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Abstract—Ultra-high resolution bioimaging based on quantum 

optics offers high sensitivity at relatively low cost, yet conventional 

reconstruction algorithms face challenges of excessive sampling 

time, long computation, and artifacts that limit imaging quality. 

To overcome these issues, this study proposes a novel quantum 

optical bioimaging reconstruction method termed RA-ACS_net, 

which integrates a ripple algorithm with a hybrid attention 

mechanism network. The ripple algorithm provides global 

optimization for network parameter adjustment, while the 

attention mechanism enhances feature extraction and information 

fusion. Furthermore, a differentiated loss function (ALoss) is 

designed to preserve fine structural details and improve visual 

fidelity compared with conventional MSE loss. A large-scale 

dataset of quantum optics-based bioimages is employed for 

training and validation. Experimental results demonstrate that 

RA-ACS_net achieves superior reconstruction performance, with 

significantly higher PSNR and SSIM across both low and high 

sampling ratios, when compared to iterative algorithms (TVAL3) 

and existing deep learning models (DR2-Net, DPA-Net). The 

proposed approach exhibits robustness under sparse data 

conditions, reduces blocking artifacts, and accelerates 

convergence, thereby addressing critical limitations of current 

methods. This study highlights the potential of combining 

quantum optics with advanced deep learning optimization 

strategies to establish a practical and efficient framework for 

ultra-high resolution bioimaging. 
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I. INTRODUCTION 

Bioimaging techniques are the cornerstone of modern 
biological and medical research, enabling us to observe and 
understand the structure and function of living systems at the 
molecular, cellular and tissue levels [1]. However, traditional 
imaging techniques, such as fluorescence microscopy and 
electron microscopy, are limited by diffraction limits and 
imaging speeds, making it difficult to meet the demand for 
high-resolution and highly dynamic imaging of biological 
systems [2]. In recent years, the rapid development of quantum 
optics and computer vision technology has provided the 
possibility to break through these limitations [3]. Quantum 
optics, especially single-photon detection technology and 
quantum entanglement, provides a means for bioimaging to go 
beyond the traditional diffraction limit; while computer vision 
technology, on the other hand, shows great potential in 
processing and analysing massive biological image data [4]. 
Therefore, it is very meaningful to study the integration method 

between ultra-high resolution bio-imaging, quantum optics and 
computer vision techniques, especially the use of deep learning 
techniques to generate models for ultra-high resolution bio-
imaging image reconstruction [5]. 

With the application and development of quantum optics 
and computer vision technology in the field of bio-imaging, the 
research on quantum optics and computer vision technology for 
ultra-high resolution bio-imaging has also attracted the 
attention of experts and scholars in the field [6]. Currently, the 
research on the application and integration of quantum optics 
and computer vision technology in the field of bio-imaging 
mainly includes the application of quantum optics in bio-
imaging, bio-imaging reconstruction based on machine vision, 
and bio-imaging image feature extraction and recognition [7]. 
This study focuses on the ultra-high resolution bio-imaging 
reconstruction problem by fusing quantum optics, and analyses 
a large number of literature. Currently, there are three main 
methods for sampling and reconstruction of quantum optics 
bio-imaging systems: 1) Under-sampling using a random 
measurement matrix or an orthogonal fixed matrix first, and 
then using iterative algorithms to reconstruct the images. Chong 
and Pramanik [8] use Gaussian measurement matrices to 
undersample the bioimaging, and orthogonal matching tracking 
method is used to reconstruct the image; Wanas et al, [9] use 
the full-variance generalised Lagrangian alternating direction 
algorithm as an iterative algorithm to reconstruct the 
bioimaging; 2) using Gaussian random measurement matrices 
or orthogonal fixation matrices for under-sampling, but using 
the deep learning-based reconstruction network to reconstruct 
the image. Yao et al. [10] proposed DR2-Net based on 
ReconNet, which solves the problem of degradation of 
reconstructed image accuracy due to the excessive depth of the 
network; Sun et al. [11] proposed a dual-path attentional 
network DPA-Net for compressed perceptual image 
reconstruction, which consists of a structural path, a texture 
path, and a texture-attentional module; and 3) using a deep 
learning network that integrates sampling and reconstruction. A 
sampling and reconstruction integrated residual codec network 
SRIED_Net was proposed in the literature [12] and used in a 
quantum optical bio-imaging system, where the results showed 
that the network reconstructs quickly and obtains better 
reconstruction performance. The current network reconstructs 
the image resulting in blocking of the reconstructed image, 
which reduces the reconstruction accuracy of quantum optics-
based high-resolution bioimaging. 
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Aiming at the problems of the current high-resolution bio-
imaging reconstruction network based on quantum optics, this 
study proposes a ripple algorithm to optimise the attention 
mechanism network for quantum optics high-resolution bio-
imaging reconstruction method. Firstly, the problem of 
quantum optics application for ultra-high resolution bio-
imaging, secondly, combining the ripple algorithm [13] and 
attention mechanism [14], the RA-ACS_net reconstruction 
network is proposed, and finally, the effectiveness and 
efficiency of the RA-ACS_net reconstruction network are 
verified by using high-resolution bio-imaging data based on 
quantum optics. 

