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Abstract—As cyberattacks grow in prevalence, Intrusion 

Detection Systems (IDS) have become critical for securing 

network infrastructures. This study proposes an efficient IDS 

framework utilizing both machine learning (ML) and deep 

learning (DL) algorithms. The framework is evaluated on the “NF-

UNSW-NB15-v2” dataset, which comprises a blend of normal and 

malicious traffic. A diverse set of advanced models—including 

Deep Neural Networks (DNN), Long Short-Term Memory 

(LSTM) networks, eXtreme Gradient Boosting (XGBoost), 

Random Forest (RF), and K-Nearest Neighbors (KNN)—is 

deployed for intrusion detection. The approach encompasses both 

binary classification (normal vs. malicious) and multi-class 

classification (specific attack categories). Preprocessing steps 

include feature standardization using StandardScaler, class 

imbalance correction via SMOTE, and dimensionality reduction 

through Principal Component Analysis (PCA). Results show that 

Random Forest and XGBoost models achieve high accuracy in 

binary classification with F1-scores approaching 0.97, while 

XGBoost attains the best macro F1-score (0.71) in multi-class 

tasks. Additionally, RF and XGBoost demonstrate the fastest 

inference times, underscoring their suitability for real-time 

deployment. This work contributes a scalable and optimized IDS 

pipeline for enhancing cybersecurity resilience. 

Keywords—Cybersecurity; cyber-attack; intrusion detection 

system; machine learning; deep learning 

I. INTRODUCTION 

In recent years, the cyber world witnessed the most 
phenomenal increase ever of cyber threats that targeted 
individuals, businesses, and governments. The cost of 
cybercrime at the global level is anticipated at $9.5 trillion by 
2024, which amounts to $26 billion per day or $18 million per 
minute [1]. The growing rate of cybercrime emphasizes the need 
for proper cybersecurity controls. 

Small and medium-sized businesses are most vulnerable 
with 69% of these experiencing at least one cyber-attack within 
the past year [1]. Yet 80% of the SMBs are largely 
unimplemented with the utilization of Privileged Access 
Management solutions while fewer than 60% of the enterprises 
are using vital cybersecurity practices of password managers, 
two-factor authentication, and cybersecurity education [1]. The 
shift toward remote work amplified the fear of security since 
72% of businesses are concerned about the danger it presents 
and 80% of cybersecurity professionals confirm that the danger 
increased since 2020 [1]. 

Phishing and ransomware attacks grew more complex and 
more numerous. Security professionals saw 62% more phishing 
assaults within the recent years with 79% of account takeover 

attacks originating from the type of phishing attack that occurs 
with the use of phish emails [1]. The ransomware attacks grew 
with 70% of the attacks focusing on the small business market 
and the number of ransomware teams actively present more than 
doubling year over year [1]. 

Adversaries now leverage automation and AI to accelerate 
reconnaissance, weaponization, and evasion, fueling an arms 
race that compels defenders to adopt more adaptive, data-driven 
countermeasures [2]. 

Traditional intrusion detection systems (IDS) that rely on 
static signatures or hand-crafted rules struggle with previously 
unseen or rapidly morphing threats  [3]. Machine learning (ML) 
and artificial intelligence (AI) enable dynamic threat modeling, 
anomaly detection, and behavioral analysis, allowing IDSs to 
generalize to novel attacks while reducing false positives  [3]. 

Despite notable advancements in IDS research, a critical 
limitation persists across most studies: the insufficient handling 
of class imbalance, which leads to poor detection rates for 
minority attack types. Previous works have primarily focused on 
maximizing overall accuracy, often at the expense of rare class 
detection, resulting in inflated performance metrics dominated 
by frequent categories. Furthermore, inconsistencies in 
preprocessing pipelines, a lack of standardized evaluation on 
modern NetFlow-based datasets like NF-UNSW-NB15-v2, and 
the limited integration of a diverse set of both machine and deep 
learning techniques within a single, optimized framework limit 
the robustness and practical applicability of existing IDS 
solutions. This study aims to bridge these gaps by proposing an 
integrated pipeline that combines SMOTE-based class 
balancing, PCA-driven feature reduction, and a comprehensive 
evaluation of multiple ML and DL models to enhance minority 
class detection and overall performance on the NF-UNSW-
NB15-v2 dataset. 

The remainder of the paper is organized as follows. Section 
II reviews related work on ML/DL-based IDS. Section III details 
the methodology, including the dataset, preprocessing 
(standardization, imbalance handling, dimensionality reduction, 
and train–test split), model specifications, and evaluation 
metrics. Section IV reports the experimental results for both 
binary and multi-class settings and examines inference-time 
performance for real-time applicability. Section V discusses key 
findings, practical implications, and limitations. Section VI 
concludes and outlines directions for future research. 

II. RELATED WORK 

Kasongo and Sun [4] conducted a performance analysis of 
Intrusion Detection Systems (IDS) by applying a feature 
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selection algorithm to the UNSW-NB15 dataset. They 
emphasized the importance of reducing feature dimensionality 
to enhance IDS accuracy. The study used five machine learning 
classifiers—SVM, KNN, Logistic Regression, Artificial Neural 
Networks (ANN), and Decision Trees (DT)—and showed that 
XGBoost-based feature selection significantly improved model 
performance, especially for DTs. However, the study did not 
address class imbalance, which led to lower F1-scores for 
minority classes. 

Kumar et al. [5] proposed an integrated rule-based IDS using 
both the UNSW-NB15 and RTNITP18 datasets. Their approach 
employed Decision Tree classifiers (C5, CHAID, CART, and 
QUEST) to detect five attack types: Generic, Probe, DoS, 
Exploit, and Normal. The study reported improved accuracy and 
reduced false alarm rates through rule-based modeling and 
information gain-based feature selection. Nonetheless, it lacked 
proper handling of class imbalance and yielded low precision 
and recall for critical attack types. 

More et al. [6] compared several supervised ML techniques 
for identifying deceitful emails with filtering approaches and 
through use of the WEKA toolset. The work identifies a 
weakness in conventional Bayesian filtering, effective in spam 
filtering but not in high false positive cases. To counteract, 
several classifiers, such as RF and SVM, have been incorporated 
and utilized for enhancing accuracy and minimizing false 
positives in classification. In its use, feature extraction via Naïve 
Bayes and an evaluation tool developed in WEKA facilitated 
testing of numerous algorithms for classification in a thorough 
manner. Experimental tests showed that RF and SVM 
performed better in enhancing positive and negative actual 
values and overall accuracy over 96%. The work identifies the 
use of hybrid classification approaches in improving deceitful 
message detection and minimizing security threats posed 
through spammers. 

