challenges
for accurate model training and may necessitate the use of
resampling methods or advanced techniques to improve
detection performance, particularly for minority attack classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

445 | P a g e

www.ijacsa.thesai.org

Fig. 2. Attack column distribution.

Fig. 3 displays how normal and malicious flows are
distributed in the dataset, revealing a pronounced class
imbalance: legitimate traffic vastly outweighs attack traffic.

Such skew can hamper model effectiveness, so remedies like
SMOTE oversampling or class-weight adjustment are advisable
to achieve more reliable classification.

Fig. 3. Label column distribution.

Fig. 4 shows the distribution of different types of attacks in
the dataset. "Exploits" is the highest frequency type, with
"Fuzzers" and "Reconnaissance" following, and "Worms" and
"Analysis" are the least frequent. The imbalanced distribution
among attack types implies the need for careful model training
in order to correctly identify in every category.

Fig. 4. Count of every attack type.

C. Dataset Preprocessing

To ensure high-quality input for model training, the NF-
UNSW-NB15-v2 dataset undergoes a series of preprocessing
steps designed to enhance learning efficiency and model
performance.

1) Standardization: Standardization was applied using the

StandardScaler, which transformed each numerical feature to

have a mean of zero and a standard deviation of one. This

normalization process ensured that all features contributed

proportionally to the learning process, preventing any single

feature with a large magnitude from disproportionately

influencing the model. Standardization was particularly

important for algorithms sensitive to feature scale, such as K-

Nearest Neighbors (KNN) and Deep Neural Networks (DNN),

which rely on distance-based calculations and gradient-based

optimization, respectively. This approach follows best practices

outlined in prior literature and common implementations such

as scikit-learn [11].

2) Handling class imbalance: To address the class

imbalance issue in the dataset, the Synthetic Minority Over-

sampling Technique (SMOTE) [32] was applied exclusively to

the training set after splitting the data into 70% for training and

30% for testing. This approach was intentionally adopted to

prevent data leakage and to ensure an unbiased evaluation of

the model’s performance on unseen data.

SMOTE generates synthetic samples for minority classes by
interpolating between existing instances rather than simply
duplicating them. For each minority sample in the training set,
the algorithm identifies its k-nearest neighbors (commonly k=5)
within the same class. It then selects one neighbor at random and
creates a new instance by generating a point along the feature-
space line segment connecting the original sample and its
neighbor. This synthetic instance inherits the statistical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

446 | P a g e

www.ijacsa.thesai.org

characteristics of both points, resulting in a new example that is
both realistic and non-redundant [32].

By enriching the training set with these synthetic examples,
the class distribution becomes more balanced. This allows
learning algorithms to be exposed to a wider variety of patterns
and variations within the minority classes, which enhances their
ability to generalize and improves detection of rare attack types.
The test set was left untouched to preserve the original
distribution and maintain the integrity of the evaluation.

3) Dimensionality reduction: To address the high

dimensionality of the dataset, which consists of 43 flow-based

NetFlow features, Principal Component Analysis (PCA) was

employed as an effective dimensionality reduction technique.

PCA transforms the original feature set into a smaller number

of uncorrelated components while retaining the majority of the

data’s variance. This transformation reduces computational

complexity, accelerates model training, and mitigates the risk

of overfitting by eliminating redundant or less informative

attributes [13].

An initial correlation analysis of the raw NetFlow features
revealed strong linear relationships among several variables. For
instance, IN_PKTS and OUT_PKTS exhibited a Pearson
correlation coefficient of approximately 0.99, while
FLOW_DURATION_MILLISECONDS was highly correlated
with both DURATION_IN and DURATION_OUT. Similarly,
MIN_TTL and MAX_TTL showed correlations exceeding 0.90.
These relationships, visualized in Fig. 5, support the application
of PCA to reduce multicollinearity and noise within the dataset.

To validate the independence of the PCA components, a
correlation matrix was generated to examine the relationships
between the extracted components. As shown in Fig. 6, the
components are effectively uncorrelated, demonstrating that
PCA successfully transforms the original feature space into a set
of orthogonal, linearly independent dimensions. This
orthogonality reinforces PCA’s suitability for improving model
robustness and reducing feature redundancy.

Overall, PCA proved especially beneficial for ensemble
models such as Random Forest and XGBoost, which can be
negatively affected by irrelevant or highly correlated features.
Its use enhanced model focus, reduced overfitting, and improved
interpretability within the intrusion detection pipeline.

Fig. 5. Correlation heatmap of original NetFlow features.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

447 | P a g e

www.ijacsa.thesai.org

Fig. 6. Correlation between PCA Components (with self-correlation).

