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Abstract—Creating conflict-free academic timetables that re-
spect teacher availability, subject eligibility, and limited re-
sources remains a persistent challenge in educational institutions.
This study introduces a novel hybrid algorithm that combines
Self-Organizing Maps (SOM), Secure Convex Dominating Sets
(SCDS), and Genetic Algorithms (GA) to address this problem
effectively. SOM is employed to cluster subjects based on teach-
ing duration and eligibility, providing structured guidance in
initial scheduling. SCDS identifies the most conflict-prone sub-
jects—typically those with limited eligible teachers—and ensures
they are prioritized, thereby reducing downstream bottlenecks.
GA then iteratively refines the schedule by evaluating room
assignments, teacher loads, and constraint satisfaction. Extensive
simulation experiments were conducted under varying conditions,
including worst-case scenarios with dense scheduling conflicts.
The system achieved high success rates, particularly in moder-
ate to complex settings, and demonstrated robustness even in
constrained environments. Notably, SOM improved spatial and
temporal coherence, while SCDS enhanced conflict resolution and
GA enabled adaptive optimization. Runtime and convergence
results remained within practical limits, with a time complexity of
O(n2+gpn). The proposed hybrid framework balances structural
prioritization and evolutionary refinement, offering a scalable
and intelligent solution to the timetabling problem. It stands
out by gracefully handling worst-case scenarios where traditional
heuristics often fail.
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I. INTRODUCTION

Timetabling in academic institutions constitutes a signifi-
cant combinatorial optimization problem, commonly classified
as NP-hard due to the extensive search space and the intricate
constraints involved. These constraints often include teacher
availability, classroom capacity, subject prerequisites, and the
avoidance of schedule conflicts [1]. As institutions grow in size
and complexity, the timetabling challenge becomes increas-
ingly difficult, exacerbated by overlapping resource demands
and rising interdependencies across academic units.

Traditional methods such as greedy algorithms, rule-based
heuristics, and integer programming have been applied with

varying degrees of success, particularly in small-scale or highly
structured environments [2], [3]. However, these techniques
often fall short in large-scale, dynamic academic settings. They
struggle to scale efficiently and frequently yield suboptimal
solutions due to their limited capacity to adapt to complex
constraint interactions and evolving scheduling requirements.

Recent advances in artificial intelligence (AI) and meta-
heuristic algorithms have introduced new possibilities for
tackling timetabling challenges. Techniques such as Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), and
neural networks have demonstrated strong potential in explor-
ing large solution spaces and adapting to shifting constraints
[4], [5]. For instance, GA-based systems have been shown to
improve the structure and coherence of academic schedules,
outperforming traditional manual and rule-based approaches
[4]. Likewise, PSO and other evolutionary techniques continue
to push the boundaries of scheduling efficiency in diverse real-
world contexts [5].

Despite these innovations, many existing systems rely on
singular algorithmic frameworks that lack robustness when
handling high-conflict scheduling environments. This often
results in partial solutions that fail to account for deeper
structural dependencies in the scheduling graph. To address
this gap, hybrid approaches have emerged, combining multiple
paradigms to improve adaptability and performance. Notably,
works like those of Yang and Wang have illustrated how
combining constraint satisfaction neural networks with heuris-
tic strategies enhances the resolution of generalized job-shop
scheduling problems [6].