Tahri et al. [7] have designed an IDS with ML algorithms for 
enhancing network security. As communications through 
electronic means have increased, IDS proves to be a useful tool 
for discovering hostile activity in network communications. In 
the current work, three classifiers, Naïve Bayes, SVM, and 
KNN, have been compared for performance with two 
benchmark datasets, namely, “NSL-KDD” and “UNSW-
NB15”. In part one of work, three classifiers have been 
compared with the use of “UNSW-NB15”, and then for a proper 
analysis, best-performing algorithm is utilized for testing with 
“NSL-KDD”. As per work, SVM outperforms all classifiers in 
terms of accuracy consistently, with 97.77% accuracy for 
“UNSW-NB15” and 97.29% accuracy for NSL-KDD. In 
conclusion, SVM proves to be an effective intrusion detection 
classifier, and future work will attempt to make its processing 
efficient and integrate it in real-time security tools such as a 
firewall. 

Musa et al. [8] review the application of ML algorithms in 
IDS for enhancing network security through observation of 
traffic and intrusion activity, and IDS is distinguished between 
anomaly-based and signature-based detection, with the first 
identifying abnormalities in behavior and the second employing 
predefined attack signatures. Various types of ML approaches, 
including single, hybrid, and ensemble classifiers, are contrasted 

and compared over seven datasets, with the consequence that 
single classifiers fall below both ensemble and hybrid classifiers 
in terms of accuracy and detection performance. Comparison 
between algorithms including SVM, DTs, RF, and Neural 
Networks identifies that ensemble approaches, including 
stacking classifiers, have a significant impact in intrusion 
detection improvement. Challenges include feature selection 
improvement, testing over a range of and updated datasets, and 
minimizing false positive values. Optimizing hybrid models, 
minimizing computational overload, and enhancing real-time 
intrusion capabilities have been suggested for future work, 
according to the authors. 

Samantaray et al. in [9] conducted a comparative study on 
ML model implementation in intrusion detection in IoT-based 
networks. The research is centered on increasing threats in the 
security of IoT networks and the need to utilize efficient IDS in 
order to mitigate them. The research uses the “UNSW-NB15 
(DS-1)” and “NF-UNSW-NB15 (DS-2)” datasets in comparing 
models based on ML like SVM, KNN, Logistic Regression, 
Naïve Bayes, DT, and RF. The feature scaling is based on a 
method involving the usage of the MaxAbsScaler algorithm in 
order to increase efficiency in classification. The results 
highlight the usage of the RF classifier in achieving the highest 
precision in generating the most accurate outcome with a gain in 
the rate of detection from 60% to 94% in the DS-2 dataset. The 
research focuses on efficiency in ML usage in intrusion 
detection and supports future research on implementation with 
improved feature selection and DL. 

Sayed et al. in [10] conducted research with a focus on 
optimizing the efficiency of DNN-driven IoT intrusion detection 
systems (IDS). Because the IoT devices are under threat and 
there is a limitation in the process ability and in features in 
security, the researchers provided two CNN models, namely 
IoTCNN and MyCNN, with a purpose to classify intrusion in 
the network. The "NF-UNSW-NB15-v2" dataset was used in the 
research, and the stream network data was converted into RGB 
images in order to train the models. Results indicated the 
efficiency of the models in the detection of various intrusion 
types, and in the majority of intrusion categories, the precision 
of the models improved. The research confirms the efficiency of 
anomaly-based IoT security based on DL and calls for 
improvement in the handling of imbalances in the class and the 
optimization of the hyperparameters. 

Table I provides a structured summary of key related studies, 
highlighting the datasets, methodologies, and performance 
metrics used, which helps position the present work within the 
broader landscape of IDS research. 

Despite notable advancements in IDS research, a recurring 
limitation across most studies is the insufficient handling of 
class imbalance and the resulting poor detection of minority 
attack types. Previous works primarily focused on improving 
overall accuracy without explicitly addressing the critical 
challenge of rare class detection, often leading to inflated 
performance metrics dominated by frequent attack categories. In 
addition, inconsistencies in preprocessing, lack of standardized 
evaluation on newer datasets, and limited integration of deep 
learning techniques further limit the robustness of existing IDS 
solutions. Building on these gaps, this research proposes an 
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integrated approach combining SMOTE-based class balancing, 
PCA-driven feature selection, ML/DL modeling to enhance 

minority class detection and overall intrusion detection 
performance on the NF-UNSW-NB15-v2 dataset [20]. 

TABLE I. SUMMARY OF RELATED WORK 

Year Research Title Dataset 

Machine 

Learning / 

Deep 

Learning 

Model(s) 

Preprocessing 
Classification 

Type 

Performance 

Metrics 
Findings Limitations 

 

Ref 

 

2020 

Performance 
analysis of IDS 

using a feature 

selection 
method on 

UNSW-NB15 

UNSW-

NB15 [21] 

SVM, 

KNN, 

Logistic 
Regression, 

ANN, 

Decision 
Tree 

Min-Max 

normalization; 
Feature 

selection with 

XGBoost 

Binary and 

Multi-class 

Binary: Accuracy 

90.85%, Precision 

80.33%, Recall 
98.38%, F1-score 

88.45% 

Multi-class: Accuracy 
77.51%, Precision 

79.50%, Recall 

77.53%, F1-score 
77.28% 

Feature 
selection 

(XGBoost) 

improved ML 
model 

performance. 

No class 

imbalance 

handling; 
poor F1-

scores for 

minority 
classes. 

[4] 

2020 

An integrated 

rule-based 

intrusion 

detection system 
on UNSW-

NB15 and 

RTNITP18 

UNSW-
NB15 [21], 

RTNITP18 

[5] 

Decision 

Trees (C5, 

CHAID, 
CART, 

QUEST) 

Feature 

selection using 
Information 

Gain; K-

Means 
clustering 

Multi-class 

Accuracy 84.83%, 

Approximate F1-
score 68.13% 

Rule-based 
modeling 

reduced false 

alarms in IDS. 

No class 

imbalance 

handling; 
low 

precision 

and recall 
for critical 

attacks. 

[5] 

2015 

Evaluation of 
deceptive mails 

using filtering & 

WEKA 

SpamBase 

[22], Ling-
Spam [23], 

Enron [24], 

PU1 [25], 
PU2 [25] 

Random 

Forest, 

SVM, 
Naïve 

Bayes 

Tokenization; 

Feature 
extraction; 

Term 

Frequency 
normalization 

Binary 

Accuracy: RF 98.9%, 

SVM 98.4%, NB 
93.2% 

Ensemble 
models 

(Random 

Forest) achieved 
high 

classification 

accuracy. 

No class 

imbalance 
handling; 

no minority 

class 
evaluation. 

[6] 

2022 

Intrusion 

Detection 

System using 
machine 

learning 

algorithms 

UNSW-

NB15 [21], 
NSL-KDD 

[26] 

SVM, 

KNN, 
Naïve 

Bayes 

Feature 

selection using 
mutual 

information; 

Binary and 
Multi-class 

Binary: SVM 

Accuracy 97.78% 
Multi-class: SVM 

Accuracy 97.29% 

SVM achieved 

high accuracy 

on IDS datasets 
without heavy 

feature 

engineering. 