4) Train-test split: To evaluate model performance fairly,

the dataset is divided into distinct subsets. For traditional

machine learning models, the dataset is partitioned into 70% for

training and 30% for testing to evaluate generalization

performance on unseen data. In the case of deep learning

models such as LSTM and DNN, the dataset is further divided

into 70% for training and 30% for testing, enabling effective

monitoring during training and ensuring robust model

evaluation.

D. Modeling

1) Machine learning models: Random Forest (RF), KNN,

XGBoost, and SVM are the most effective ML models for the

detection of intrusions. The models are good for classification

with feature-extracted input but are inefficient with complex

temporal relationships within sequential input.

a) K-Nearest Neighbor (KNN): The KNN algorithm is a

supervised algorithm in ML most commonly used to classify

tasks [11]. It identifies the unlabeled data by considering the

label and the available training data's features. The algorithm

identifies the data by determining the point's nearest neighbors

and the final label by majority voting. Among all the algorithms

in ML, the algorithm in the case of the KNN algorithm is unique

in terms of ease and interpretability and, in turn, acts to be a

commonly used algorithm to classify tasks [12]. Even despite

the ease, the algorithm performs exceptionally in the case of

solving the classification and the regression problems in

different datasets, regardless of size, label distribution, the

datasets' noise, and the datasets' ranges [12].

b) Random Forests (RF): RF is a versatile algorithm in

ML, famous for reducing the effect of overfitting, a prevalent

problem in decision trees (DTs). It performs tasks such as

classification, regression, and others by building many DTs

during the training period. The algorithm works by evaluating

multiple distinct decision trees (DTs) and making the prediction

through a voting mechanism. Unlike in the case of a standard

DT, in which each internal node gets partitioned by the optimal

attribute, RF uses the optimal attribute from a random subset of

predictors at each internal node. This randomization serves to

enhance model generalization and resistance, and the resulting

algorithm is a versatile tool in numerous applications in ML.

c) XGBoost (XGB): XGBoost (XGB) is a Gradient Tree

Boosting algorithm powerful enough to solve heavy-scale ML

problems in an efficient and effective manner. It possesses great

prediction precision and model training speed, and it's the

leading performer in all the competitions at Kaggle. The

mechanism in XGB lies in the addition of trees in an iterative

fashion and the division of the features during the course of the

expansion in the tree. The model learns to fit the residuals from

the last prediction each time a new tree gets added [13]. Given

an input 𝑥𝑖, a true label 𝑦𝑖 , and a raw prediction 𝑧𝑖 before

applying the sigmoid function, according to [14], the XGBoost

model defines its objective function in the following equation:

𝐿(𝑡) = ∑𝑛
𝑖=1 𝑙 (𝑦𝑖 , 𝑍𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) + 𝑐

Where 𝑙(.,.) represents the loss function, t denotes the t-th
tree, and Ω serves as a penalty for model complexity. The term
𝛺(𝑓𝑡) refers to the regularization penalty, while c is a constant.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

448 | P a g e

www.ijacsa.thesai.org

The second-order Taylor expansion is given by:

𝑓(𝑥 + 𝛥𝑥) ≈ 𝑓(𝑥) + 𝑓′(𝑥)𝛥𝑥 + 1 2⁄ 𝑓′′(𝑥)𝛥𝑥2

By substituting Eq. (2) into Eq. (1), we can obtain the
following result.

𝐿(𝑡) ≈ ∑ [𝑙(𝑦𝑖 + 𝑍𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖(𝑓𝑡(𝑥𝑖))

2
]𝑛

𝑖=1

 

where 𝑔𝑖 = 𝜕 𝐿 𝜕⁄ 𝑧𝑖 , and ℎ𝑖 = 𝜕2 𝐿 𝜕⁄ 𝑧𝑖
2 . By eliminating

the constant terms, we derive the following simplified objective
at step 𝑡.

𝐿(𝑡) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖(𝑓𝑖(𝑥𝑖))

2
] + 𝛺(𝑓𝑡)𝑛

𝑖=1 

The terms 𝑔𝑖 and ℎ𝑖 play a vital role in optimizing the
XGBoost training process. For binary classification, the model
typically employs cross-entropy (CE) as its default loss function.

