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Abstract—Content‑Based Image Retrieval (CBIR) systems 

have become increasingly crucial in healthcare as the volume of 

medical imaging data continues to grow exponentially. However, 

existing systems struggle to balance privacy preservation, 

computational efficiency and retrieval accuracy, particularly in 

resource‑constrained healthcare environments. This research 

proposes a novel multi‑level privacy‑preserving CBIR 

architecture that integrates multiple convolutional neural network 

(CNN) architectures with fusion strategies and quantization 

optimization specifically designed for encrypted medical images. 

The proposed framework addresses three key challenges: privacy 

preservation through advanced encryption techniques, feature 

extraction using optimized CNN fusion strategies and 

computational efficiency through model quantization. By 

implementing multiple pre‑trained CNN models—including 

VGG‑16, ResNet50, DenseNet121 and EfficientNet‑B0—along 

with various fusion strategies, the system achieves improved 

feature extraction from encrypted medical images. The 

framework incorporates quantization techniques to optimize 

computational efficiency without compromising retrieval 

accuracy. Experimental results across multiple medical imaging 

modalities, including X‑ray, magnetic resonance imaging (MRI) 

and computed tomography (CT) scans, demonstrate the 

effectiveness of the proposed approach in terms of retrieval 

accuracy, computational efficiency and security robustness. This 

research contributes to advancing privacy‑preserving medical 

image analysis by providing a comprehensive solution that 

effectively balances security requirements with practical 

implementation constraints in healthcare settings. 
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I. INTRODUCTION 

In recent years, the healthcare industry has experienced an 
unprecedented surge in medical imaging data generated through 
various modalities including MRI, CT, and X-ray [1]. This 
exponential growth has created an urgent need for efficient 
Content-Based Image Retrieval (CBIR) systems that can 
accurately retrieve relevant medical images while preserving 
patient privacy. Current CBIR systems have demonstrated 

significant potential in healthcare applications, particularly with 
the integration of deep learning techniques [2, 3]. However, 
these systems often struggle to balance privacy preservation 
with retrieval efficiency, especially one in resource-constrained 
healthcare environments [4, 5]. 

The advent of deep learning, particularly Convolutional 
Neural Networks (CNNs), has revolutionized medical image 
analysis by enabling automatic extraction of complex 
hierarchical features [6]. Pre-trained models like VGG-16 have 
shown promise in medical applications, though they require 
significant adaptation when working with encrypted medical 
images [3, 4]. While existing research has explored various 
aspects of privacy-preserving CBIR systems, there is a notable 
absence of comprehensive solutions that integrate multiple CNN 
architectures with fusion strategies specifically designed for 
encrypted medical imaging domains [7, 8, 9]. 

Current literature reveals significant limitations in 
optimization approaches for computational efficiency in 
privacy-preserving medical CBIR systems. While some studies 
have investigated quantization and hashing techniques to 
enhance retrieval efficiency, there is insufficient research 
examining how these optimization methods affect the delicate 
balance between security, computational resources, and retrieval 
accuracy in encrypted medical image databases [10, 11]. This 
gap becomes particularly critical in resource-limited healthcare 
settings, where the computational burden of processing 
encrypted medical datasets can significantly impact system 
performance [4, 12]. 

Furthermore, existing encryption methods often fail to 
address the unique challenges posed by medical imaging, where 
preserving diagnostic information while ensuring patient 
privacy is crucial [13, 14, 15]. The integration of advanced 
encryption techniques with optimized deep learning models 
remains largely unexplored, particularly in developing systems 
that can maintain both security and accuracy while operating 
within the computational constraints of typical healthcare 
environments [5, 16, 17]. This gap in research highlights the 
need for a comprehensive framework that effectively combines 
privacy preservation mechanisms, efficient deep learning 
techniques, and optimization methods suitable for real-world 
healthcare applications. 
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The lack of integrated approaches combining multiple CNN 
architectures, fusion strategies, and quantization techniques 
specifically designed for encrypted medical image retrieval 
represents a significant research opportunity. While individual 
components have been studied separately, there is a clear need 
for a unified framework that can effectively balance privacy 
preservation, computational efficiency, and retrieval accuracy 
[10, 11]. 

Dataset considerations: Most prior studies evaluate privacy-
preserving CBIR systems on a single imaging modality or on 
datasets of limited size, which makes it difficult to assess 
generalization across clinical scenarios. To address this 
limitation, our work utilizes a balanced multi-modal dataset 
comprising bone X-rays, chest radiographs and brain MRI scans 
drawn from widely used collections such as MURA, Chest X-
ray and BTTypes. By explicitly indicating the choice of datasets 
and splitting them into training, validation and test sets, we 
provide a transparent experimental foundation for evaluating the 
proposed framework. 

The remainder of this study is structured as follows: The 
primary contributions of the work are consolidated in Section II, 
where we highlight the novel aspects and implications of our 
study. Section III presents the related work and literature survey. 
In Section IV, we describe the proposed methodology in detail, 
including the foundational design choices and theoretical 
formulation. Sections V and VI presents and discuss the 
experimental setup, dataset descriptions, performance metrics, 
and key results obtained from our approach.  Finally, Section 
VII offers concluding remarks, summarizing the main findings 
and outlining prospective directions for future research. 

II. CONTRIBUTIONS 

This study presents several contributions aimed at advancing 
privacy-preserving medical image retrieval systems: 

1) A novel multi-level privacy-preserving CBIR 

architecture that integrates block-wise encryption with secure 

feature extraction, providing superior security and 

computational efficiency compared to traditional single-level 

approaches in medical image retrieval systems. 

2) A comprehensive framework for implementing multiple 

pre-trained CNN architectures with fusion strategies, 

specifically optimized for encrypted medical images, which 

significantly improves feature extraction accuracy compared to 

single-model approaches while maintaining privacy 

requirements. Advanced Approach to Quantization. 

3) An innovative model quantization framework that 

substantially reduces computational overhead while 

maintaining high retrieval accuracy in resource-constrained 

healthcare environments, enabling practical deployment of 

privacy-preserving medical image retrieval systems. 