The main novelty of this study lies in the integration of the 
ripple algorithm with a hybrid attention mechanism network to 
address the limitations of existing quantum optical bioimaging 
reconstruction methods. Unlike traditional iterative algorithms 
and standard deep learning frameworks that often suffer from 
long reconstruction times, blocking artifacts, and limited 
robustness, the proposed RA-ACS_net model introduces an 
optimized parameter adjustment process guided by ripple-based 
global search. In addition, a novel differentiated loss function, 
ALoss, is designed to preserve structural details and enhance 
perceptual quality beyond the performance of conventional 
MSE. Experimental results on quantum optical bioimaging 
datasets demonstrate that the RA-ACS_net network 
significantly outperforms state-of-the-art models under both 
low and high sampling ratios, achieving higher PSNR and 
SSIM values. This methodological advancement not only 
improves reconstruction accuracy and robustness but also 
offers a practical pathway for bridging quantum optics and 
advanced computer vision in ultra-high resolution bioimaging. 

The full study is structured as follows: firstly, the 
application of quantum optics in bio-imaging is analysed in 
detail in Section II, including single photon detection 
technology, quantum entanglement imaging and its practical 
application in biological systems. The design and realisation of 
the quantum optical bio-imaging system is presented, focusing 
on the core devices of the system and their working principles. 
In Section III, the RA-ACS_net reconfiguration network is 
proposed, and the reconfiguration network is optimised by 
combining the ripple algorithm and the attention mechanism. 
The bio-imaging reconstruction approach is presented in 
Section IV. Section V verifies the performance enhancement of 
the method proposed in this study in quantum optical bio-
imaging through experimental comparison, and finally, Section 
VI summarises the research results of this study and provides 
an outlook on the future research direction. 

II. QUANTUM OPTICS FOR ULTRA-HIGH RESOLUTION 

BIOIMAGING ANALYSIS 

A. Quantum Optics in Biological Imaging 

1) Single-photon detection technology: Single-photon 

detection technology takes advantage of the quantum properties 

of photons and is able to detect a single photon as a unit, thus 

achieving high-precision imaging under very low light intensity 

conditions [15], as shown in Fig. 1. In biological imaging, this 

technique is particularly suitable for fluorescently labelled 

single-molecule imaging, which can obtain high-resolution 

structural information while maintaining cellular activity. 

 

Fig. 1. Single-photon detection technology. 

2) Quantum entanglement and imaging: Quantum 

entanglement [16] is a fundamental concept in quantum optics, 

where two or more particles are interdependent on each other 

in their quantum states, and even if there is a great distance 

between them, measurements on one of the particles will 

instantly affect the state of the other, and the schematic diagram 

of the principle of quantum entanglement is shown in Fig. 2. 

 

Fig. 2. Quantum entanglement. 