𝐿 = − ∑ [𝑦𝑖𝑙𝑜𝑔 (𝑦́𝑖) − (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦́𝑖)]𝑛
𝑖=1 

In Eq. (5), 𝑦́𝑖 = 1 [1 + 𝑒𝑥𝑝 (−𝑧𝑖)]⁄ , that is sigmoid is
selected as activation. Therefore, we can get:

𝜕 𝑦́𝑖 𝜕⁄ 𝑧𝑖 = 𝑦́𝑖(1 − 𝑦́𝑖)

2) Deep learning models: Deep-learning methods often fall

under the umbrella of unsupervised pre-trained networks—

architectures that stack many more layers and parameters than

typical machine-learning neural nets, earning them the

designation “deep.”

a) Deep Neural Network (DNN): An Artificial Neural

Network (ANN) is a model based on the structure and function

of the brain [15]. Since neural networks (NN) are powerful

nonlinear discriminators in the event of problems in

classification, because they are able to describe any decision

boundary in the feature space [16]. In recent years, Deep Neural

Networks (DNNs) gained significant interest in intrusion

detection research and evolved from Shallow Neural Networks

(SNNs). The feature abstraction ability in DNNs and the ability

to represent highly complex patterns make them extremely

useful in applications in DL. Because of their ability to represent

data in a good way, DNNs are in high demand in order to design

efficient and robust solutions.

The results are produced in a DNN based on the connection
weights and activation functions in the neurons. The DNN is
composed of multiple processing layers, and every layer
contributes to decision-making and feature extraction. Several
hyperparameters dictate the operation of a DNN and are to be
determined in advance, including the number of units, number
of layers, weights and bias initializers, activation function,
regularizer's coefficient, learning rate, and the optimizer. In this
DNN model, ReLU activation is applied in the input layer and
in every hidden layer. The ReLU function is a piecewise linear
function and returns the same input in the situation where the
input is a positive number and a value of zero in the situation
where the input is a negative number [17]. The neurons activated
by this function are also rectified linear activation units.

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

b) Long Short-Term Memory (LSTM): The LSTM layer is

a special kind of [18] RNN, and the main job of the LSTM layer

is to handle sequence data with temporal relationships, such as

text and relation data. The LSTM layer consists of three gates,

the forget gate, the output gate, and the input gate, and the shared

state. The use equation and the LSTM layer's detailed working

are presented in the following equations:

𝑓𝑠 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝑓) 

𝑖𝑠 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝑖)

𝐶́ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝐶)

𝐶𝑠 = 𝑓𝑠 ⋅ 𝐶𝑠−1 + 𝑖𝑠 ⋅ 𝐶́

𝑜𝑠 = (𝑊𝑜[ℎ𝑠−1, 𝑥𝑠] + 𝑏𝐶)

ℎ𝑠 = 𝑜𝑠 ⋅ 𝑡𝑎𝑛(𝐶𝑠) 

The input gate controls how the LSTM cell state acquires the
information, in Eq. (9). The forget gate controls how the LSTM
cell state forget the information, in the Eq. (8). The cell state
updates by the Eq. (10) and Eq. (11).

Output Layer:

The output layer generates the predicted sentiment
classification of the comment. The final output vector is scaled
using the softmax activation function to produce a probability
distribution across each class. The equation is as follows:

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑓𝑐 + 𝑏)

E. Evaluation Metrics

1) Confusion matrix: It's a matrix to represent how model

classify dataset, also to use to check how good the model's

performance of classification. It's comprised by four

components.

In a confusion-matrix context, true positives (TP) are cases
where an instance is genuinely positive and the model correctly
labels it as such, whereas true negatives (TN) are instances that
are truly negative and rightly classified as negative. By contrast,
false positives (FP) occur when a genuinely negative instance is
mistakenly flagged as positive, and false negatives (FN) arise
when a genuinely positive instance is incorrectly marked as
negative.

2) ROC Curve (Receiver Operating Characteristic Curve):

A graph that shows classification performance across all

thresholds by plotting the true-positive rate (TPR) against the

false-positive rate (FPR), illustrating the trade-off between

sensitivity and specificity.

3) Score: The harmonic mean of precision and recall; a

single, balanced metric that is especially informative when

class distributions are unbalanced. It ranges between 0 and 1,

and 1 in the event of optimal precision and recall.

 F1 Score =
2∗ Precision ∗ Recall

 Precision + Recall
 (15)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

449 | P a g e

www.ijacsa.thesai.org

4) Accuracy: The rate of correctly classified observations

over the total observations. It is a helpful indicator in the

situation where false positives and false negatives are equally

distributed.

Accuracy =
 Number of Correct Predictions

 Total Number of Predictions
 (16)

5) Precision: The proportion of the total predicted positives

actually being positives. The higher the precision, the lower the

rate of the incorrect positives, and the lowest the incorrect

positives.