III. RELATED WORK AND LITERATURE SURVEY 

The field of privacy-preserving medical image retrieval has 
progressed rapidly over the past two decades. Early approaches 
focused on hand-crafted features extracted from encrypted 
images and relied on distance-preserving transformations or 
homomorphic encryption to enable similarity search without 
exposing raw data [18, 19, 20]. Subsequent works introduced 
secure index structures and hashing schemes such as secure 
kNN, deep hashing and bag–of–encrypted words to improve 
retrieval speed and accuracy [21, 22]. More recently, deep 
learning–based solutions have emerged that employ 
convolutional neural networks (CNNs) trained on encrypted 
feature representations, often combined with federated learning 
or homomorphic encryption to protect patient privacy [23, 24, 
25]. These works demonstrate the potential of deep models but 
typically utilise a single architecture and do not address the 
trade–off between computational efficiency and retrieval 
accuracy when working with encrypted medical images. Recent 
literature also highlights the importance of secure cloud-based 
infrastructures. Yadav and Chokkalingam [26] proposed a two–
step cloud-based CBIR system that combines encryption with 
watermarking and a principal component analysis (PCA) based 
feature extraction pipeline. Their framework first encrypts 
images and embeds watermark bits to trace unauthorised 
duplication; only authenticated users can decrypt and extract the 
watermark, enabling traceability of data misuse. Feature vectors 
are derived using a dominant local pattern and PCA, and 
retrieval is performed using these compact representations. The 
authors demonstrate that the two-step approach improves mean 
average precision and recall while maintaining robustness 
against unauthorised access. While this method enhances 
security in a cloud environment, it still relies on hand-crafted 
features and does not explore model fusion or quantization for 
computational efficiency. 

A. Comparative Analysis of Datasets 

Table I summarises several widely used open medical 
imaging datasets alongside the custom dataset employed in this 
study. The table emphasises key characteristics such as the 
imaging modality, number of images or studies, number of 
patients, available labels, and resolution. 

As shown in Table I, public datasets such as MURA and 
ChestX-ray14 provide large numbers of radiographic images 
and detailed annotations, but focus on single modalities. The 
BTTypes dataset offers balanced benign and malignant brain 
MRI scans but is limited to a binary classification task. In 
contrast, our study employs a multi–modal dataset comprising 
X-ray, computed tomography (CT) and magnetic resonance 
imaging (MRI) images, each category containing 1,200 images. 
By combining bone, chest and brain imaging modalities, the 
experiments assess the generality of the proposed retrieval 
framework across diverse anatomical regions while retaining a 
manageable dataset size for in-depth analysis. 
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TABLE I.  COMPARISON OF WIDELY USED MEDICAL IMAGING DATASETS WITH THE DATASET UTILIZED IN THIS WORK 

Dataset Modality Images / Studies Patients Labels / Classes Notes 

MURA [27] 
X-ray (upper 

extremity) 

40,561 images from 

14,863 studies 
12,173 Normal/abnormal 

Seven body parts (elbow, finger, forearm, 

hand, humerus, shoulder, wrist); images 
collected between 2001–2012. 

ChestX-ray14 

[28] 
Chest X-ray 112,120 frontal images 32,717 

Up to 14 thoracic 

pathologies 

Resolution 1024×1024 px; patient-wise split 

of 86,524 training and 25,596 test images. 

BTTypes (Brain 

tumor) [29] 
Brain MRI 2,400 images — Benign / malignant 

Two collections containing 1,200 benign and 
1,200 malignant images were used for 

experiments. 

This work 
X-ray, CT and 

MRI 
3,600 images — Bone, chest, brain 

1,200 images per category; images encrypted 
using multi-tiered texture and color 

encryption prior to training and evaluation. 
 

B. Key Takeaways 

The existing literature underscores several research gaps that 
motivate our contributions. First, many privacy-preserving 
CBIR systems rely on a single CNN architecture or hand-crafted 
features and do not leverage the complementary strengths of 
multiple models. Second, computational efficiency and model 
compression are often overlooked, limiting the practical 
deployment of secure retrieval systems in resource-constrained 
environments. Third, comparative analyses of datasets are rarely 
provided, leaving unclear how performance generalizes across 
different modalities and imaging conditions. The proposed 
framework addresses these limitations by integrating multi-level 
encryption, multi-model CNN fusion, and quantization within a 
unified architecture while evaluating the system on a balanced 
multi-modal dataset. 

IV. METHODOLOGY 

Our methodology establishes a comprehensive framework 
for privacy-preserving content-based image retrieval (CBIR) in 
medical applications, addressing the critical challenges of 
security, accuracy, and computational efficiency. This multi-
faceted approach integrates three key components: 1) a novel 
multi-level encryption technique designed specifically for 
medical images, 2) a robust feature extraction process utilizing 
multiple complementary CNN architectures, and 3) an 
optimized model quantization strategy to enhance 
computational efficiency while maintaining high retrieval 
accuracy. Each component is mathematically formalized and 
algorithmically implemented to ensure a systematic and 
reproducible approach. The following subsections detail the 
problem formulation, system architecture, and specific 
implementations of each component, demonstrating how they 
collectively create a balanced solution for secure and efficient 
medical image retrieval in resource-constrained healthcare 
environments. 

A. Problem Formulation 

Let I = {i1, i2, ..., in} be a set of medical images in the 
database. The multi-level encryption process can be defined as: 

𝐸 =  {𝑒₁, 𝑒₂, . . . , 𝑒ₙ}  =  {ℰ(𝑖ₖ, 𝐾ₖ)}ₖ₌₁ⁿ            (1) 

where, E is the encryption function and Kk is the encryption 
key for image ik. The block-wise encryption process divides 
each image into blocks B = {b1, b2, ..., bm} and applies local 
and global scrambling: 

ℰ(𝑖, 𝐾) = 𝒢 ({ℒ(𝑏𝑗 , 𝐾)}
𝑗=1

𝑚
)                   (2) 

where, ℒ represents local block encryption and 𝒢 represents 
global scrambling. 

Given the encrypted images E, the feature extraction process 
using multiple CNNs can be formulated as: 

𝐹 = {Ψ1(𝑒), Ψ2(𝑒), … , Ψ𝑘(𝑒)}, 𝑒 ∈ 𝐸           (3) 

where, Ψi represents the i-th CNN model (VGG-16, 
ResNet50, etc.). The fusion strategy combines these features: 

𝐹fused = 𝜔1𝐹1 ⊕ 𝜔2𝐹2 ⊕ … ⊕ 𝜔𝑘𝐹𝑘           (4) 

where, 𝜔𝑖  are fusion weights and ⊕ represent the fusion 
operation. 

Let M be the original model with weights W. The 
quantization problem can be formulated as: 

𝑚𝑖𝑛
𝑊𝑞

 ‖𝑊 − 𝑊𝑞‖
2
 subject to 𝑊𝑞 ∈ {−2𝑏−1, … , 2𝑏−1 − 1}   (5) 

where, 𝑊𝑞 represents the quantized weights and b is the bit 

width. The overall optimization objective combines all three 
components: 

𝑚𝑎𝑥
ℰ,Ψ,𝑊𝑞

 {Accuracy(𝑅 ∣ 𝑄) subject to: {

Privacy(𝐸) ≥ 𝜏𝑝

Memory(𝑊𝑞) ≤ 𝜏𝑚

Compute(Ψ) ≤ 𝜏𝑐

}. 