Using the properties of quantum entanglement, a super-
resolution quantum imaging system can be designed (Fig. 3) to 
achieve high-resolution imaging beyond the diffraction limit.
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Fig. 3. Quantum imaging system. 

3) Quantum optics in bioimaging: Quantum optical 

techniques show great potential in the field of bio-imaging due 

to their unique quantum coherence and entanglement effects. 

These techniques can significantly improve the resolution and 

sensitivity of imaging beyond the limits of conventional optical 

physics. Quantum imaging techniques using entangled photon 

pairs and single-photon detection can enable the observation of 

virus-sized cellular tissue structures as well as nanoscale 

defects in insulator materials, with specific applications 

analysed, as shown in Fig. 4. 

 

Fig. 4. Application of quantum optics in bio-imaging. 

B. Quantum Optical Bio-Imaging System 

Quantum optical bio-imaging systems utilise quantum 
coherence and entanglement effects to improve the resolution 
and sensitivity of imaging beyond the limits of conventional 
optical physics [17]. The research object of this study is the 
quantum optical single-pixel imaging system, which is shown 
in Fig. 5. 

 

Fig. 5. Quantum optical single-pixel imaging system. 

This study builds a quantum optical bio-imaging system 
whose core devices mainly contain a parallel single-photon 
source, a digital micromirror device DMD, and a single-photon 
detector PMT. 

1) Parallel single photon source: In order to reduce the 

impact of light source scattering on the imaging results, this 

study designs a parallel single-photon source that can output a 

very weak parallel light, with a specific structure principle, as 

shown in Fig. 6. 

 

Fig. 6. Structure of parallel single-photon source. 

2) Digital micromirror device DMD: Photonic single-pixel 

imaging schemes mainly implement spatial light modulation 

technology through spatial light modulators [18]. The 

electrically addressed spatial light modulator DMD used in this 

study has the advantages of high brightness, high reliability, 

simplified working circuit and high contrast, and its specific 

structure is shown in Fig. 7. The parameter settings of the DMD 

development board used in the experimental system of this 

study are shown in Table I. 

 

Fig. 7. Structure of DMD development board. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

476 | P a g e  
www.ijacsa.thesai.org 

TABLE I DMD OPERATING PARAMETERS 

Sports event Setting parameters 

resolution (of a photo) 1024×768 

Micromirror size 13.68μm×13.68μm 

Flip angle ±12° 

frame rate 3000Hz 

degree of contrast 2000:1 

operating band 350nm~2700nm 

synchronisation Internal synchronisation, external synchronisation 

random access memory (RAM) DDR2 

3) Single-photon detector PMT: The photon-counting 

single-pixel imaging system utilises a detector with a single-

photon response to achieve the quantification of modulated 

light intensity. In this study, PMT is chosen as a single-photon 

detector, which is mainly composed of a photocathode, a 

collection anode and an electron multiplier pole, and its internal 

structure is shown in Fig. 8: 

 

Fig. 8. PMT schematic. 

C. Quantum Optical Bioimaging Reconstruction 

In quantum optical bio-imaging systems, the traditional 
iterative reconstruction algorithms, although capable of 
accurately reconstructing the target image, have high time 
complexity, especially for large resolution images, where the 
reconstruction time is exponentially multiplied. In order to 
improve the efficiency of image reconstruction, ReconNet, as a 
neural network for reconstructing compressed perceptual 
images, was introduced into the quantum optical bioimaging 
reconstruction problem [19]. 

The structure of the ReconNet network is shown in Fig. 9. 
ReconNet consists of an upsampling module and an image 
enhancement module. The upsampling module contains one 
fully connected layer, and the image enhancement module 
contains six convolutional layers, each of which is post-
positioned with a ReLU activation function to perform a 
nonlinear transformation.

 

Fig. 9. ReconNet structure. 

III. RA-ACS_NET RECONFIGURATION NETWORK 

In order to improve the accuracy and efficiency of ultra-high 
resolution bio-imaging reconstruction based on quantum optics, 
this study uses the ripple algorithm to optimise the attention 
mechanism network and construct the RA-ACS_net 
reconstruction network. 