No class 

imbalance 

handling; 
no minority 

class 

evaluation. 

[7] 

2020 

Review of 

machine 

learning 
techniques for 

IDS across 

different 
datasets 

KDDCup'99 
[27], NSL-

KDD [26], 

Kyoto2006+ 
[28], AWID 

[29], CIC-

IDS2017 
[30], 

UNSW-

NB15 [21], 
UGR'16 

[31] 

SVM, 

Random 
Forest, 

Decision 

Tree, KNN, 
ANN, 

XGBoost, 

AdaBoost 

Dataset-

specific 
feature 

engineering; 

Standard 
normalization 

or scaling 

where needed 

Binary and 

Multi-class 

Binary: Ensemble 

models achieved 

>99% Accuracy 
Multi-class: Accuracy 

~0.99, Macro F1 

~0.89 
 

Ensemble 

methods (e.g., 

XGBoost) 
consistently 

outperformed 

individual 
classifiers. 

No class 
imbalance 

handling; 

no minority 
class 

evaluation. 

[8] 

2024 

Comparative 

assessment of 
ML algorithms 

in IoT-based 

network 
intrusion 

detection 

UNSW-

NB15 (DS-

1), NF-
UNSW-

NB15 (DS-

2) [20] 

SVM, 
KNN, 

Logistic 

Regression, 
Naïve 

Bayes, 

Random 
Forest 

MaxAbsScaler 
normalization 

Multi-class 
Accuracy: RF 60% 
(DS-1), 94% (DS-2) 

Feature scaling 

(MaxAbsScaler) 
improved IDS 

model stability. 

No class 

imbalance 

handling; 
no minority 

class 

evaluation. 

[9] 

2022 

Augmenting IoT 

intrusion 

detection system 
performance 

using deep 

neural networks 

NF-UNSW-

NB15-v2 

[20] 

CNN 

FFT-based 

NetFlow 

transformation 
to RGB 

images; Image 

normalization 

Multi-class 

Accuracy ~99% 

(frequent classes); 
poor F1-scores for 

minority classes 

CNNs using 

NetFlow-to-
image 

transformation 

achieved high 
accuracy for 

frequent attacks. 

No class 

imbalance 
handling; 

poor F1-

scores for 
minority 

classes. 

[10] 
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III. METHODOLOGY 

The methodology for this project is structured into several 
essential steps, as depicted in Fig. 1. 

The proposed method for intrusion detection using deep 
learning (DL) and machine learning (ML) follows a structured 
pipeline: 

1) Dataset: The NF-UNSW-NB15 dataset is used, 

comprising a combination of normal and malicious network 

traffic. It provides a realistic foundation for evaluating intrusion 

detection models. 

Preprocessing Steps: 

 Standardization: Normalizes the data to have the same 
feature scaling. 

 PCA (Principal Component Analysis): Reduces 
dimensionality in a way that maximizes computational 
efficiency while retaining significant features. 

 Oversampling: Balances the dataset and treats 
imbalances in classes, optimizing performance on 
minority attack classes. 

2) Model training: Preprocessed data is fed to ML (e.g., 

XGBoost, RF, KNN) and DL (e.g., DNN, LSTM) models for 

training. 

3) Evaluation metrics: Model performance is evaluated 

using conventional metrics, including accuracy, precision, 

recall, F1-score, and AUC-ROC, to ensure robust and 

comprehensive assessment of intrusion detection effectiveness. 

B. Dataset 

The NetFlow-based variant of the UNSW-NB15 dataset, 
referred to as NF-UNSW-NB15, incorporates additional flow-
level features and is labeled according to specific attack 
categories. The original dataset comprises 2,390,275 network 
flow records, including 95,053 attacks (3.98%) and 2,295,222 
benign flows (96.02%). These attack records are further divided 
into nine subtypes, as summarized in Table II [19]. For this 
study, the dataset was obtained from Kaggle, where the official 
version was uploaded by the author after removing duplicate 
rows, reducing the total count to 1,986,745. Therefore, the 
dataset used in this research is consistent with the original 
release, except for the exclusion of duplicates to improve data 
integrity and processing efficiency. 

Mohanad Sarhan et al. [20] proposed a standardized feature 
set for network intrusion detection datasets to improve detection 
performance through the application of machine learning 
techniques. Their approach leverages NetFlow v9 features, 
which are widely supported by network devices and proven to 
be effective for traffic analysis. The proposed feature set 
includes 43 numerical, flow-based attributes designed to 
facilitate accurate and consistent detection of security events. By 
promoting dataset standardization, this feature set simplifies 
model evaluation, enhances compatibility for dataset merging, 
and supports real-world deployment of intrusion detection 
systems. 

 

Fig. 1. Proposed method. 

TABLE II. ATTACK TYPES IN “NF-UNSW-NB15” 

Class Count Description 

Benign 2295222 Normal, non-malicious network traffic. 

Fuzzers 22310 An attack where large volumes of random data are sent to a system to cause crashes and identify security vulnerabilities. 

Analysis 2299 A category of threats targeting web applications through ports, emails, and scripts. 

Backdoor 2169 A method that bypasses security mechanisms by responding to specially crafted client requests. 

DoS 5794 An attack that overwhelms a system’s resources to disrupt access to its data or services. 

Exploits 31551 Sequences of commands used to manipulate a system by exploiting known vulnerabilities. 

Generic 16560 A cryptographic attack that causes collisions in block cipher encryption. 

Reconnaissance 12779 Also known as probing, this technique involves gathering information about a network host. 

Shellcode 1427 Malicious code designed to take control of a victim’s system. 