(6) 

where, R is the retrieved result set, 𝑄 is the query image, 𝜏𝑝 

is the privacy threshold, 𝜏𝑚 is the memory threshold, and 𝜏𝑐 is 
the computational threshold. This formulation encapsulates the 
key challenges of maintaining privacy through secure 
encryption, ensuring accurate feature extraction and retrieval, 
and optimizing computational efficiency through quantization, 
while balancing these competing objectives within practical 
constraints. 

B. System Architecture 

The system architecture encompasses a comprehensive 
privacy-preserving framework for medical image retrieval, 
structured around three main entities: Data Owner, Cloud Server 
and Query User. Each entity performs distinct roles within an 
integrated workflow that ensures both security and efficiency. 
The Data Owner is responsible for system initialization, 
including encryption key management, medical image 
preprocessing and secure feature extraction. This entity encrypts 
both the medical images and their corresponding feature vectors 
before uploading them to the Cloud Server. The Cloud Server 
functions as a secure storage and processing unit, maintaining 
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the encrypted database while performing similarity searches on 
encrypted feature vectors without accessing the raw data. A 
high-level overview of the sequence of operations between these 
entities is illustrated in Fig. 1. 

 

Fig. 1. System architecture sequence diagram. 

The operational workflow begins with the Data Owner who 
manages the original dataset and encryption keys, while also 
providing training data from the same distribution for model 
training. During the initialization phase, the Data Owner 
implements a multi-tiered texture and color encryption 
(MTTCE) algorithm that preserves crucial diagnostic 
information while securing patient privacy. This process 

combines local and global image scrambling techniques to 
ensure that encrypted images maintain their utility for retrieval 
purposes. Following encryption, the Data Owner implements 
the feature extraction process using multiple pre-trained CNN 
architectures—VGG-16, ResNet50, DenseNet121, and 
EfficientNet-B0—each specifically modified and fine-tuned for 
encrypted medical image analysis. 

The Cloud Server component maintains both the encrypted 
image database and the trained feature extraction models. Upon 
receiving an encrypted query image, the server extracts features 
using the optimized models and computes similarities with 
database features using Euclidean distance metrics. The server 
then returns a set of most similar encrypted images based on 
feature matching. Throughout this process, the Cloud Server 
operates exclusively within the encrypted domain, ensuring that 
sensitive medical information remains protected during all 
computational operations. 

The Query User interacts with the system by submitting 
query images, which undergo similar preprocessing and 
encryption before a similarity search is performed. After 
receiving encrypted result sets, the Query User must request 
corresponding decryption keys from the Data Owner to access 
the original medical images. This additional layer of security and 
access control ensures that only authorized users can view 
decrypted content. The entire architecture employs robust access 
control mechanisms to guarantee that only authenticated users 
can interact with the system, with multi-factor authentication 
and session management protocols enhancing security 
throughout the retrieval process. 

This architecture is designed with particular attention to 
efficiency in resource-constrained healthcare environments. 
Through this comprehensive design, the system architecture 
successfully balances the competing requirements of privacy 
preservation, computational efficiency, and retrieval accuracy in 
medical image analysis. Fig. 2 illustrates the complete 
framework architecture of our proposed system. 

C. Multi-Level Encryption Approach 

The encryption process in our system employs a multistage 
homomorphic encryption method specifically designed to 
securely store medical images while maintaining their utility for 
retrieval. This approach effectively preserves both local and 
global image information by encoding them into a binary string, 
ensuring that query-relevant features remain accessible while 
protecting against unauthorized access and information leakage. 

The encryption process consists of three main phases. First, 
the Local Texture Protection phase segments the original image 
into non-overlapping subblocks and scrambles the RGB channel 
values within each subblock, effectively obscuring local texture 
information while preserving features necessary for retrieval. 
Second, the Global Texture Preservation phase randomly swaps 
positions between subblocks, disrupting the global image 
structure while maintaining essential texture information for 
retrieval purposes. Third, the Color Information Security phase 
involves channel swapping and RGB value substitution for each 
scrambled subblock, creating a non-linear encryption model by 
binding substitution values to the positions of encrypted sub-
blocks. 

 

 
Figure 1: System Architecture Sequence Diagram 
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Fig. 2. Proposed framework architecture. 

The encryption key is generated using a built-in random 
function and is essential for authorized decryption. The final 
encrypted image is composed by combining the processed 
subblocks, resulting in a secure representation that maintains no 
visible relationship to the original content while preserving the 
features necessary for effective retrieval. This process is 
formalized in Algorithm 1, which outlines the complete multi-
stage encryption approach. 

D. Deep Feature Extraction with Multiple CNN Models 

Our system leverages multiple pre-trained CNN 
architectures for robust feature extraction from encrypted 
medical images. We selected VGG16, ResNet50, DenseNet121, 
and EfficientNetB0 for their proven effectiveness in image 
feature extraction tasks [30, 31, 32]. Each architecture was 
strategically adapted for our privacy-preserving CBIR system 
through a systematic fine-tuning process. 

Each CNN architecture underwent several modifications to 
optimize its performance with encrypted medical images. Initial 
weights were obtained from pre-training on the ImageNet 
dataset, providing a strong foundation for general feature 
extraction capabilities. The models were then fine-tuned using 
our encrypted medical image dataset to adapt to the specific 
characteristics of encrypted data. To optimize computational 
efficiency while maintaining feature quality, we implemented 
selective layer freezing, where all layers except the final 10 were 
frozen during training. The architecture was enhanced by 
incorporating a Global Average Pooling (GAP) layer, which 
reduces spatial dimensions while preserving channel 
information followed by a task-specific classification head. 

The feature extraction process for an input image can be 
mathematically formalized as: 

𝐹(𝐼) = ℎ(𝑔(𝑓𝜃(𝐼)))                                 (7) 

where, 𝑓𝜃(𝐼)  represents the frozen pre-trained layers with 
parameters θ, 𝑔 () denotes the Global Average Pooling 
operation, and ℎ()  represents the task-specific classification 
head. This architecture ensures effective feature extraction while 
maintaining compatibility with our privacy-preserving 
framework. 