A. Network of Attention Mechanisms 

In order to reduce the computational burden of the 
reconstruction network and make full use of the image 
summary to give important information, this study adopts the 
attention mechanism [20] to construct the image reconstruction 
network and improve the image reconstruction effect. Attention 
mechanism network is divided into Hard Attention mechanism 
(Hard Attention) and Soft Attention mechanism (Soft 
Attention). According to the classification of attention 
mechanism structure and function, the attention mechanism 
network can be divided into Channel Attention Mechanism, 
Spatial Attention Mechanism and Hybrid Attention Mechanism, 

and the specific structure schematic is shown in Fig. 10. 

 

Fig. 10. Classification of attention mechanisms. 
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Inspired by the hybrid attention mechanism, this study 
adopts an attention mechanism network based on residual 
neural network, i.e., ACS_net, and the specific network 

structure is shown in Fig. 11. As can be seen from Fig. 11, 
ACS_net contains a picking sub-network and a deep 
reconstruction sub-network.

 

Fig. 11. ACS_net structure. 

In the sampling network part, considering the screening of 
the input image information to ensure the completeness of the 
input information, ACS_net adopts the full connection layer to 
sample the original image to ensure the completeness. 

In the deep reconstruction subnetwork part, ACS_net 
employs two residual blocks [21] to achieve the combination of 
lower-order features with higher-order features through jump 
connections. Each residual block contains a hybrid attention 

mechanism module (ACS_block) [22] and three convolutional 
layers. The structure of ACS_block is shown in Fig. 12, in 
which two convolutional layers are front-loaded, and then 
Batch Normalizaition is performed on these two convolutional 
layers, followed by a nonlinear transformation of the input 
feature maps through the activation function ReLU; finally, the 
input features are processed using the convolutional layers and 
the image reconstruction results are obtained.

 

Fig. 12. Structure of the attention mechanism module. 

In order to improve the overall performance of the model, 
this study designs a new loss function, namely ALoss 
(Attention Loss), which is calculated as follows, Eq. (1): 

22

1 1
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i i j j

i j

ALoss x x x x
N N

 
 

       
 (1) 

where, ix  and jx  are the pixel values of the important and 

non-important regions of the original image block, ix  and jx  

are the pixel values of the important and non-important regions 
of the image recovered by the neural network,  and   are 

the scaling coefficients of the loss function, and N  is the 

number of pixel points in the focal and non-focal regions of the 
image. 

B. Ripple Algorithm 

Ripple Algorithm (RA) is an optimization algorithm that 
simulates the phenomenon of ripple propagation in nature [13]. 
The RA algorithm has two features: 

 The centroid adopts the ripple region search based on the 
current fitness and the global optimal fitness, which has 

stronger global search capability.  

 The centroid searches relatively independently with the 
current optimal solution, and converges to the global 
optimal solution in a passive manner. 

According to the characteristics of the ripple algorithm, this 
study performs a multi-layer ripple random point taking search 
with each centre point and calculates the random point 
adaptation value. The RA algorithm mainly includes two 
aspects of the search capability, i.e., exploration and 
exploitation, and the specific search schematic is shown in 
Fig. 13. 

The multi-layer ripples are calculated by taking random 
points, as follows in Eq. (2): 

km k

i i iX X r R  
            (2) 

where,
km

iX  denotes the mth random search point in the kth 

layer of the ith centroid,
iX  is the ith centroid,

k

iR  is the radius 

of the kth layer of the ith centroid, and r  is an n-dimensional 
random unit vector. 
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The ripple radius of each centre point is based on the gap 
between the current fitness and the global optimal fitness, the 
larger the gap, the larger the ripple radius and the wider the 
search area, and the smaller the gap, the smaller the ripple 
radius and the smaller the search area. The equation for 
calculating the ripple radius is as follows in Eq. (3): 

1

max

log i
iR 






 
  

           (3) 

where,   is the base of the logarithmic function and

 0,1   ; max  denotes the global maximum fitness value. 

 
(a) Exploration 

 
(b) Development 

Fig. 13. RA algorithm search. 