 Precision =
 True Positives

 True Positives + False Positives
 (17)

6) Recall: The ratio of correctly predicted positive

instances to all actual positive instances. A higher recall

indicates fewer missed positives and a lower rate of false

negatives.

Recall =
 True Positives

 True Positives + False Negatives
 (18)

IV. RESULTS

This section presents how a range of ML and DL models
performed on binary and multi-class intrusion-detection tasks
using the “NF-UNSW-NB15” dataset. Before training, we
applied PCA to cut dimensionality and boost both speed and
accuracy. Every model was tuned with the same hyper-
parameter settings to keep the comparison fair. Their
effectiveness was gauged with a full suite of metrics—accuracy,
precision, recall, F1-score, AUC, and confusion matrices—so
we could see each algorithm’s strengths and weaknesses in
detail. Results are split into two categories: binary detection of
normal versus malicious traffic, and multi-class detection that
pinpoints the exact attack type.

A. Hyperparameter Configuration

All deep learning models (LSTM and DNN) were trained
using a fixed set of hyperparameters to ensure a fair and
consistent comparison. For binary classification tasks, the loss
function employed was binary crossentropy, while sparse
categorical crossentropy was used for multi-class classification.
Model optimization was performed using the Adam optimizer
with a learning rate of 0.001. Both tasks were trained over 20
epochs with a batch size of 128. Additionally, early stopping was
applied based on validation loss to prevent overfitting and
ensure optimal generalization performance.

Table IV presents the hyperparameter settings used for
model training, including learning configuration, optimization
strategy, and loss functions for both binary and multi-class tasks.

B. Binary Classification Results

Before applying SMOTE, all models achieved high overall
accuracy (0.99); however, recall and F1-scores—particularly for
the minority class—were comparatively lower. For instance, the
LSTM model achieved a recall of 0.92 and an F1-score of 0.94,
while the DNN model recorded a recall of 0.90. These results
indicate reduced sensitivity to minority class detection due to the
dataset’s class imbalance.

Moreover, AUC scores, which evaluate a model’s ability to
distinguish between classes, were also affected. Deep learning
models such as DNN and LSTM yielded relatively lower AUCs
in the range of 0.90–0.92, suggesting less reliable separability
between benign and malicious traffic. In contrast, ensemble
models like Random Forest and XGBoost performed better,
achieving AUC scores around 0.98. Nevertheless, even these
models demonstrated measurable improvements after applying
SMOTE.

These findings confirm that SMOTE plays a critical role not
only in enhancing recall and F1-scores but also in improving the
overall discriminative power of classifiers, as reflected in AUC
metrics. Table V summarizes the performance of LSTM, DNN,
Random Forest, KNN, and XGBoost on the binary classification
task prior to applying SMOTE.

After applying SMOTE, all models demonstrate strong
performance, with Random Forest and KNN achieving high
accuracy and F1-scores. While LSTM and DNN yield slightly
lower precision for the Attack class, they still achieve perfect
recall, indicating high sensitivity to positive cases. The AUC
score of 0.99 or higher across all models confirms excellent
separability between classes. Among all models, RF achieved
the best overall performance with an F1-score of 0.97, and
highly balanced precision and recall values, especially for class
1 (Attack class). Its confusion matrix is very high, showing low
misclassificationwith 2308 false positives and 199 false
negative, Fig. 7 shows Random Forest confusion matrix that
effectively classified both Normal and Attack classes, making it
the most reliable model for the binary classification task.

TABLE IV. HYPERPARAMETER SETTINGS

Parameter Value

Epochs 20

Batch Size 128

Learning Rate 0.001

Optimizer Adam

Loss Function (Binary) Binary Crossentropy

Loss Function (Multi) Sparse Categorical Crossentropy

PCA Components (Binary and Multi) 20

TABLE V. BINARY CLASSIFICATION PERFORMANCE WITHOUT SMOTE

Model Accuracy Precision Recall F1-score AUC

LSTM 0.99 0.97 0.92 0.94 0.92

DNN 0.99 0.97 0.90 0.93 0.90

RF 0.99 0.97 0.98 0.98 0.98

KNN 0.99 0.95 0.95 0.94 0.95

XGBoost 0.99 0.96 0.97 0.97 0.98

Fig. 8 shows LSTM confusion matrix for classifying both
Normal and Attack classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

450 | P a g e

www.ijacsa.thesai.org

Fig. 7. RF confusion matrix.

Fig. 8. LSTM confusion matrix.

The confusion matrix of the LSTM model reveals strong
sensitivity in detecting attacks, although a slight increase in false
positives indicates a trade-off in precision.