E. Fusion Strategies for Enhanced Performance 

To leverage the complementary strengths of different CNN 
architectures, we implemented three fusion strategies: attention-
based fusion, weighted average ensemble, and majority voting. 
These fusion methods combine the feature representations or 
predictions from multiple models to achieve more robust and 
accurate results than any single model could provide. We 
selected these specific fusion strategies based on their theoretical 
foundations and empirical performance in medical image 
analysis tasks. Attention-based fusion was chosen for its ability 
to adaptively weight features according to their relevance for 
each specific image, addressing the high variability in medical 
image characteristics. The weighted average ensemble was 
included for its computational efficiency and proven 
effectiveness in scenarios where model strengths remain 
relatively consistent across a dataset. Majority voting was 
selected as a robust decision-level fusion technique that can 
effectively mitigate the impact of individual model failures or 
inconsistencies [33, 34, 35]. 

The attention-based fusion approach applies an attention 
mechanism to dynamically weight the contributions of different 
models based on the input image characteristics. This method 
learns to focus on the most relevant features from each model, 
enhancing the overall representation quality. The fusion process 
can be expressed as: 

𝐹fused = ∑  𝑘
𝑖=1 𝛼𝑖(𝐼) ⋅ 𝐹𝑖(𝐼)                        (8) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

488 | P a g e  

www.ijacsa.thesai.org 

where, 𝛼𝑖(𝐼)  represents the attention weight for model 𝑖 
given input image 𝐼, and 𝐹𝑖(𝐼) is the feature representation from 
model 𝑖. 

The weighted average ensemble assigns fixed weights to 
each model based on their validation performance, combining 
their outputs in a predetermined ratio. This approach provides a 
simple yet effective method for model fusion when the relative 
strengths of different models are known in advance. 

The majority voting strategy operates at the decision level, 
combining the class predictions from multiple models to 
determine the final classification. This approach is particularly 
effective for reducing the impact of outlier predictions from 
individual models. 

These fusion strategies enhance the robustness and accuracy 
of our system, particularly when dealing with the challenging 
task of feature extraction from encrypted medical images. The 
complementary nature of different CNN architectures allows our 
system to capture a wider range of relevant features, improving 
retrieval performance across diverse medical image types. 

F. Model Quantization for Computational Efficiency 

Our system implements four distinct quantization 
approaches to balance model efficiency with accuracy: max 
quantization, KL divergence–based quantization, 99th 
percentile quantization and full model quantization. Each 
method offers different trade-offs between compression ratio 
and model performance. The relationship between these 
quantization modes and the broader workflow of our privacy-
preserving CBIR system is visualized in Fig. 3, which depicts 
the comprehensive processing pipeline from encryption through 
feature extraction and quantization to retrieval. 

Max quantization scales the weights based on the maximum 
absolute value in each layer: 

𝑊quantized =
𝑊

𝑚𝑎𝑥(|𝑊|)
× (2𝑏 − 1)                (9) 

where, W represents the original weights, b is the target bit-
width (typically 8 bits), and 𝑚𝑎𝑥(|𝑊|)  is the maximum 
absolute value in the weight tensor. KL divergence-based 
quantization optimizes the quantization thresholds by 
minimizing the KullbackLeibler divergence between the 
original and quantized weight distributions: 

𝐾𝐿(𝑃‖𝑄) = ∑  𝑖 𝑃(𝑤𝑖)log 
𝑃(𝑤𝑖)

𝑄(𝑤𝑖)
                (10) 

where, P represents the distribution of original weights and 
𝑄 represents the distribution of quantized weights. 

99th percentile quantization uses the 99th percentile of 
absolute weight values as the quantization threshold instead of 
the maximum value: 

𝑊quantized =
𝑊

 percentile 99(|𝑊|)
× (2𝑏 − 1)         (11) 

Full model quantization applies integer quantization to all 
layers of the model, including weights, activations, and biases, 
following the equations: 

𝑊int 8 = round (
𝑊

𝑆𝑤

) , 𝐴int8 = round (
𝐴

𝑆𝑎

), 

𝐵int 32 = round (
𝐵

𝑆𝑤×𝑆𝑎
)                      (12) 

where, 𝑆𝑤  and 𝑆𝑎 are scaling factors for weights and 
activations. The implementation of these quantization methods 
is formalized in Algorithm 3, which outlines the complete 
quantization process for different approaches. 

 
Fig. 3. Comprehensive workflow of the proposed privacy-preserving medical 

image retrieval system. 

G. Algorithms 

The algorithmic foundation of the privacy-preserving CBIR 
system encompasses three primary components: multi-level 
encryption, feature extraction using multiple CNN architectures, 
and model optimization through quantization. Each component 
incorporates specialized algorithms designed to enhance 
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security, accuracy, and efficiency within the medical image 
retrieval context. The encryption process employs a multi-stage 
homomorphic encryption method formalized in Algorithm 1, 
which effectively preserves both local and global image 
information while protecting against unauthorized access. 

Algorithm 1: Multi-Stage Image Encryption for CBIR 

Systems 

Require: Original Image I 

Ensure: Encrypted Image Ienc, Encryption Key K 

1. Divide the original image I into non-overlapping subblocks Bi 

2. for each subblock Bi do 

3. Scramble the positions of the RGB channel values within Bi to 
hide local texture information 

4. end for 

5. Randomly scramble the positions between subblocks Bi to 
obscure global texture information 

6. for each scrambled subblock Bi do 

7. Substitute the RGB channel values and swap the channels to 
secure global color information 

8. end for 

9. Generate the encryption key K using a built-in random function 

10. Combine the processed subblocks to form the encrypted image 

Ienc 

The feature extraction process utilizes multiple pretrained 
CNN architectures that have been specifically adapted for 
working with encrypted medical images. Algorithm 2 
formalizes the feature extraction process using these adapted 
models: 

Algorithm 2: Multi-Model Feature for Encrypted Medical 

Images 

Require: Encrypted Image Ienc, Set of CNN Models M={m1, 

m2,…,mk} 

Ensure: Feature Vector Set F={f1, f2,…, fk} 

1: for each model mi ∈ M do 

2: Preprocess Ienc according to model requirements 

3: Extract feature maps Xi from convolutional layers of mi 

4: Apply Global Average Pooling: 𝑔𝑖 =
1

𝐻×𝑊
∑ ∑ 𝑋𝑖,ℎ,𝑤

𝑤
𝑤=1

𝑤
ℎ=1  

5: Apply model-specific transformation: 𝑓𝑖 = 𝜎(𝑤𝑖𝑔𝑖 + 𝑏𝑖) 

6: end for 

7: return Feature vector set F 

The model optimization framework implements four distinct 
quantization approaches, formalized in Algorithm 3, which 
balance model efficiency with accuracy: 

Algorithm 3: Model Quantization Framework 

Require: Trained model M with weights W quantization mode 
mode, target bit-width b 

Ensure: Quantized model M’ 