Comparing each centroid with its corresponding random 
point in the ripple layer, the point with the best fitness value is 
retained to form a new centroid cluster. Each centroid searches 
for the optimal point relatively independently rather than 
actively approaching the current optimal point, and the centroid 
cluster eventually converges to the optimal point as the iteration 
proceeds with the shrinkage function decreasing. The centre 
point update is calculated as follows in Eq. (4): 

 1 11 3, , , , ,t t km M

i i i i iX opt X X X X 
     (4) 

where,
1t

iX 
 is the ith centroid of the centroid cluster in 

generation t+1,
t

iX  is the ith centroid of the centroid cluster in 

generation t,
km

iX  is the mth search point in layer k 

corresponding to the ith centroid, and M  is the number of 
randomly taken points for each layer of ripples. 

C. RA-ACS_Net Network Model 

In order to improve the efficiency of ACS_net network 
reconfiguration, this study adopts the RA algorithm to optimise 
the ACS_net network parameters. The RA algorithm takes the 
ACS_net network parameters as the optimisation variables, 
MSE as the optimisation fitness function, and adopts the 
iterative process of the RA algorithm as the optimisation 
strategy, and the specific model construction is shown in Fig. 14. 

 

Fig. 14. RA-ACS_net network model construction diagram. 

IV. BIO-IMAGING RECONSTRUCTION APPROACH 

In order to improve the efficiency and accuracy of the fusion 
quantum optics ultra-high resolution bio-imaging 
reconstruction method [23], this study proposes a fusion 
quantum optics ultra-high resolution bio-imaging 
reconstruction method based on RA-ACS_net. The method 
combines quantum optics, constructs an ultra-high resolution 
bio-imaging system, optimises the ACS_net network 
parameters using the ripple algorithm, and constructs a bio-
imaging reconstruction method based on the RA-ACS_net 
network model. The specific method flow is shown in Fig. 15. 

 

Fig. 15. Application of RA-ACS_net model in quantum optical bio-imaging. 
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V. ANALYSIS OF RESULTS 

In order to verify the efficiency of the RA-ACS_net 
reconstruction network proposed in this study, this study 
collects 19872 quantum optics-based bio-imaging images as the 
training set, and 128 bio-imaging images as the dataset for the 
training set to verify the performance of the network. For 
comparative analysis, this study firstly investigates the 
performance of different attention mechanism networks based 
on the RA algorithm in bio-imaging image reconstruction 
algorithms, secondly investigates the effect of different loss 
functions on reconstruction networks, and finally verifies the 
performance of the attention mechanism in quantum optics-

based bio-imaging. 

A. Comparative Experiments on Networks with Different 

Attention Mechanisms 

In order to evaluate the effect of the attention mechanism on 
the reconstruction network models proposed in this study, 
controlled experiments are designed in this section to compare 
the reconstruction performance of the four reconstruction 
network models. The comparison algorithms used in the 
different attention mechanism network comparison 
experiments are shown in Table II. The results of the 
experiments of different attention mechanism network modules 
are shown in Fig. 16.

TABLE II PARAMETER SETTINGS OF THE ALGORITHM 

Arithmetic Algorithm setup 

RA-CS_net Removal of the Attention Mechanism module and optimisation of the CS_net parameter using the RA algorithm 

RA-ACS_net_V1 Contains only the Channel Attention Mechanism module, which uses the RA algorithm to optimise the ACS_net_V1 parameter 

RA-ACS_net_V2 Contains only the Spatial Attention Mechanism module, which uses the RA algorithm to optimise the ACS_net_V2 parameter 

RA-ACS_net Contains a hybrid attention mechanism module with RA algorithm to optimise ACS_net parameters 

Fig. 16 shows the performance comparison of the four 
models at different Measuring Ratio (MR). It can be clearly 
seen that as the Measuring Ratio increases, the PSNR of all the 
models gradually increases. This is in line with the principle of 
Compressed Sensing (CS): the higher the Measuring Ratio, the 
more raw data we acquire, the better the quality of the 
reconstructed image, and the PSNR rises. 