Fig. 9 shows DNN confusion matrix for classifying both
Normal and Attack classes.

This matrix illustrates the DNN model's good performance,
with solid detection capability and also slight false alarm rate,
reflecting effective learning of attack patterns.

Fig. 9. DNN confusion matrix.

Fig. 10 shows KNN confusion matrix for classifying both
Normal and Attack classes.

Fig. 10. KNN confusion matrix.

The KNN confusion matrix indicates good accuracy, with
slightly higher misclassification of Normal status.

Fig. 11 shows XGBoost confusion matrix for classifying
both Normal and Attack classes.

XGBoost exhibits high precision and recall, evident in its
compact and clearly defined confusion matrix blocks with 2164
false positives and 239 false negatives, signifying high
discriminative power.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

451 | P a g e

www.ijacsa.thesai.org

Fig. 11. XGBoost confusion matrix.

Table VI summarizes the performance of LSTM, DNN, RF,
KNN, and XGBoost on the binary classification task.

TABLE VI. BINARY CLASSIFICATION PERFORMANCE WITH SMOTE

Model Accuracy Precision Recall F1-score AUC

LSTM 0.99 0.94 0.99 0.97 0.99

DNN 0.99 0.94 0.99 0.96 0.99

RF 0.99 0.95 0.99 0.97 0.99

KNN 0.99 0.95 0.99 0.97 0.99

XGBoost 0.99 0.95 0.99 0.97 0.99

C. Multi-Class Classification Results

Unlike binary classification, the multi-class classification
task suffered from noticeable performance degradation in the
absence of SMOTE, especially in models like DNN, which
recorded extremely low precision, recall, and F1-score (all =
0.10) despite an overall accuracy of 0.99. This illustrates that
accuracy alone is misleading under class imbalance.

Similarly, LSTM showed moderate metrics (F1 = 0.52),
while Random Forest and XGBoost performed relatively better
(F1 = 0.64 and 0.62 respectively). AUC scores also reflected this
trend—DNN had a poor AUC of 0.50, while XGBoost reached
0.98. These results demonstrate the limitations of models when
trained on highly imbalanced data and reinforce the need for
resampling methods like SMOTE to achieve fair multi-class
performance across all attack types.

Table VII summarizes the performance of LSTM, DNN, RF,
KNN, and XGBoost on the multi-class classification task before
applying SMOTE.

Table VIII details the multi-class classification performance
across the same set of models after SMOTE.

Model performances vary more noticeably in the multi-class
setting. LSTM and DNN, while achieving high overall accuracy
due to class imbalance in test set, show lower macro-averaged
F1-scores, indicating challenges in learning minority classes. In
contrast, Random Forest and XGBoost perform robustly across
all classes, benefiting from ensemble-based learning. KNN also
performs competitively but with slightly lower recall. The
XGBoost classifier emerged as a competitive performer in the
multi-class setting, achieving a macro F1-score (0.71), reflecting
moderate performance across most classes, including minority
ones. The confusion matrix of XGBoost reflects moderate
performance on minority classes such as 6, 7, 8, and 9 with
misclassifications, e.g., 919 false negatives for class 2 and 1455
for class 4 as shown in Fig. 12.

LSTM’s multi-class confusion matrix (Fig. 13) shows robust
classification for dominant classes but reveals some difficulty in
differentiating among minority attack types.

TABLE VII. MULTI-CLASS CLASSIFICATION MACRO-AVERAGED SCORES

WITHOUT SMOTE

Model Accuracy Precision Recall F1-score AUC

LSTM 0.99 0.57 0.53 0.52 0.92

DNN 0.99 0.10 0.10 0.10 0.50

RF 0.99 0.66 0.62 0.64 0.94

KNN 0.99 0.61 0.58 0.59 0.87

XGBoost 0.99 0.66 0.60 0.62 0.98

TABLE VIII. MULTI-CLASS CLASSIFICATION MACRO-AVERAGED SCORES

Model Accuracy Precision Recall F1-score AUC

LSTM 0.99 0.62 0.56 0.56 0.99

DNN 0.99 0.66 0.57 0.59 0.99

RF 0.98 0.68 0.71 0.63 0.99

KNN 0.99 0.69 0.66 0.63 0.89

XGBoost 0.99 0.73 0.80 0.71 0.99

Fig. 12. XGboost confusion matrix in multi-classification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

452 | P a g e

www.ijacsa.thesai.org

Fig. 13. LSTM confusion matrix in multi-classification

The DNN model performs well across several classes, but
the confusion matrix reflects misclassification among minority
classes as shown in Fig. 14.