Worms 164 Self-replicating attacks that spread across multiple computers. 
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TABLE III. FEATURES IN “NF-UNSW-NB15” 

 Field Name Data Type Description 

1 IPV4_SRC_ADDR String Source IPv4 address 

2 IPV4_DST_ADDR String Destination IPv4 address 

3 L4_SRC_PORT Integer Source port number for IPv4 

4 L4_DST_PORT Integer Destination port number for IPv4 

5 PROTOCOL Integer Byte value representing the IP protocol identifier 

6 L7_PROTO Integer Numeric identifier for the Layer 7 protocol 

7 IN_BYTES Integer Total incoming bytes 

8 OUT_BYTES Integer Total outgoing bytes 

9 IN_PKTS Integer Count of incoming packets 

10 OUT_PKTS Integer Count of outgoing packets 

11 FLOW_DURATION_MILLISECONDS Float Duration of the flow in milliseconds 

12 TCP_FLAGS Integer Aggregated TCP flags 

13 CLIENT_TCP_FLAGS Integer Aggregated TCP flags from the client side 

14 SERVER_TCP_FLAGS Integer Aggregated TCP flags from the server side 

15 DURATION_IN Float Duration of the client-to-server stream (in milliseconds) 

16 DURATION_OUT Float Duration of the server-to-client stream (in milliseconds) 

17 MIN_TTL Integer Minimum Time-to-Live (TTL) value observed in the flow 

18 MAX_TTL Integer Maximum Time-to-Live (TTL) value observed in the flow 

19 LONGEST_FLOW_PKT Integer Size (in bytes) of the longest packet in the flow 

20 SHORTEST_FLOW_PKT Integer Size (in bytes) of the shortest packet in the flow 

21 MIN_IP_PKT_LEN Integer Length of the smallest observed IP packet in the flow 

22 MAX_IP_PKT_LEN Integer Length of the largest observed IP packet in the flow 

23 SRC_TO_DST_SECOND_BYTES Float Rate of bytes sent from source to destination (bytes per second) 

24 DST_TO_SRC_SECOND_BYTES Float Rate of bytes sent from destination to source (bytes per second) 

25 RETRANSMITTED_IN_BYTES Integer Count of retransmitted TCP bytes from source to destination 

26 RETRANSMITTED_IN_PKTS Integer Count of retransmitted TCP packets from source to destination 

27 RETRANSMITTED_OUT_BYTES Integer Count of retransmitted TCP bytes from destination to source 

28 RETRANSMITTED_OUT_PKTS Integer Count of retransmitted TCP packets from destination to source 

29 SRC_TO_DST_AVG_THROUGHPUT Float Average throughput (bps) from source to destination 

30 DST_TO_SRC_AVG_THROUGHPUT Float Average throughput (bps) from destination to source 

31 NUM_PKTS_UP_TO_128_BYTES Integer Number of packets with an IP size of 128 bytes or less 

32 NUM_PKTS_128_TO_256_BYTES Integer Number of packets with an IP size between 128 and 256 bytes 

33 NUM_PKTS_256_TO_512_BYTES Integer Number of packets with an IP size between 256 and 512 bytes 

34 NUM_PKTS_512_TO_1024_BYTES Integer Number of packets with an IP size between 512 and 1024 bytes 

35 NUM_PKTS_1024_TO_1514_BYTES Integer Number of packets with an IP size between 1024 and 1514 bytes 

36 TCP_WIN_MAX_IN Integer Maximum TCP window size from source to destination 

37 TCP_WIN_MAX_OUT Integer Maximum TCP window size from destination to source 

38 ICMP_TYPE Integer ICMP type combined with ICMP code (ICMP Type * 256 + ICMP Code) 

39 ICMP_IPV4_TYPE Integer ICMP type identifier for IPv4 

40 DNS_QUERY_ID Integer Transaction ID of a DNS query 

41 DNS_QUERY_TYPE Integer Type of DNS query (e.g., 1 = A, 2 = NS, etc.) 

42 DNS_TTL_ANSWER Integer Time-to-Live (TTL) value of the first A record, if available 

43 FTP_COMMAND_RET_CODE Integer Return code for an FTP client command 
 

Table III lists the feature set of the NF-UNSW-NB15 
dataset, detailing the flow characteristics captured for intrusion 
detection analysis. 

Fig. 2 illustrates the significant class imbalance in the 
dataset, with benign (normal) traffic overwhelmingly 
dominating all categories of malicious traffic. Among the attack 

types, “Exploits” and “Fuzzers” appear most frequently, while 
others such as “Reconnaissance,” “DoS,” and especially 
“Worms” occur far less often. This imbalance poses challenges 
for accurate model training and may necessitate the use of 
resampling methods or advanced techniques to improve 
detection performance, particularly for minority attack classes. 
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Fig. 2. Attack column distribution. 

Fig. 3 displays how normal and malicious flows are 
distributed in the dataset, revealing a pronounced class 
imbalance: legitimate traffic vastly outweighs attack traffic.  

Such skew can hamper model effectiveness, so remedies like 
SMOTE oversampling or class-weight adjustment are advisable 
to achieve more reliable classification. 

 
Fig. 3. Label column distribution. 

Fig. 4 shows the distribution of different types of attacks in 
the dataset. "Exploits" is the highest frequency type, with 
"Fuzzers" and "Reconnaissance" following, and "Worms" and 
"Analysis" are the least frequent. The imbalanced distribution 
among attack types implies the need for careful model training 
in order to correctly identify in every category. 

 
Fig. 4. Count of every attack type. 

C. Dataset Preprocessing 

To ensure high-quality input for model training, the NF-
UNSW-NB15-v2 dataset undergoes a series of preprocessing 
steps designed to enhance learning efficiency and model 
performance. 

1) Standardization: Standardization was applied using the 

StandardScaler, which transformed each numerical feature to 

have a mean of zero and a standard deviation of one. This 

normalization process ensured that all features contributed 

proportionally to the learning process, preventing any single 

feature with a large magnitude from disproportionately 

influencing the model. Standardization was particularly 

important for algorithms sensitive to feature scale, such as K-

Nearest Neighbors (KNN) and Deep Neural Networks (DNN), 

which rely on distance-based calculations and gradient-based 

optimization, respectively. This approach follows best practices 

outlined in prior literature and common implementations such 

as scikit-learn [11]. 

2) Handling class imbalance: To address the class 

imbalance issue in the dataset, the Synthetic Minority Over-

sampling Technique (SMOTE) [32] was applied exclusively to 

the training set after splitting the data into 70% for training and 

30% for testing. This approach was intentionally adopted to 

prevent data leakage and to ensure an unbiased evaluation of 

the model’s performance on unseen data. 

SMOTE generates synthetic samples for minority classes by 
interpolating between existing instances rather than simply 
duplicating them. For each minority sample in the training set, 
the algorithm identifies its k-nearest neighbors (commonly k=5) 
within the same class. It then selects one neighbor at random and 
creates a new instance by generating a point along the feature-
space line segment connecting the original sample and its 
neighbor. This synthetic instance inherits the statistical 
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characteristics of both points, resulting in a new example that is 
both realistic and non-redundant [32]. 

By enriching the training set with these synthetic examples, 
the class distribution becomes more balanced. This allows 
learning algorithms to be exposed to a wider variety of patterns 
and variations within the minority classes, which enhances their 
ability to generalize and improves detection of rare attack types. 
The test set was left untouched to preserve the original 
distribution and maintain the integrity of the evaluation. 

3) Dimensionality reduction: To address the high 

dimensionality of the dataset, which consists of 43 flow-based 

NetFlow features, Principal Component Analysis (PCA) was 

employed as an effective dimensionality reduction technique. 

PCA transforms the original feature set into a smaller number 

of uncorrelated components while retaining the majority of the 

data’s variance. This transformation reduces computational 

complexity, accelerates model training, and mitigates the risk 

of overfitting by eliminating redundant or less informative 

attributes [13]. 