The RA-CS_net model performs the worst over the entire 
range of measurement ratios, especially at low measurement 
ratios (e.g., 0.1), where its PSNR is only about 25 dB, which is 
significantly lower than the other models. Even though the 
PSNR of this model increases as the measurement ratio 
increases, it is smaller and eventually the PSNR is still below 
30 dB at a measurement ratio of 0.5. This indicates that the RA-
CS_net model is weak in reconstructing the image with limited 
information, probably because the architecture of the model 
loses a lot of information when dealing with high compression 
rates. 

By comparing RA-ACS_net_V1 with RA-ACS_net_V2, 
we find that both versions of the improved model outperform 
RA-CS_net over the entire range of measurement ratios, 
especially at a measurement ratio of 0.1, where the PSNR 
already reaches about 28 dB. As the measurement ratio 
increases, their PSNR improves rapidly, and finally at a 
measurement ratio of 0.5, both of them reach a PSNR of about 
32 dB, which significantly outperforms that of RA-CS_net, 
indicating that the ACS (Adaptive Compressed Sensing) 
architectures have a significant improvement in the image 
reconstruction task, and they can better recover the original 
image, especially at medium to high measurement ratios. 

RA-ACS_net: the model has the most impressive 
performance, especially at higher measurement ratios (e.g. 0.4-

0.5), where it achieves a PSNR of more than 34 dB and close to 
35 dB. This suggests that RA-ACS_net is able to utilise more 
measurements more efficiently, further improving the quality of 
the reconstruction. 

The different magnitudes of PSNR enhancement with 
measurement ratio for different models are also reflected in 
Fig. 16. RA-CS_net has a relatively flat enhancement, 
indicating that it is not efficient in utilising the additional data. 
RA-ACS_net_V1 and RA-ACS_net_V2 have faster 
enhancement rates, especially at measurement ratios from 0.1 
to 0.3, and their PSNRs are rapidly enhanced, which indicates 
that these improved models have a greater increase in data 
utilisation.RA-ACS_net boosts the most, and its PSNR 
continues to increase at higher measurement ratios (0.3 to 0.5), 
indicating that it performs best in high measurement ratio 
scenarios. 

At low measurement ratios (0.1), the differences between 
the models are more obvious, especially RA-CS_net is much 
lower than the other three models. This indicates that the 
traditional RA-CS architecture has been difficult to recover 
images effectively when the amount of data is extremely limited, 
whereas the ACS-based model is able to extract more useful 
information from a small amount of data by means of self-
adaptation, which significantly improves the reconstruction 
quality. 

When the measurement ratio reaches 0.5, RA-ACS_net 
performs the best, with a PSNR close to 35 dB, while RA-
CS_net still stays at less than 30 dB.This suggests that, although 
the reconstruction quality of all the models improves at high 
measurement ratios, the architecture of RA-ACS_net is able to 
make better use of the additional measurements and show better 
reconstruction results. This may be due to the stronger feature 
extraction and information fusion capabilities of the model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

480 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 16. Peak signal-to-noise ratio of reconstructed networks with different 

attention mechanism modules. 

B. Comparison Experiment of Different Loss Functions 

In order to evaluate the impact of the differentiated loss 
function ALoss designed in this study on the performance of 
the reconstructed network, a set of controlled experiments is 
designed in this section for validation, i.e., the comparison 
experiments between RA-ACS_net+MSE and RA-
ACS_net+ALoss. The specific results are shown in Table III 
and Table IV. 

From Table III, it can be seen that in terms of PSNR, the 
peak signal-to-noise ratio of the reconstructed network using 
the ALoss differentiated loss function is higher than the MSE 
loss function. From Table IV, it can be seen that the SSIM value 
of the reconstructed network using the ALoss differentiated loss 
function is higher than that of RA-ACS_net+MSE. It can be 
seen that the use of the ALoss function proposed in this study 
can greatly improve the performance of the reconstructed 
network RA-ACS_net_V2. The ALoss loss function improves 
the PSNR, as well as significantly improves the SSIM, which 
indicates that the loss function not only effectively improves the 
visual quality of the image but also better maintains the 
structural features of the image during the reconstruction 
process. MSE, although it also performs well, has limited 
performance enhancement when the measurement ratio is high, 
and especially performs significantly worse than ALoss in 
PSNR. 