Fig. 14. DNN confusion matrix in multi-classification.

The confusion matrix of KNN (Fig. 15) shows good
effectiveness, better than LSTM and DNN, but still less than
Xgboost.

Random Forest delivers a compact and efficient confusion
matrix, excelling at distinguishing between multiple attack
types, especially frequent ones, while showing some overlap in
less-represented classes as shown in Fig. 16.

D. Inference Time Evaluation for Real-Time Applicability

In addition to classification performance, prediction time is
a critical consideration for real-world deployment, particularly
in systems requiring real-time or near-real-time responses. Table
IX presents both the total and average prediction times (per
1,000 records) for each model across binary and multi-class
classification tasks, providing insight into their computational
efficiency.

Fig. 15. KNN confusion matrix in multi-classification.

Fig. 16. Random forest confusion matrix in multi-classification.

TABLE IX. PREDICTION TIME FOR EACH CLASSIFIER

Model Task Total Time (s)
Avg. Time per 1000

Records (s)

LSTM Binary 25 0.3575

DNN Binary 20 0.0700

RF Binary 4.519 0.0076

KNN Binary 73.4142 0.1232

XGBoost Binary 14.323 0.0240

LSTM Multi-class 22.8 0.07

DNN Multi-class 20.5489 0.0690

RF Multi-class 5.0694 0.0128

KNN Multi-class 39.0577 0.0983

XGBoost Multi-class 26.7887 0.0449

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

453 | P a g e

www.ijacsa.thesai.org

Random Forest exhibited the fastest prediction times in both
binary and multi-class tasks, making it highly suitable for real-
time applications. Random Forest also demonstrated strong
efficiency, whereas deep learning models, particularly LSTM
and KNN, had the longest processing times.

V. DISCUSSION

This study presents a comprehensive evaluation of multiple
machine learning (ML) and deep learning (DL) classifiers for
both binary and multi-class network intrusion detection using
the NF-UNSW-NB15 dataset. The results demonstrate that the
proposed models—particularly XGBoost and Random Forest—
achieved superior performance, with macro-averaged F1-scores

and accuracy exceeding 99% in binary classification. These
models also maintained robustness in multi-class scenarios,
achieving macro F1-scores of up to 0.71.

In contrast, the recent work by Samantaray et al. [9], which
employed traditional ML algorithms on the same dataset,
reported significantly lower macro F1-scores—only 0.26 with
Logistic Regression and 0.17 with Random Forest—despite
using MaxAbsScaler for feature scaling. Although their
approach achieved relatively high overall accuracy (up to 94%)
in multi-class classification, the low macro-averaged metrics
reflect poor generalization across minority classes, indicating

that class imbalance was not sufficiently addressed.

TABLE X. COMPARATIVE RESULTS OF BEST CLASSIFIERS ACROSS STUDIES

Study Model Dataset Type Accuracy Macro Precision Macro Recall Macro F1-Score

This Work RF NF-UNSW-NB15-v2 Binary 0.99 0.95 0.99 0.97

This Work XGBoost NF-UNSW-NB15-v2 Multi-class 0.99 0.73 0.80 0.71

Kasongo and Sun [4] XGBoost NF-UNSW-NB15 Binary 0.91 0.80 0.98 0.88

Samantaray et al. [9] RF NF-UNSW-NB15 Multi-class 0.90 0.23 0.20 0.17

Samantaray et al. [9] KNN NF-UNSW-NB15 Multi-class 0.93 0.29 0.31 0.26

Sayed et al. [10] IoTCNN NF-UNSW-NB15-v2 Multi-class ~0.99 ~0.42 ~0.63 ~0.44

Sharma et al. [33] RF UNSW‑NB15 Binary 0.87 0.90 0.86 0.86

Similarly, the CNN-based models proposed by Sayed et al.
[10], namely IoTCNN and MyCNN, demonstrated limited
macro-level performance. For example, the IoTCNN model
produced low precision and F1-scores in most attack categories,
including F1 = 0.14 for Analysis and 0.13 for DoS, despite
exhibiting high overall accuracy. These results suggest that
while convolutional models may effectively capture local
patterns, they often struggle with inter-class variance and
generalization without advanced preprocessing or data
augmentation strategies.