An initial correlation analysis of the raw NetFlow features 
revealed strong linear relationships among several variables. For 
instance, IN_PKTS and OUT_PKTS exhibited a Pearson 
correlation coefficient of approximately 0.99, while 
FLOW_DURATION_MILLISECONDS was highly correlated 
with both DURATION_IN and DURATION_OUT. Similarly, 
MIN_TTL and MAX_TTL showed correlations exceeding 0.90. 
These relationships, visualized in Fig. 5, support the application 
of PCA to reduce multicollinearity and noise within the dataset. 

To validate the independence of the PCA components, a 
correlation matrix was generated to examine the relationships 
between the extracted components. As shown in Fig. 6, the 
components are effectively uncorrelated, demonstrating that 
PCA successfully transforms the original feature space into a set 
of orthogonal, linearly independent dimensions. This 
orthogonality reinforces PCA’s suitability for improving model 
robustness and reducing feature redundancy. 

Overall, PCA proved especially beneficial for ensemble 
models such as Random Forest and XGBoost, which can be 
negatively affected by irrelevant or highly correlated features. 
Its use enhanced model focus, reduced overfitting, and improved 
interpretability within the intrusion detection pipeline. 

 
Fig. 5. Correlation heatmap of original NetFlow features. 
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Fig. 6. Correlation between PCA Components (with self-correlation).

4) Train-test split: To evaluate model performance fairly, 

the dataset is divided into distinct subsets. For traditional 

machine learning models, the dataset is partitioned into 70% for 

training and 30% for testing to evaluate generalization 

performance on unseen data. In the case of deep learning 

models such as LSTM and DNN, the dataset is further divided 

into 70% for training and 30% for testing, enabling effective 

monitoring during training and ensuring robust model 

evaluation. 

D. Modeling 

1) Machine learning models: Random Forest (RF), KNN, 

XGBoost, and SVM are the most effective ML models for the 

detection of intrusions. The models are good for classification 

with feature-extracted input but are inefficient with complex 

temporal relationships within sequential input. 

a) K-Nearest Neighbor (KNN): The KNN algorithm is a 

supervised algorithm in ML most commonly used to classify 

tasks [11]. It identifies the unlabeled data by considering the 

label and the available training data's features. The algorithm 

identifies the data by determining the point's nearest neighbors 

and the final label by majority voting. Among all the algorithms 

in ML, the algorithm in the case of the KNN algorithm is unique 

in terms of ease and interpretability and, in turn, acts to be a 

commonly used algorithm to classify tasks [12]. Even despite 

the ease, the algorithm performs exceptionally in the case of 

solving the classification and the regression problems in 

different datasets, regardless of size, label distribution, the 

datasets' noise, and the datasets' ranges [12]. 

b) Random Forests (RF): RF is a versatile algorithm in 

ML, famous for reducing the effect of overfitting, a prevalent 

problem in decision trees (DTs). It performs tasks such as 

classification, regression, and others by building many DTs 

during the training period. The algorithm works by evaluating 

multiple distinct decision trees (DTs) and making the prediction 

through a voting mechanism. Unlike in the case of a standard 

DT, in which each internal node gets partitioned by the optimal 

attribute, RF uses the optimal attribute from a random subset of 

predictors at each internal node. This randomization serves to 

enhance model generalization and resistance, and the resulting 

algorithm is a versatile tool in numerous applications in ML. 

c) XGBoost (XGB): XGBoost (XGB) is a Gradient Tree 

Boosting algorithm powerful enough to solve heavy-scale ML 

problems in an efficient and effective manner. It possesses great 

prediction precision and model training speed, and it's the 

leading performer in all the competitions at Kaggle. The 

mechanism in XGB lies in the addition of trees in an iterative 

fashion and the division of the features during the course of the 

expansion in the tree. The model learns to fit the residuals from 

the last prediction each time a new tree gets added [13]. Given 

an input 𝑥𝑖, a true label 𝑦𝑖 , and a raw prediction 𝑧𝑖 before 

applying the sigmoid function, according to [14], the XGBoost 

model defines its objective function in the following equation: 

𝐿(𝑡) = ∑𝑛
𝑖=1 𝑙 (𝑦𝑖 , 𝑍𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) + 𝑐

Where 𝑙(.,.) represents the loss function, t denotes the t-th 
tree, and Ω serves as a penalty for model complexity. The term 
𝛺(𝑓𝑡) refers to the regularization penalty, while c is a constant. 
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The second-order Taylor expansion is given by: 

𝑓(𝑥 + 𝛥𝑥) ≈ 𝑓(𝑥) + 𝑓′(𝑥)𝛥𝑥 + 1 2⁄ 𝑓′′(𝑥)𝛥𝑥2

By substituting Eq. (2) into Eq. (1), we can obtain the 
following result. 

𝐿(𝑡) ≈ ∑ [𝑙(𝑦𝑖 + 𝑍𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖(𝑓𝑡(𝑥𝑖))

2
]𝑛

𝑖=1

  
 

where 𝑔𝑖 = 𝜕 𝐿 𝜕⁄ 𝑧𝑖 , and ℎ𝑖 = 𝜕2 𝐿 𝜕⁄ 𝑧𝑖
2 . By eliminating 

the constant terms, we derive the following simplified objective 
at step 𝑡. 

𝐿(𝑡) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖(𝑓𝑖(𝑥𝑖))

2
] + 𝛺(𝑓𝑡)𝑛

𝑖=1 

The terms 𝑔𝑖  and ℎ𝑖  play a vital role in optimizing the 
XGBoost training process. For binary classification, the model 
typically employs cross-entropy (CE) as its default loss function. 

𝐿 = − ∑ [𝑦𝑖𝑙𝑜𝑔 (𝑦́𝑖) − (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦́𝑖)]𝑛
𝑖=1 

In Eq. (5), 𝑦́𝑖 = 1 [1 + 𝑒𝑥𝑝 (−𝑧𝑖)]⁄ , that is sigmoid is 
selected as activation. Therefore, we can get: 

𝜕 𝑦́𝑖 𝜕⁄ 𝑧𝑖 = 𝑦́𝑖(1 − 𝑦́𝑖)

2) Deep learning models: Deep-learning methods often fall 

under the umbrella of unsupervised pre-trained networks—

architectures that stack many more layers and parameters than 

typical machine-learning neural nets, earning them the 

designation “deep.” 

a) Deep Neural Network (DNN): An Artificial Neural 

Network (ANN) is a model based on the structure and function 

of the brain [15]. Since neural networks (NN) are powerful 

nonlinear discriminators in the event of problems in 

classification, because they are able to describe any decision 

boundary in the feature space [16]. In recent years, Deep Neural 

Networks (DNNs) gained significant interest in intrusion 

detection research and evolved from Shallow Neural Networks 

(SNNs). The feature abstraction ability in DNNs and the ability 

to represent highly complex patterns make them extremely 

useful in applications in DL. Because of their ability to represent 

data in a good way, DNNs are in high demand in order to design 

efficient and robust solutions. 