At low measurement ratios (MR=0.04), the performances of 
the two loss functions are relatively close, but the advantage of 
ALoss is gradually revealed when the measurement ratio 
increases, especially at high measurement ratios (MR=0.5), its 
image recovery is significantly better than that of MSE. If the 
application scenarios require a better reconstruction effect at 
high measurement ratios, the ALoss loss function is 
recommended. MSE can also be an option if the basic 
performance at low measurement ratios is pursued, but it is not 
as good as ALoss in terms of comprehensive performance. 

The ALoss loss function outperforms MSE at all 
measurement ratios, especially at high measurement ratios, 
where it significantly improves the quality of the image 
reconstruction and exhibits greater applicability and 
effectiveness. Future studies can further explore the 
improvement of this loss function to enhance its performance 
under low measurement ratio conditions. 

TABLE III PSNR (DB) RESULTS FOR DIFFERENT LOSS FUNCTION DESIGN 

METHODS 

Aarithmetic MR=0.04 MR=0.1 MR=0.25 MR=0.5 

RA-ACS_net+MSE 22.788 25.050 28.230 30.617 

RA-ACS_net+ALoss 22.986 25.467 28.632 31.950 

TABLE IV SSIM RESULTS FOR DIFFERENT LOSS FUNCTION DESIGN 

METHODS 

Arithmetic MR=0.04 MR=0.1 MR=0.25 MR=0.5 

RA-ACS_net+MSE 0.713 0.814 0.896 0.927 

RA-ACS_net+ALoss 0.713 0.833 0.914 0.950 

C. Quantum Optical Bio-imaging System Experiments 

In order to verify the validity of the RA-ACS_net 
application, the reconstruction performance of RA-ACS_net in 
quantum optical imaging is analysed in this section, and the 
specific results are shown in Fig. 17. 

Fig. 17 gives the results of the comparison of the PSNR 
metrics of the reconstructed images of RA-ACS_net and the 
traditional iterative algorithm TAVL3 at different measurement 
rates (MR=0.04, 0.1, 0.25, 0.5). From Fig. 17, it can be seen 
that the reconstruction performance of both RA-ACS_net and 
TAVL3 is improved as the measurement ratio increases; the 
PSNR metrics of RA-ACS_net are improved by 3.265 dB~6.71 
dB compared with TAVL3. It can be seen that RA-ACS_net is 
well-suited to be applied for reconstructing images in a photo-
quantum optics bio-imaging system. The TVAL3 algorithm 
gradually improves the PSNR when the measurement ratio 
increases, but the overall performance is relatively flat, and 
finally, the PSNR is about 23 dB at a measurement ratio of 0.5. 
The Proposed algorithm improves the PSNR significantly faster, 
outperforms TVAL3 in all measurement ratio conditions, and 
the PSNR is close to 30 dB at a measurement ratio of 0.5. 

At a lower measurement ratio (0.1), the PSNR of TVAL3 is 
about 20 dB, while that of the Proposed algorithm is about 24 
dB, showing a significant improvement in the reconstruction 
quality of the newly Proposed algorithm at low measurement 
ratios. This difference suggests that the Proposed algorithm is 
more effective than TVAL3 in dealing with sparse data, and 
may be structurally designed to be more adept at extracting 
information from limited data. As the measurement ratio 
reaches 0.5, the PSNR of the Proposed algorithm reaches 30 dB, 
showing a strong reconstruction capability, while the PSNR of 
the TVAL3 algorithm is only 23 dB, which is still significantly 
lower than that of the Proposed algorithm. This indicates that 
the Proposed algorithm is able to make better use of the 
information and improve the accuracy of image reconstruction 
when more data are acquired. 