In addition to Samantaray et al. [9] and Sayed et al. [10], we
include the study by Sharma et al. [33], which evaluates
ensemble methods on UNSW-NB15 using a binary setting.
Their best model (Random Forest) achieves Accuracy = 0.87,
Macro Precision = 0.90, Macro Recall = 0.86, and Macro
F1 = 0.86, whereas our binary IDS on NF-UNSW-NB15-v2
attains Accuracy ≈ 0.99 and Macro F1 ≈ 0.97. Thus, our
approach improves binary macro-level performance by ≈ 11
points in F1 while also raising accuracy by ≈ 12 percentage
points, reinforcing that the proposed SMOTE + PCA + diverse
ML/DL pipeline generalizes better under class imbalance than
strong ensemble baselines.

Overall, our findings highlight the effectiveness of ensemble
models—such as XGBoost and Random Forest—in capturing
complex feature relationships and addressing class imbalance. A
comparative summary of results is provided in Table X.

VI. CONCLUSION

This work developed and empirically validated an end-to-
end intrusion-detection pipeline that couples rigorous
preprocessing (StandardScaler normalization, SMOTE
oversampling, and PCA dimensionality reduction) with five
classifiers (XGBoost, RF, KNN, DNN, and LSTM) evaluated

on the “NF-UNSW-NB15-v2” dataset. The experiments
covered both binary (normal vs attack) and nine-class attack
identification tasks, using a unified hyper-parameter budget to
ensure fair comparison.

Results underscore the strength of ensemble trees for tabular
network-flow data: XGBoost and Random Forest achieved high
metrics (≈ 0.9960 for accuracy, precision, recall, F1, and AUC)
in binary detection, while XGBoost retained a competitive
macro F1-score (0.71) and a balanced confusion matrix in multi-
class testing. Deep models matched overall accuracy but lagged
in macro scores, indicating residual sensitivity to minority
classes. Crucially,RF and XGBoost’s inference latency—on the
order of milliseconds per thousand flows—demonstrates that
top-tier accuracy can coexist with real-time throughput, making
the approach deployable in production networks.

 Although the pipeline raises the state of the art for this
dataset, two limitations remain: extremely rare classes such as
Worms and Analysis still risk misclassification despite SMOTE,
and features were restricted to NetFlow attributes. Future work
should explore cost-sensitive or generative resampling, integrate
payload-level and temporal-correlation features, and test hybrid
architectures (e.g., LSTM embeddings feeding XGBoost) under
online-learning and edge-deployment constraints. Overall, the
study provides a reproducible blueprint and a strong baseline for
practitioners seeking accurate, low-latency, and resource-
efficient intrusion detection in modern networked environments.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Research and Graduate Studies at King Khalid University for
funding this work through Large Research Project under grant
number RGP2/318/46.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

454 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] L. Cadieux, "20 Shocking Cybercrime Statistics: 2024 Edition," The
Devolutions Blog, 4 July 2024. [Online]. Available:
https://blog.devolutions.net/2024/07/20-shocking-cybercrime-statistics-
2024-edition/?utm_source=chatgpt.com. [Accessed 1 Mars 2025].

[2] M. Sweney, "BT identifying 2,000 signals a second indicating possible
cyber-attacks," The Guardian, 12 September 2024. [Online]. Available:
https://www.theguardian.com/business/2024/sep/12/hackers-
weaponising-ai-for-cybercrime-bt-warns?utm_source=chatgpt.com.
[Accessed 1 Mars 2025].

[3] O. Ogundairo and P. Broklyn, "Machine Learning Algorithms for
Intrusion Detection Systems," Journal of Cyber Security, 2024.

[4] S. Kasongo and Y. Sun, "Performance analysis of intrusion detection
systems using a feature selection method on the UNSW-NB15 dataset,"
Journal of Big Data, vol. 7, no. 1, p. 105, 2020.

[5] V. Kumar, D. Sinha, A. Das, D. S. Pandey and R. Goswami, "An
integrated rule based intrusion detection system: analysis on UNSW-
NB15 data set and the real time online dataset," Cluster Computing, vol.
23, 2020.

[6] S. More and R. Kalkundri, "Evaluation of deceptive mails using filtering
& WEKA," in 2015 International Conference on Innovations in
Information,Embedded and Communication Systems (ICIIECS), 2015.

[7] R. Tahri, Y. Balouki, A. Jarrar and L. Abdellatif, "Intrusion Detection
System Using machine learning Algorithms," ITM Web of Conferences,
vol. 46, 2022.

[8] U. S. Musa, M. Chhabra, A. Ali and M. Kaur, "Intrusion Detection System
using Machine Learning Techniques: A Review," in Int. Conf. Smart
Electron. Commun. (ICOSEC 2020), 2020.