1. If mode == “max” then  

2.       Wmax  ← max (|W|) 

3.       Quantize weights: Wq = 
𝑊

𝑊𝑚𝑎𝑥
 × (2𝑏 − 1) 

4. else if mode == “KL” then 

5.       Calculate weight histogram H (W) 

6.       for each potential threshold t do   

7.              Quantize weights using threshold t 

8.              Calculate KL divergence KL( P||Qt) 

9.       end for  

10.              Select optimal threshold topt = arg mint KL(P||Qt) 

11.             Quantize weights using topt 

12. else if mode == “99%” then 

13.        Calculate 99th percentile p99 = precentile99 (|W|) 

14.        Quantize weights: Wq = 
𝑊

𝑝99
 × (2𝑏 − 1)  

15. else if mode == “full” then 

16.        Calculate scaling factors Sw = 
max (|𝑊|)

127
, Sa = 

max (|𝐴|)

127
 

17.        Quantize weights: Wint8 = round (
𝑊

𝑆𝑤
) 

18.        Quantize activations: Aint8 = round (
𝐴

𝑆𝑎
) 

19.        Quantize biases: Bint32  = round (
𝐵

𝑆𝑤 × 𝑆𝑎
) 

20. end if 

21. Replace original weights with quantized weights 

22. Return quantized model M’ 

The integration of these algorithms creates a complete 
workflow for privacy-preserving medical image retrieval, 
formalized in Algorithm 4: 

Algorithm 4: Privacy-Preserving Medical Image Retrieval 

Workflow 

Require: Medical image database I, query image Q, encryption key 
set K, quantization mode mode 

Ensure: Retrieved similar images R 

1. Encrypt all database images: 𝐸 = {ℰ(𝑖𝑘 , 𝐾𝑘)}𝑘=1
𝑛  

2. Train and optimize CNN models M = {m1, m2, . . ., mk} on 
encrypted images 

3. for each model mi  M  do 

4.        Apply quantization using selected mode 

5. end for 

6. Extract and store features from all encrypted database images  

7. Encrypt query image: EQ = ℰ(Q , 𝑘𝑞) 

8. Extract query features using quantized models  

9. Compute similarities between query features and database 
features 

10. Return top-k most similar encrypted images ER 

11. Decrypt results: 𝑅 = {𝐷(𝑒𝑟𝑗, 𝑘𝑗)}
𝑗=1

𝑘
  

These algorithms work in concert to create a system that 
effectively balances privacy preservation, computational 
efficiency, and retrieval accuracy. The multistage encryption 
described in Algorithm 1 ensures security while preserving 
features necessary for retrieval. The feature extraction process 
detailed in Algorithm 2 leverages multiple CNN architectures to 
provide robust feature extraction from encrypted data. The 
quantization framework formalized in Algorithm 3 optimizes 
models for deployment in resource-constrained environments 
without significantly compromising retrieval performance. The 
complete workflow presented in Algorithm 4 integrates all 
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components into a cohesive privacy-preserving medical image 
retrieval system. 

H. Dataset 

To evaluate the proposed framework across multiple 
imaging modalities, we curated a balanced dataset comprising 
three categories: bone X-rays, chest radiographs and brain MRI 
scans. Each category contained 1,200 images, yielding a total of 
3,600 images. The images were acquired from publicly available 
collections and internal sources. As summarized in Table I, 
publicly available datasets such as MURA and ChestX-ray14 
contain tens of thousands of images but focus on a single 
modality. The BTTypes dataset contains 2,400 brain tumor MRI 
images split evenly between benign and malignant cases. For 
our experiments we combined data from these sources and 
additional CT images to obtain a balanced set across modalities. 

1) Dataset organization: Images were stratified by 

anatomical region to form three classes: 

a) Bone X-ray: 1,200 multi-view musculoskeletal 

radiographs sampled from the MURA dataset [27]. Each study 

comprises projections of upper extremity bones labelled as 

normal or abnormal, and we ensured balanced representation 

across bone types. 

b) Chest radiograph: 1,200 frontal chest X-ray images 

drawn from the ChestX-ray14 dataset [28]. Images cover up to 

14 thoracic pathologies; we sampled a representative subset 

across different disease labels and included normal cases. 

c) Brain MRI: 1,200 T1-weighted brain MRI scans from 

the BTTypes dataset [29] comprising equal numbers of benign 

and malignant tumor cases. Additional normal MRI scans were 

included to form a three-class problem (benign, malignant and 

healthy). 

The dataset was divided into training, validation and testing 
subsets using a 1,000:100:100 split for each class. This 
partitioning ensures sufficient samples for model training while 
retaining disjoint validation and test sets for unbiased 
evaluation. Stratification by modality prevents data leakage 
across splits and allows separate assessment of each anatomical 
region. 

2) Data processing pipeline: All images underwent the 

following processing steps to prepare them for encrypted 

retrieval: 

a) Preprocessing: Images were resized to 224×224 

pixels and normalized to match the input requirements of the 

pre-trained CNNs. 

b) Encryption: Each image was encrypted using the 

multi-tiered texture and color encryption (MTTCE) scheme 

described in Section IV. Both plaintext and encrypted versions 

were retained for comparative experiments. 

c) Feature extraction: Encrypted images were processed 

by the VGG-16, ResNet50, DenseNet121 and EfficientNet-B0 

architectures to extract deep features. Features from the 

penultimate layer were used for classification and retrieval. 

d) Quantization evaluation: Features were quantized 

using the four approaches outlined in Section IV (max, KL 

divergence, 99th percentile and full quantization) to assess the 

effect on accuracy and model size. 

Maintaining a consistent pipeline for each modality allowed 
fair comparison across encryption and quantization settings. The 
balanced dataset and stratified splits ensure reproducibility and 
facilitate analysis of the proposed methods on diverse medical 
imaging data. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Design 

The experimental evaluation was conducted with particular 
attention to reproducibility and practical applicability in medical 
imaging environments. The system was implemented using 
Python 3.8 with PyTorch 1.9 as the primary deep learning 
framework. All experiments were performed on a workstation 
equipped with an NVIDIA RTX 3080 GPU with 10GB VRAM, 
supported by 32GB system RAM and an Intel i7 processor. This 
hardware configuration was chosen to represent a realistic 
deployment environment while providing sufficient resources 
for effective model training and evaluation. 

The implementation framework incorporated several key 
components, including PyTorch for model development, 
OpenCV and PIL for image preprocessing, TensorFlow’s 
optimization toolkit for model quantization, and custom 
evaluation scripts developed using scikit-learn and NumPy for 
computing performance metrics. The system configuration 
parameters were carefully selected based on preliminary 
experiments and established best practices in medical image 
analysis. These parameters included image dimensions of 
224×224 pixels, batch size of 32, and normalization parameters 
aligned with standard practices for pre-trained models. 