The results are produced in a DNN based on the connection 
weights and activation functions in the neurons. The DNN is 
composed of multiple processing layers, and every layer 
contributes to decision-making and feature extraction. Several 
hyperparameters dictate the operation of a DNN and are to be 
determined in advance, including the number of units, number 
of layers, weights and bias initializers, activation function, 
regularizer's coefficient, learning rate, and the optimizer. In this 
DNN model, ReLU activation is applied in the input layer and 
in every hidden layer. The ReLU function is a piecewise linear 
function and returns the same input in the situation where the 
input is a positive number and a value of zero in the situation 
where the input is a negative number [17]. The neurons activated 
by this function are also rectified linear activation units. 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

b) Long Short-Term Memory (LSTM): The LSTM layer is 

a special kind of [18] RNN, and the main job of the LSTM layer 

is to handle sequence data with temporal relationships, such as 

text and relation data. The LSTM layer consists of three gates, 

the forget gate, the output gate, and the input gate, and the shared 

state. The use equation and the LSTM layer's detailed working 

are presented in the following equations: 

𝑓𝑠 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝑓) 

𝑖𝑠 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝑖)

𝐶́ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑠−1, 𝑥𝑠] + 𝑏𝐶)

𝐶𝑠 = 𝑓𝑠 ⋅ 𝐶𝑠−1 + 𝑖𝑠 ⋅ 𝐶́

𝑜𝑠 = (𝑊𝑜[ℎ𝑠−1, 𝑥𝑠] + 𝑏𝐶)

ℎ𝑠 = 𝑜𝑠 ⋅ 𝑡𝑎𝑛(𝐶𝑠) 

The input gate controls how the LSTM cell state acquires the 
information, in Eq. (9). The forget gate controls how the LSTM 
cell state forget the information, in the Eq. (8). The cell state 
updates by the Eq. (10) and Eq. (11). 

Output Layer: 

The output layer generates the predicted sentiment 
classification of the comment. The final output vector is scaled 
using the softmax activation function to produce a probability 
distribution across each class. The equation is as follows: 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑓𝑐 + 𝑏)

E. Evaluation Metrics 

1) Confusion matrix: It's a matrix to represent how model 

classify dataset, also to use to check how good the model's 

performance of classification. It's comprised by four 

components. 

In a confusion-matrix context, true positives (TP) are cases 
where an instance is genuinely positive and the model correctly 
labels it as such, whereas true negatives (TN) are instances that 
are truly negative and rightly classified as negative. By contrast, 
false positives (FP) occur when a genuinely negative instance is 
mistakenly flagged as positive, and false negatives (FN) arise 
when a genuinely positive instance is incorrectly marked as 
negative. 

2) ROC Curve (Receiver Operating Characteristic Curve): 

A graph that shows classification performance across all 

thresholds by plotting the true-positive rate (TPR) against the 

false-positive rate (FPR), illustrating the trade-off between 

sensitivity and specificity. 

3) Score: The harmonic mean of precision and recall; a 

single, balanced metric that is especially informative when 

class distributions are unbalanced. It ranges between 0 and 1, 

and 1 in the event of optimal precision and recall. 

 F1 Score =
2∗ Precision ∗ Recall 

 Precision + Recall 
        (15) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

449 | P a g e  

www.ijacsa.thesai.org 

4) Accuracy: The rate of correctly classified observations 

over the total observations. It is a helpful indicator in the 

situation where false positives and false negatives are equally 

distributed. 

Accuracy =
 Number of Correct Predictions 

 Total Number of Predictions 
        (16) 

5) Precision: The proportion of the total predicted positives 

actually being positives. The higher the precision, the lower the 

rate of the incorrect positives, and the lowest the incorrect 

positives. 

 Precision =
 True Positives 

 True Positives + False Positives 
        (17) 

6) Recall: The ratio of correctly predicted positive 

instances to all actual positive instances. A higher recall 

indicates fewer missed positives and a lower rate of false 

negatives. 

Recall =
 True Positives 

 True Positives + False Negatives 
               (18) 

IV. RESULTS 

This section presents how a range of ML and DL models 
performed on binary and multi-class intrusion-detection tasks 
using the “NF-UNSW-NB15” dataset. Before training, we 
applied PCA to cut dimensionality and boost both speed and 
accuracy. Every model was tuned with the same hyper-
parameter settings to keep the comparison fair. Their 
effectiveness was gauged with a full suite of metrics—accuracy, 
precision, recall, F1-score, AUC, and confusion matrices—so 
we could see each algorithm’s strengths and weaknesses in 
detail. Results are split into two categories: binary detection of 
normal versus malicious traffic, and multi-class detection that 
pinpoints the exact attack type. 

A. Hyperparameter Configuration 

All deep learning models (LSTM and DNN) were trained 
using a fixed set of hyperparameters to ensure a fair and 
consistent comparison. For binary classification tasks, the loss 
function employed was binary crossentropy, while sparse 
categorical crossentropy was used for multi-class classification. 
Model optimization was performed using the Adam optimizer 
with a learning rate of 0.001. Both tasks were trained over 20 
epochs with a batch size of 128. Additionally, early stopping was 
applied based on validation loss to prevent overfitting and 
ensure optimal generalization performance. 

Table IV presents the hyperparameter settings used for 
model training, including learning configuration, optimization 
strategy, and loss functions for both binary and multi-class tasks. 

B. Binary Classification Results 

Before applying SMOTE, all models achieved high overall 
accuracy (0.99); however, recall and F1-scores—particularly for 
the minority class—were comparatively lower. For instance, the 
LSTM model achieved a recall of 0.92 and an F1-score of 0.94, 
while the DNN model recorded a recall of 0.90. These results 
indicate reduced sensitivity to minority class detection due to the 
dataset’s class imbalance. 

Moreover, AUC scores, which evaluate a model’s ability to 
distinguish between classes, were also affected. Deep learning 
models such as DNN and LSTM yielded relatively lower AUCs 
in the range of 0.90–0.92, suggesting less reliable separability 
between benign and malicious traffic. In contrast, ensemble 
models like Random Forest and XGBoost performed better, 
achieving AUC scores around 0.98. Nevertheless, even these 
models demonstrated measurable improvements after applying 
SMOTE. 

These findings confirm that SMOTE plays a critical role not 
only in enhancing recall and F1-scores but also in improving the 
overall discriminative power of classifiers, as reflected in AUC 
metrics. Table V summarizes the performance of LSTM, DNN, 
Random Forest, KNN, and XGBoost on the binary classification 
task prior to applying SMOTE. 