[9] M. Samantaray, R. C. Barik and A. K. Biswal, "A comparative assessment
of machine learning algorithms in the IoT-based network intrusion
detection systems," Decision Analytics Journal, vol. 11, p. 100478, 2024.

[10] N. Sayed, M. Shoaib, W. Ahmed, S. N. Qasem, A. M. Albarrak and F.
Saeed, "Augmenting IoT Intrusion Detection System Performance Using
Deep Neural Network," Computers, Materials & Continua, vol. 72, no. 2,
p. 3511–3534, 2022.

[11] D. Bzdok, M. Krzywinski and N. Altman, "Machine learning: supervised
methods," Nat. Methods, vol. 15, p. 5–6, 2018.

[12] S. Uddin, I. Haque and H. Lu, "Comparative performance analysis of K-
nearest neighbour (KNN) algorithm and its different variants for disease
prediction," Sci Rep, vol. 12, no. 6256, 2022.

[13] S. He, B. Li, H. Peng, J. Xin and E. Zhang, "An Effective Cost-Sensitive
XGBoost Method for Malicious URLs Detection in Imbalanced Dataset,"
IEEE Access, vol. 9, pp. 93089-93096, 2021.

[14] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System,"
in 22nd ACM SIGKDD International Conference, 2016.

[15] S. Jukic, M. Saracevic, A. Subasi and J. Kevric, "Comparison of ensemble
machine learning methods for automated classification of focal and non-
focal epileptic EEG signals," Mathematics, vol. 8, no. 9, p. 1481, 2020.

[16] S. Zhang, Z. Shen, and H. Yang, “Deep Network Approximation:
Achieving Arbitrary Accuracy with Fixed Number of Neurons,” Journal
of Machine Learning Research, vol. 23, no. 276, pp. 1–60, 2022.

[17] J. Brownlee, "A Gentle Introduction to the Rectified Linear Unit (ReLU),"
Machine Learning Mastery, 20 August 2020. [Online]. Available:
https://machinelearningmastery.com/rectified-linear-activation-function-
for-deep-learning-neural-networks/. [Accessed 1 March 2025].

[18] F. Huang, X. Li, C. Yuan, S. Zhang, J. Zhang and S. Qiao, "Attention-
Emotion-Enhanced Convolutional LSTM for Sentiment Analysis," IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 9,
pp. 1-14, 2021.

[19] "Machine Learning-Based NIDS Datasets," The University of
Queensland, [Online]. Available:
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA1. [Accessed 1
March 2025].

[20] M. Sarhan, S. Layeghy and M. Portmann, "Towards a Standard Feature
Set for Network Intrusion Detection System Datasets," arXiv, 2021.

[21] Nour Moustafa and Jill Slay, "UNSW-NB15: A comprehensive data set
for network intrusion detection systems," Military Communications and
Information Systems Conference (MilCIS), 2015.

[22] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt, Spambase Dataset,
UCI Machine Learning Repository, 1999.

[23] I. Androutsopoulos et al., "An experimental comparison of naive
Bayesian and keyword-based anti-spam filtering with personal e-mail
messages," SIGIR Conference, 2000.

[24] B. Klimt and Y. Yang, "The Enron Corpus: A New Dataset for Email
Classification Research," European Conference on Machine Learning
(ECML), 2004.

[25] I. Androutsopoulos et al., PU1 and PU2 corpora for spam filtering
experiments, 2000.

[26] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A detailed analysis
of the KDD CUP 99 data set," IEEE Symposium on CISDA, 2009.

[27] KDD Cup 1999 Dataset. UCI Machine Learning Repository.

[28] J. Song and H. Kim, "Network intrusion detection based on semi-
supervised learning and clustering," Expert Systems with Applications,
2013.

[29] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, "Intrusion
detection in 802.11 networks," IEEE ICC, 2015.

[30] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward generating a
new intrusion detection dataset and intrusion traffic characterization,"
ICISSP, 2018.

[31] M. Fernandez, J. Garcia, A. Sanz, and J. E. Diaz-Verdejo, "UGR'16: A
new dataset for evaluation of IDSs," Computer Networks, 2018.

[32] D., Elreedy, A. F., Atiya, & F., Kamalov, “A theoretical distribution
analysis of synthetic minority oversampling technique (SMOTE) for
imbalanced learning,” Machine Learning, 113:4903–4923, 2024.

[33] N. Sharma, N. S. Yadav, and S. Sharma, “Classification of UNSW‑NB15
dataset using Exploratory Data Analysis using Ensemble Learning,” EAI
Endorsed Transactions on Industrial Networks and Intelligent Systems,
vol. 8, no. 29, e4, Oct. 2021.