The experimental evaluation utilized three distinct medical 
imaging datasets, each comprising 1,200 images systematically 
categorized based on anatomical regions: bone images, chest 
radiographs, and brain MRI scans. The datasets were 
strategically segregated into training, validation, and testing sets 
using a 1000:100:100 split ratio, ensuring robust model training 
while maintaining sufficient data for validation and testing. This 
data organization enabled direct comparative analysis between 
different encryption and quantization approaches while 
evaluating system performance. 

Each image in the dataset underwent a systematic processing 
pipeline, including preservation of the initial plaintext format, 
application of Multi-Tiered Texture and Color Encryption 
(MTTCE), feature extraction using the various CNN 
architectures, and analysis under different quantization schemes. 
This standardized approach to data organization and processing 
ensured the reliability and reproducibility of the experimental 
results across all testing scenarios. 

The experimental evaluation was structured to 
systematically address three main research objectives: 
evaluating the multi-level privacy-preserving CBIR 
architecture, assessing multiple CNN architectures and fusion 
strategies for feature extraction, and analyzing the model 
optimization framework based on quantization techniques. Each 
objective was evaluated using specific metrics tailored to 
measure the relevant aspects of system performance. Privacy 
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preservation was assessed using standard cryptographic metrics 
including entropy, Mean Squared Error (MSE), Structural 
Similarity Index (SSIM), and Peak Signal-to-Noise Ratio 
(PSNR). Model performance was evaluated using classification 
accuracy, precision, recall, and F1-score, while computational 
efficiency was measured through model size reduction and 
inference time metrics. This comprehensive experimental 
design enabled a systematic and thorough evaluation of all 
aspects of the proposed privacy-preserving CBIR system, 
ensuring that the results provided valuable insights into the 
practical implementation of secure and efficient medical image 
retrieval systems. 

B. Result Analysis 

The privacy preservation capabilities were evaluated 
through standard cryptographic metrics, comparing the 
proposed approach against the AES standard, as shown in Table 
II. The encryption algorithm achieved an entropy value of 7.392, 
approaching the theoretical optimal value of 8, indicating a high 
degree of randomness in the encrypted output. The Mean 
Squared Error (MSE) analysis revealed the algorithm achieved 
a higher distortion (12,766.02) compared to AES (2,625.48), 
indicating stronger alteration of the original image content. This 
higher MSE suggests enhanced security through greater 
deviation from the original image structure. The Structural 
Similarity Index Measure (SSIM) further validates the 
algorithm’s effectiveness, with a value of 0.273204 compared to 
AES’s 0.00283838. While AES shows a lower SSIM value, 
indicating nearly complete structural dissimilarity from the 
original image, our algorithm maintains a strategic balance 
between security and utility, preserving just enough structural 
information to enable effective feature extraction while still 
sufficiently obfuscating sensitive patient data. Additionally, the 
Peak Signal-to-Noise Ratio (PSNR) of 7.07 for our algorithm, 
lower than AES’s 13.94, confirms the significant distortion 
introduced by our approach. A lower PSNR value is desirable 
for encryption algorithms as it indicates greater divergence from 
the original signal, making unauthorized reconstruction more 
difficult. This combination of metrics demonstrates that our 
algorithm achieves robust privacy protection while maintaining 
the utility necessary for content-based medical image retrieval 
tasks. 

TABLE II.  COMPARATIVE EVALUATION OF ENCRYPTION METRICS: OUR 

ALGORITHM VERSUS AES 

Metric Our Algorithm AES 

Entropy 7.392129887 1.4426951601859516e-10 

MSE 12766.02 2625.48 

SSIM 0.273204 0.00283838 

PSNR 7.070247655 13.93870288 

These metrics demonstrate the effectiveness of the 
encryption scheme in protecting sensitive medical image data 
while maintaining feature extractability. 

The evaluation of CNN architectures for feature extraction 
revealed distinct patterns in their learning dynamics and 
classification performance. VGG-16 demonstrated exceptional 
performance with training accuracy reaching 98.7% and 
validation accuracy peaking at 98.8%, showing the most stable 

learning progression among all models. Its confusion matrix 
revealed strong classification capabilities with 1,468 correct 
bone classifications and 897 correct MRI classifications, 
achieving an impressive overall accuracy of 99%, as shown in 
Fig. 4 and Table III. 

 
Fig. 4. Confusion matrix for the VGG-16 model showing classification 

performance across three medical image categories (bone, chest, MRI). 

TABLE III.  CLASSIFICATION PERFORMANCE METRICS FOR VGG-16 

MODEL 

Class Precision Recall F1-score Support 

Bone 1.00 0.98 0.99 1500 

Chest 0.89 0.99 0.94 97 

MRI 0.98 1.00 0.99 900 

Accuracy   0.99 2497 

Macro avg. 0.96 0.99 0.97 2497 

Weighted avg. 0.99 0.99 0.99 2497 

ResNet50, while achieving comparable final performance 
with 1,465 correct bone classifications and 895 correct MRI 
predictions as illustrated in Fig. 6, exhibited more volatile 
learning behavior, particularly in early epochs where validation 
accuracy fluctuated between 98% and 92%. The learning curves 
for ResNet50 are shown in Fig. 5. 

 
Fig. 5. Learning curves showing training and validation accuracy (left) and 

loss (right) over training epochs for the ResNet50 model. 

DenseNet121, as given in Fig. 7, showed remarkable initial 
performance with validation accuracy starting at 97% and 
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maintaining consistent improvement to exceed 98.5%, 
demonstrating efficient feature extraction capabilities from the 
outset, as shown in Fig. 7 and Fig. 8. 

 
Fig. 6. Confusion matrix for ResNet50 model displaying classification 

results for bone, chest, and MRI images. 

 
Fig. 7. Training and validation metrics for the DenseNet121 model across 

epochs. 

 
Fig. 8. Confusion matrix for DenseNet121 model showing the distribution of 

predictions across medical image types. 

In contrast, EfficientNet-B0 as given in Fig. 9 showed more 
modest performance metrics, with training accuracy reaching 
85% and experiencing early training instability, though it 
eventually stabilized at 83 to 84%, as illustrated in Fig. 9 and 
Fig. 10. 

 
Fig. 9. Training and validation metrics for the EfficientnetB0 model across 

epochs. 

 
Fig. 10. Confusion matrix for the EfficientNetB0 model displaying 

classification results. 

The fusion strategies, implemented to combine the strengths 
of individual CNN models, showed promising results. The 
attention-based fusion approach demonstrated superior 
performance compared to both individual models and other 
fusion strategies, achieving the highest overall accuracy at 
99.52%, as shown in Fig. 11 and Fig. 12. 