After applying SMOTE, all models demonstrate strong 
performance, with Random Forest and KNN achieving high 
accuracy and F1-scores. While LSTM and DNN yield slightly 
lower precision for the Attack class, they still achieve perfect 
recall, indicating high sensitivity to positive cases. The AUC 
score of 0.99 or higher across all models confirms excellent 
separability between classes. Among all models, RF achieved 
the best overall performance with an F1-score of 0.97, and 
highly balanced precision and recall values, especially for class 
1 (Attack class). Its confusion matrix is very high, showing low 
misclassificationwith 2308 false positives and 199 false 
negative, Fig. 7 shows Random Forest confusion matrix that 
effectively classified both Normal and Attack classes, making it 
the most reliable model for the binary classification task. 

TABLE IV. HYPERPARAMETER SETTINGS 

Parameter Value 

Epochs 20 

Batch Size 128 

Learning Rate 0.001 

Optimizer Adam 

Loss Function (Binary) Binary Crossentropy 

Loss Function (Multi) Sparse Categorical Crossentropy 

PCA Components (Binary and Multi) 20 

TABLE V. BINARY CLASSIFICATION PERFORMANCE WITHOUT SMOTE 

Model Accuracy Precision Recall F1-score AUC 

LSTM 0.99 0.97 0.92 0.94 0.92 

DNN 0.99 0.97 0.90 0.93 0.90 

RF 0.99 0.97 0.98 0.98 0.98 

KNN 0.99 0.95 0.95 0.94 0.95 

XGBoost 0.99 0.96 0.97 0.97 0.98 

Fig. 8 shows LSTM confusion matrix for classifying both 
Normal and Attack classes. 
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Fig. 7. RF confusion matrix. 

 
Fig. 8. LSTM confusion matrix. 

The confusion matrix of the LSTM model reveals strong 
sensitivity in detecting attacks, although a slight increase in false 
positives indicates a trade-off in precision. 

Fig. 9 shows DNN confusion matrix for classifying both 
Normal and Attack classes. 

This matrix illustrates the DNN model's good performance, 
with solid detection capability and also slight false alarm rate, 
reflecting effective learning of attack patterns. 

 
Fig. 9. DNN confusion matrix. 

Fig. 10 shows KNN confusion matrix for classifying both 
Normal and Attack classes. 

 
Fig. 10. KNN confusion matrix. 

The KNN confusion matrix indicates good accuracy, with 
slightly higher misclassification of Normal status. 

Fig. 11 shows XGBoost confusion matrix for classifying 
both Normal and Attack classes. 

XGBoost exhibits high precision and recall, evident in its 
compact and clearly defined confusion matrix blocks with 2164 
false positives and 239 false negatives, signifying high 
discriminative power. 
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Fig. 11. XGBoost confusion matrix. 

Table VI summarizes the performance of LSTM, DNN, RF, 
KNN, and XGBoost on the binary classification task. 

TABLE VI. BINARY CLASSIFICATION PERFORMANCE WITH SMOTE 

Model Accuracy Precision Recall F1-score AUC 

LSTM 0.99 0.94 0.99 0.97 0.99 

DNN 0.99 0.94 0.99 0.96 0.99 

RF 0.99 0.95 0.99 0.97 0.99 

KNN 0.99 0.95 0.99 0.97 0.99 

XGBoost 0.99 0.95 0.99 0.97 0.99 

C. Multi-Class Classification Results 

Unlike binary classification, the multi-class classification 
task suffered from noticeable performance degradation in the 
absence of SMOTE, especially in models like DNN, which 
recorded extremely low precision, recall, and F1-score (all = 
0.10) despite an overall accuracy of 0.99. This illustrates that 
accuracy alone is misleading under class imbalance. 

Similarly, LSTM showed moderate metrics (F1 = 0.52), 
while Random Forest and XGBoost performed relatively better 
(F1 = 0.64 and 0.62 respectively). AUC scores also reflected this 
trend—DNN had a poor AUC of 0.50, while XGBoost reached 
0.98. These results demonstrate the limitations of models when 
trained on highly imbalanced data and reinforce the need for 
resampling methods like SMOTE to achieve fair multi-class 
performance across all attack types. 

Table VII summarizes the performance of LSTM, DNN, RF, 
KNN, and XGBoost on the multi-class classification task before 
applying SMOTE. 

Table VIII details the multi-class classification performance 
across the same set of models after SMOTE. 

Model performances vary more noticeably in the multi-class 
setting. LSTM and DNN, while achieving high overall accuracy 
due to class imbalance in test set, show lower macro-averaged 
F1-scores, indicating challenges in learning minority classes. In 
contrast, Random Forest and XGBoost perform robustly across 
all classes, benefiting from ensemble-based learning. KNN also 
performs competitively but with slightly lower recall. The 
XGBoost classifier emerged as a competitive performer in the 
multi-class setting, achieving a macro F1-score (0.71), reflecting 
moderate performance across most classes, including minority 
ones. The confusion matrix of XGBoost reflects moderate 
performance on minority classes such as 6, 7, 8, and 9 with 
misclassifications, e.g., 919 false negatives for class 2 and 1455 
for class 4 as shown in Fig. 12. 

LSTM’s multi-class confusion matrix (Fig. 13) shows robust 
classification for dominant classes but reveals some difficulty in 
differentiating among minority attack types. 

TABLE VII. MULTI-CLASS CLASSIFICATION MACRO-AVERAGED SCORES 

WITHOUT SMOTE 

Model Accuracy Precision Recall F1-score AUC 

LSTM 0.99 0.57 0.53 0.52 0.92 

DNN 0.99 0.10 0.10 0.10 0.50 

RF 0.99 0.66 0.62 0.64 0.94 

KNN 0.99 0.61 0.58 0.59 0.87 

XGBoost 0.99 0.66 0.60 0.62 0.98 

TABLE VIII. MULTI-CLASS CLASSIFICATION MACRO-AVERAGED SCORES 

Model Accuracy Precision Recall F1-score AUC 

LSTM 0.99 0.62 0.56 0.56 0.99 

DNN 0.99 0.66 0.57 0.59 0.99 

RF 0.98 0.68 0.71 0.63 0.99 

KNN 0.99 0.69 0.66 0.63 0.89 

XGBoost 0.99 0.73 0.80 0.71 0.99 

 

Fig. 12. XGboost confusion matrix in multi-classification. 
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Fig. 13. LSTM confusion matrix in multi-classification 

The DNN model performs well across several classes, but 
the confusion matrix reflects misclassification among minority 
classes as shown in Fig. 14. 

 
Fig. 14. DNN confusion matrix in multi-classification. 

The confusion matrix of KNN (Fig. 15) shows good 
effectiveness, better than LSTM and DNN, but still less than 
Xgboost. 