The PSNR of the TVAL3 algorithm grows at a slower rate, 
especially in the range of measurement ratios from 0.2 to 0.5, 
and the PSNR of the Proposed algorithm is more linear with 
measurement ratio and grows at a higher rate, especially in the 
range of measurement ratios from 0.1 to 0.5. 

The Proposed algorithm shows better image reconstruction 
capability than TVAL3 both at low and high measurement ratios, 
and is suitable for scenes that require high quality 
reconstruction. The performance of TVAL3, on the other hand, 
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improves more slowly and has greater limitations especially at 
low measurement ratios. In future research, we can continue to 
explore how to further optimize the Proposed algorithm to 
further improve the performance at higher measurement ratios. 

 

Fig. 17. Peak signal-to-noise ratio of reconstructed experimental maps with 

different algorithms. 

VI. CONCLUSION AND OUTLOOK 

Aiming at the problems such as the poor effect of image 
reconstruction methods in quantum optics bio-imaging systems, 
this study proposes a fusion quantum optics ultra-high 
resolution bio-imaging reconstruction method based on RA-
ACS_net by combining the ripple algorithm and attention 
mechanism network. The method analyses the application of 
quantum optics technology in ultra-high resolution bio-imaging 
system and designs a quantum optics bio-imaging system, and 
at the same time explores and analyses the image reconstruction 
problem of quantum optics bio-imaging system, combines the 
attention mechanism network and the ripple algorithm, and puts 
forward the optimization of the ACS_net network model 
parameter method of the ripple algorithm, and constructs a bio-
imaging reconstruction method based on the RA-ACS_net 
model. A bio-imaging reconstruction method based on the RA-
ACS_net model is constructed. Comparative analysis of the 
proposed method using quantum optics-based bio-imaging 
image data shows that the RA-ACS_net method proposed in 
this study has a high peak signal-to-noise ratio for image 
reconstruction, and the image reconstruction effect is better. 
The subsequent work can consider denoising the image with 
noise reduction methods to improve the signal-to-noise ratio of 
the reconstructed image. 

In the course of the study, we found that there are still 
several problems that have not been effectively addressed: 

 Although the network proposed in this study has 
improved in the reconstruction effect, in practical 
applications, there is a certain noise interference in the 
quantum optical imaging process, especially in the low 
photon counting conditions, the noise may affect the 
imaging quality. How to further reduce the noise effect 
in the reconstruction process is still an urgent problem. 

 The RA-ACS_net network increases the computational 
complexity while the accuracy is improved, especially 
when processing ultra-high resolution images, the 
reconstruction time is relatively long. Therefore, how to 
optimize the network structure, reduce the 
computational cost and improve the reconstruction 

speed is a direction to focus on in the future. 

 The experiments in this study are mainly based on 
specific bioimaging datasets, which may behave 
differently on other types of bioimaging data, despite 
validating the effectiveness of the method. Future 
research needs to explore more diverse bioimaging 
scenarios and extend the generality of the network. 

Based on the present and looking into the future, the 
following entry points can be studied: firstly, integrating noise 
reduction techniques, which can be combined with advanced 
noise reduction algorithms in the future, especially adaptive 
noise reduction methods based on deep learning, in order to 
further improve the signal-to-noise ratio of the reconstructed 
image, and to enhance the robustness of the system under low-
signal conditions. The second is designing lightweight 
networks; future research can be devoted to designing more 
lightweight network models to reduce the consumption of 
computational resources and enhance the reconstruction speed. 
For example, methods such as pruning techniques or 
knowledge distillation can be introduced to optimise existing 
reconstruction networks. The third is the fusion of multimodal 
imaging. Considering the complexity of bio-imaging 
technology, the fusion of quantum optics with other imaging 
technologies (magnetic resonance, X-ray imaging) can be 
explored in the future to build a multimodal imaging system, 
which can provide richer biological information and achieve 
more accurate diagnosis and research. Finally, in order to 
further promote the practical application of the method, future 
research should validate the performance of the system in 
clinical or practical biological studies and assess its 
applicability and effectiveness in different scenarios. 
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