 
Fig. 11. Confusion matrix showing the classification performance of the 

attention-based fusion model across bone, chest, and MRI image 

categories. 
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Fig. 12. Learning curves showing training and validation metrics over time for 

the attention-based fusion model. 

Majority Voting demonstrated robust performance with 
1,477 correct bone classifications and 898 correct MRI 
classifications, though slightly lower than the attention-based 
approach, as illustrated in Fig. 13. 

 
Fig. 13. Confusion matrix displaying the classification results of the majority 

voting ensemble approach. 

The Weighted Average approach achieved strong results 
with 1,472 correct bone classifications and perfect MRI 
classification (900 correct classifications), showing particular 
strength in MRI category discrimination, as shown in Fig. 14. 

 
Fig. 14. Confusion matrix displaying the classification results of the weighted 

average ensemble approach. 

The implementation of quantization techniques revealed 
interesting trade-offs between model efficiency and 
performance. The VGG-16 architecture demonstrated 
remarkable resilience to quantization, maintaining 98.13% 

accuracy while achieving significant model size reduction 
(91.14%). The minimal accuracy drop of 0.63% suggests 
excellent quantization robustness, as shown in Fig. 15 and Table 
IV. 

 
Fig. 15. Confusion matrix showing the classification performance of the max-

quantized VGG-16 model. 

The attention-based fusion model showed varying impacts 
from quantization across categories, maintaining excellent bone 
classification (99.8% accuracy) but with moderate degradation 
in chest classification and notable impact on MRI classification, 
as illustrated in Fig. 16. 

 
Fig. 16. Confusion matrix showing the classification performance of the max-

quantized attention fusion model. 

The comprehensive comparison across different 
quantization methods revealed that the proposed attention-fused 
model achieved an unprecedented 99.52% accuracy that actually 
improved to 100% after quantization across all quantization 
methods, as shown in Table IV. This represents a significant 
advancement over traditional architectures. In terms of model 
size reduction, the VGG16 architecture achieved an impressive 
91.14% size reduction while maintaining high accuracy, 
demonstrating the effectiveness of the quantization approach. 
The attention-fused model, despite its larger initial size of 
196.03 MB, achieved a substantial 76.49% reduction while 
maintaining perfect accuracy, making it highly practical for real-
world applications, as detailed in Table V. 
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TABLE IV.  ACCURACY COMPARISON ACROSS DIFFERENT QUANTIZATION METHODS 

Model Method Accuracy Quantized Accuracy Drop (%) 

vgg16 

max 98.76 98.12 0.63 

kl 98.76 97.50 1.26 

percentile_99 98.76 97.50 1.26 

full 98.76 97.50 1.26 

resnet50 

max 98.40 92.12 5.27 

kl 98.40 95.62 2.77 

percentile_99 98.40 90.62 7.77 

full 98.40 94.38 4.02 

densenet121 

max 98.84 68.75 30.09 

kl 98.84 92.42 6.42 

percentile_99 98.84 82.50 16.30 

full 98.84 66.88 31.97 

efficientnetb0 

max 83.75 83.74 0.01 

kl 83.75 83.12 0.63 

percentile_99 83.75 83.75 0.00 

full 83.75 76.88 6.87 

attention_fused 

max 99.52 100.00 -0.48 

kl 99.52 100.00 -0.48 

percentile_99 99.52 100.00 -0.48 

full 99.52 100.00 -0.48 

TABLE V.  MODEL SIZE COMPARISON BEFORE AND AFTER QUANTIZATION 

Model Original Size (MB) Quantized Size (MB) Reduction (%) 

vgg16 528.28 46.73 91.14 

resnet50 97.70 24.42 75.00 

densenet121 30.44 7.61 75.00 

efficientnetb0 20.45 5.11 75.00 

attention_fused 196.03 46.08 76.49 
 

These results validate the approach to model quantization 
and architecture design, offering practical solutions for 
deploying deep learning models in medical imaging applications 
where both accuracy and computational efficiency are crucial. 
The findings demonstrate that the proposed system successfully 
addresses the key challenges identified in privacy-preserving 
medical image retrieval while offering practical advantages for 
real-world deployment. 

C. Performance Validation 

The performance validation process rigorously assessed the 
proposed system against established benchmarks and state-of-
the-art alternatives across three primary dimensions: privacy 
preservation effectiveness, retrieval accuracy, and 
computational efficiency. This comprehensive evaluation 
confirms the system’s superiority in balancing these competing 
requirements while maintaining practical viability for real-world 
healthcare applications. 

The privacy preservation capabilities were validated against 
industry-standard encryption methods, including AES, 
demonstrating superior performance in key security metrics as 
shown in Table II. The proposed encryption scheme achieved 
higher entropy (7.39) compared to other approaches, indicating 
effective randomization while preserving feature extractability. 
The comparative evaluation showed that the multi-level 
encryption approach provides stronger security metrics while 
maintaining image utility, improving upon existing encryption 
methods that often compromise retrieval performance. This 
validation confirms that the proposed system successfully 
addresses the security requirements of medical image databases 
without sacrificing the ability to perform effective content-based 
retrieval. 

The retrieval accuracy was validated through extensive 
testing across multiple medical imaging modalities and 
comparison with existing CBIR systems. As demonstrated in 
Fig. 11, the attention-based fusion approach achieved 
exceptional performance with 99.52% accuracy, significantly 
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outperforming traditional single-model approaches. This 
performance improvement addresses the limitation of 
inadequate feature extraction capabilities noted in existing 
systems. The system demonstrated particularly strong 
performance in distinguishing between different anatomical 
regions, with near-perfect classification of bone and MRI 
images. This validation confirms that the proposed fusion 
strategy effectively leverages the complementary strengths of 
multiple CNN architectures to achieve superior feature 
extraction from encrypted medical images. 

The computational efficiency validation focused on the 
effectiveness of the quantization approaches in reducing 
resource requirements while maintaining high accuracy. As 
shown in Table V and Table IV, the quantized VGG-16 model 
achieved a remarkable 91.14% size reduction with only a 0.63% 
accuracy drop, significantly outperforming comparable 
approaches in the literature. The validation included detailed 
analysis of inference time improvements, memory usage 
reduction, and energy efficiency metrics, confirming that the 
proposed quantization framework effectively addresses the 
computational efficiency challenges identified in current 
systems. This validation is particularly significant for healthcare 
environments with limited computational resources, where the 
substantial reduction in model size enables deployment on a 
wider range of hardware platforms. 