Random Forest delivers a compact and efficient confusion 
matrix, excelling at distinguishing between multiple attack 
types, especially frequent ones, while showing some overlap in 
less-represented classes as shown in Fig. 16. 

D. Inference Time Evaluation for Real-Time Applicability 

In addition to classification performance, prediction time is 
a critical consideration for real-world deployment, particularly 
in systems requiring real-time or near-real-time responses. Table 
IX presents both the total and average prediction times (per 
1,000 records) for each model across binary and multi-class 
classification tasks, providing insight into their computational 
efficiency. 

 
Fig. 15. KNN confusion matrix in multi-classification. 

 
Fig. 16. Random forest confusion matrix in multi-classification. 

TABLE IX. PREDICTION TIME FOR EACH CLASSIFIER 

Model Task Total Time (s) 
Avg. Time per 1000 

Records (s) 

LSTM Binary 25 0.3575 

DNN Binary 20 0.0700 

RF Binary 4.519 0.0076 

KNN Binary 73.4142 0.1232 

XGBoost Binary 14.323 0.0240 

LSTM Multi-class 22.8 0.07 

DNN Multi-class 20.5489 0.0690 

RF Multi-class 5.0694 0.0128 

KNN Multi-class 39.0577 0.0983 

XGBoost Multi-class 26.7887 0.0449 
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Random Forest exhibited the fastest prediction times in both 
binary and multi-class tasks, making it highly suitable for real-
time applications. Random Forest also demonstrated strong 
efficiency, whereas deep learning models, particularly LSTM 
and KNN, had the longest processing times. 

V. DISCUSSION 

This study presents a comprehensive evaluation of multiple 
machine learning (ML) and deep learning (DL) classifiers for 
both binary and multi-class network intrusion detection using 
the NF-UNSW-NB15 dataset. The results demonstrate that the 
proposed models—particularly XGBoost and Random Forest—
achieved superior performance, with macro-averaged F1-scores 

and accuracy exceeding 99% in binary classification. These 
models also maintained robustness in multi-class scenarios, 
achieving macro F1-scores of up to 0.71. 

In contrast, the recent work by Samantaray et al. [9], which 
employed traditional ML algorithms on the same dataset, 
reported significantly lower macro F1-scores—only 0.26 with 
Logistic Regression and 0.17 with Random Forest—despite 
using MaxAbsScaler for feature scaling. Although their 
approach achieved relatively high overall accuracy (up to 94%) 
in multi-class classification, the low macro-averaged metrics 
reflect poor generalization across minority classes, indicating 

that class imbalance was not sufficiently addressed. 

TABLE X. COMPARATIVE RESULTS OF BEST CLASSIFIERS ACROSS STUDIES 

Study Model Dataset Type Accuracy Macro Precision Macro Recall Macro F1-Score 

This Work RF NF-UNSW-NB15-v2 Binary 0.99 0.95 0.99 0.97 

This Work XGBoost NF-UNSW-NB15-v2 Multi-class 0.99 0.73 0.80 0.71 

Kasongo and Sun [4] XGBoost NF-UNSW-NB15 Binary 0.91 0.80 0.98 0.88 

Samantaray et al. [9] RF NF-UNSW-NB15 Multi-class 0.90 0.23 0.20 0.17 

Samantaray et al. [9] KNN NF-UNSW-NB15 Multi-class 0.93 0.29 0.31 0.26 

Sayed et al. [10] IoTCNN NF-UNSW-NB15-v2 Multi-class ~0.99 ~0.42 ~0.63 ~0.44 

Sharma et al. [33] RF UNSW‑NB15 Binary 0.87 0.90 0.86 0.86 
 

Similarly, the CNN-based models proposed by Sayed et al. 
[10], namely IoTCNN and MyCNN, demonstrated limited 
macro-level performance. For example, the IoTCNN model 
produced low precision and F1-scores in most attack categories, 
including F1 = 0.14 for Analysis and 0.13 for DoS, despite 
exhibiting high overall accuracy. These results suggest that 
while convolutional models may effectively capture local 
patterns, they often struggle with inter-class variance and 
generalization without advanced preprocessing or data 
augmentation strategies. 

In addition to Samantaray et al. [9] and Sayed et al. [10], we 
include the study by Sharma et al. [33], which evaluates 
ensemble methods on UNSW-NB15 using a binary setting. 
Their best model (Random Forest) achieves Accuracy = 0.87, 
Macro Precision = 0.90, Macro Recall = 0.86, and Macro 
F1 = 0.86, whereas our binary IDS on NF-UNSW-NB15-v2 
attains Accuracy ≈ 0.99 and Macro F1 ≈ 0.97. Thus, our 
approach improves binary macro-level performance by ≈ 11 
points in F1 while also raising accuracy by ≈ 12 percentage 
points, reinforcing that the proposed SMOTE + PCA + diverse 
ML/DL pipeline generalizes better under class imbalance than 
strong ensemble baselines. 

Overall, our findings highlight the effectiveness of ensemble 
models—such as XGBoost and Random Forest—in capturing 
complex feature relationships and addressing class imbalance. A 
comparative summary of results is provided in Table X. 

VI. CONCLUSION 

This work developed and empirically validated an end-to-
end intrusion-detection pipeline that couples rigorous 
preprocessing (StandardScaler normalization, SMOTE 
oversampling, and PCA dimensionality reduction) with five 
classifiers (XGBoost, RF, KNN, DNN, and LSTM) evaluated 

on the “NF-UNSW-NB15-v2” dataset. The experiments 
covered both binary (normal vs attack) and nine-class attack 
identification tasks, using a unified hyper-parameter budget to 
ensure fair comparison. 

Results underscore the strength of ensemble trees for tabular 
network-flow data: XGBoost and Random Forest achieved high 
metrics (≈ 0.9960 for accuracy, precision, recall, F1, and AUC) 
in binary detection, while XGBoost retained a competitive 
macro F1-score (0.71) and a balanced confusion matrix in multi-
class testing. Deep models matched overall accuracy but lagged 
in macro scores, indicating residual sensitivity to minority 
classes. Crucially,RF and XGBoost’s inference latency—on the 
order of milliseconds per thousand flows—demonstrates that 
top-tier accuracy can coexist with real-time throughput, making 
the approach deployable in production networks. 

 Although the pipeline raises the state of the art for this 
dataset, two limitations remain: extremely rare classes such as 
Worms and Analysis still risk misclassification despite SMOTE, 
and features were restricted to NetFlow attributes. Future work 
should explore cost-sensitive or generative resampling, integrate 
payload-level and temporal-correlation features, and test hybrid 
architectures (e.g., LSTM embeddings feeding XGBoost) under 
online-learning and edge-deployment constraints. Overall, the 
study provides a reproducible blueprint and a strong baseline for 
practitioners seeking accurate, low-latency, and resource-
efficient intrusion detection in modern networked environments. 
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