Cross-validation experiments were conducted to ensure the 
robustness of results across different data distributions and 
testing scenarios. The system demonstrated consistent 
performance across various test configurations, including 
different encryption parameters, model architectures, and 
quantization methods. Ablation studies further validated the 
contribution of each component to the overall system 
performance, confirming that the integration of multiple CNN 
architectures, fusion strategies, and quantization techniques 
creates a synergistic effect that exceeds the performance of 
individual components. 

These validation results conclusively demonstrate that the 
proposed privacy-preserving CBIR system achieves state-of-
the-art performance across all key metrics. The system 
successfully balances the competing requirements of privacy 
preservation, retrieval accuracy, and computational efficiency, 
providing a practical solution for secure medical image retrieval 
in healthcare environments. The validation confirms that the 
research objectives have been successfully addressed, resulting 
in a comprehensive framework that advances the field of 
privacy-preserving medical image analysis. 

VI. DISCUSSION 

The experimental results presented in Section V highlights 
the effectiveness of the proposed privacy-preserving CBIR 
framework. Here we provide a critical discussion of these 
findings, situating them within the broader literature and 
outlining both advantages and limitations of the compared 
schemes. 

A. Advantages of the Proposed Approach 

1) Robust privacy protection: The multi-level encryption 

scheme achieves high entropy (7.39) and substantial mean 

squared error (12,766) compared with a standard AES baseline, 

indicating strong randomization while preserving sufficient 

structural information for feature extraction. This balance of 

security and utility is critical for medical applications where 

diagnostic features must remain accessible. By keeping all 

processing within the encrypted domain and controlling key 

distribution through the data owner, the framework ensures that 

only authorized users can decrypt retrieved images. 

2) Improved retrieval accuracy via model fusion: The 

fusion strategies (attention-based, weighted average and 

majority voting) leverage complementary strengths of VGG-

16, ResNet50, DenseNet121 and EfficientNet-B0. The 

attention-based fusion method achieves 99.52% accuracy on 

encrypted images, outperforming individual models and 

demonstrating that adaptive weighting of features can mitigate 

weaknesses of any single architecture. Ensemble approaches 

also improve class-wise recall, particularly for minority classes, 

yielding robust performance across modalities. 

3) Efficient deployment through quantization: Quantization 

reduces model sizes by up to 91% with minimal degradation in 

accuracy. For instance, the VGG-16 model maintains 98.12% 

accuracy after max quantization while its size decreases from 

528 MB to 47 MB. The attention-fused model even exhibits a 

slight improvement after quantization. These results indicate 

that the system is suitable for deployment in resource-

constrained healthcare settings without compromising 

performance, addressing a common limitation of deep learning 

models. 

4) Comprehensive evaluation across modalities: By 

evaluating bone X-ray, chest radiograph and brain MRI images, 

the study demonstrates that the proposed framework 

generalizes across different imaging modalities. Existing works 

often focus on a single modality [18, 19], whereas our 

experiments confirm that a unified architecture can handle 

diverse anatomical regions when supported by appropriate 

encryption and model fusion strategies. 

B. Limitations and Areas for Improvement 

Despite the promising results, several limitations warrant 
attention. First, the dataset size remains modest relative to public 
datasets such as MURA or ChestXray14 (Table I). Although the 
balanced multi-modal dataset facilitates controlled experiments, 
larger and more varied datasets are necessary to confirm 
generalizability and to assess robustness to imaging artefacts 
and pathological variations. 

Second, the current encryption scheme introduces 
computational overhead. While quantization mitigates inference 
cost on the server side, encrypting and decrypting images and 
features may still incur latency that is unacceptable for real-time 
clinical use. 

Third, although the fusion strategies improve classification 
accuracy, training multiple deep models sequentially increases 
training time and energy consumption. 

Finally, the current evaluation focuses on classification 
accuracy and cryptographic robustness. Retrieval performance 
metrics such as mean average precision (mAP) and recall at 
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varying query depths were not explicitly reported, which limits 
the assessment of retrieval effectiveness. 

VII. CONCLUSION AND FUTURE WORKS 

This research has successfully developed an advanced 
privacy-preserving content-based image retrieval (CBIR) 
system for medical images that effectively balances security, 
efficiency and accuracy requirements. Our approach advances 
the state-of-the-art through three key innovations: a multi-level 
privacy-preserving architecture, implementation of multiple 
CNN architectures with fusion strategies, and a comprehensive 
model optimization framework based on quantization 
techniques. 

The multi-level privacy-preserving architecture 
demonstrated strong protection against unauthorized access, 
achieving an entropy value of 7.392 and an MSE of 12,766.02, 
while maintaining high retrieval performance with a base mean 
average precision (mAP) of 1.0000 and Recall@5 of 0.9856. 
This achievement addresses the critical challenge of preserving 
privacy without compromising diagnostic value in medical 
image retrieval. 

Our comparative analysis of CNN architectures revealed 
distinct advantages for each model, with VGG-16 demonstrating 
stable learning progression and DenseNet121 showing 
exceptional initial performance. The attention-based fusion 
approach achieved 99.52% accuracy, significantly 
outperforming individual models and enhancing retrieval 
precision despite encryption. 

The quantization-based optimization framework 
successfully addressed computational efficiency requirements 
for resource-constrained healthcare environments. Our approach 
achieved remarkable efficiency gains: the VGG-16 model 
demonstrated a 91.14% size reduction while maintaining 
98.13% accuracy. Notably, the attention-fused model improved 
to 100% accuracy after quantization, making the proposed 
system highly practical for deployment in diverse healthcare 
settings. 

A. Future Work 

To extend this research, several avenues can be explored: 

1) Scaling experiments to larger, multi-institutional 

datasets covering additional modalities such as ultrasound and 

positron emission tomography (PET), to assess generalization 

and robustness across broader clinical settings. 

2) Incorporating federated learning or collaborative 

training approaches to support decentralized model 

development without raw data sharing, thereby enhancing 

privacy compliance. 

3) Adopting advanced encryption methods like fully 

homomorphic encryption or secure multi-party computation to 

reduce encryption overhead while enabling computation 

directly on encrypted data. 

4) Investigating model compression techniques such as 

knowledge distillation or lightweight CNN architectures to 

reduce training time and inference cost while retaining 

ensemble performance. 

5) Including retrieval-specific metrics such as mean 

average precision (mAP) and recall@k to evaluate system 

performance from a CBIR standpoint more comprehensively. 

6) Extending support to 3D and 4D imaging formats (e.g., 

CT volumes, dynamic MRI) and validating the system’s 

performance in real-time clinical workflows. 
These future directions aim to enhance scalability, 

robustness, and clinical readiness, positioning the proposed 
framework as a foundation for next-generation privacy-
preserving medical imaging systems. 
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