In this study, we propose a novel hybrid framework that
integrates three complementary computational strategies to
address the academic timetabling problem: Self-Organizing
Maps (SOM) for clustering similar courses, Secure Con-
vex Dominating Sets (SCDS) for identifying and prioritizing
conflict-heavy nodes in the scheduling graph, and Genetic
Algorithms (GA) for global optimization of feasible timetables.
The SOM component enables the clustering of courses based
on attributes such as time demands and eligibility require-
ments, thereby facilitating a more coherent initial assignment.
The SCDS technique maps out the structural conflicts in the
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form of a graph and identifies high-impact nodes—typically
those involving highly constrained faculty members—for early
scheduling. Finally, the GA component iteratively evolves and
refines candidate solutions, using selection, crossover, and
mutation to balance feasibility with optimization. Section II
provides a comprehensive review of related work in academic
timetabling, examining traditional approaches and recent AI-
based solutions. Section III presents our proposed hybrid
framework, detailing the integration of SOM clustering, SCDS
conflict detection, and GA optimization components. Section
IV describes the experimental methodology, including dataset
generation, performance metrics, and comparative baselines.
Section V presents and analyzes the experimental results,
demonstrating the effectiveness and scalability of our approach
across various scenarios. Section VI discusses the implications
of our findings, limitations of the current approach, and poten-
tial applications in real-world academic environments. Finally,
Section VII concludes the paper and outlines directions for
future research.

The core contributions of this work are summarized as
follows:

• A hybrid scheduling algorithm that synergizes SOM-
based clustering, SCDS-based structural conflict
detection, and GA-driven optimization.

• A robust, scalable system capable of managing both
typical and worst-case academic scheduling scenarios.

• Comprehensive experimental validation using simulated
datasets to evaluate scalability and convergence behavior.

II. REVIEW OF RELATED LITERATURE

A. Self-Organizing Map Neural Networks

Self-organizing map (SOM) neural networks are a type
of unsupervised learning model that clusters and visualizes
high-dimensional data by mapping it onto a lower-dimensional
grid, preserving the topological relationships of the input space
[7], [8], [9]. SOMs operate through a competitive learning
process, where each neuron represents a cluster, and the
network self-organizes based on the structure of the data [7],
[8]. Enhancements to the basic SOM include intuitionistic
fuzzy evaluation, which introduces degrees of membership and
uncertainty to improve clustering performance in ambiguous
data [10], and fuzzy SOMs, which use fuzzy rules to define
neuron activation and enable continuous-valued outputs [11].
Hierarchical and self-clustering SOMs can automatically deter-
mine the optimal number of clusters, adapting to the data with-
out user intervention [12]. Hardware implementations, such
as systolic architectures, have been developed to accelerate
SOM computations, achieving significantly faster performance
compared to traditional approaches [13]. SOMs have been ap-
plied in diverse fields, including image segmentation—where
wavelet-based preprocessing improves training efficiency and
segment compactness [14] — fault diagnosis in mechanical
systems [15], DNA sequence classification [16], protein fold
recognition [17], and recommendation systems [18].

Recent advances also include quantum-inspired SOM al-
gorithms, which leverage quantum computing principles for
exponential speedup in clustering and classification tasks [19],

and randomized SOMs, which introduce flexible topologies
for better handling of high-dimensional data and robustness to
network changes [20]. For instance, improved SOM algorithms
based on “virtual winning neurons” have been proposed to
enhance clustering accuracy and stability, particularly for the
real-time processing of high-dimensional data, by mitigat-
ing sensitivity to noise [15]. A notable area of focus has
been the enhancement of SOM performance and stability.
For instance, improved SOM algorithms based on “virtual
winning neurons” have been proposed to enhance clustering
accuracy and stability, particularly for the real-time processing
of high-dimensional data, by mitigating sensitivity to noise
[21]. Overall, SOM neural networks remain a robust and adapt-
able tool for unsupervised learning, with ongoing innovations
in algorithm design, hardware acceleration, and application
breadth.

Furthermore, recent research has explored hybrid models
that combine SOMs with other advanced neural network archi-
tectures to overcome individual limitations. A promising devel-
opment is the integration of SOMs with Convolutional Neural
Networks (CNNs) to enhance model accuracy, as demonstrated
in applications like predicting insecticide resistance in malaria
vectors. This hybrid approach leverages the unsupervised clus-
tering capabilities of SOMs with the powerful feature extrac-
tion and classification of CNNs, proving more robust than
standalone CNN models [22]. Another innovative direction
involves integrating a “reweighted zero-attracting term” into
the SOM’s loss function to improve accuracy and convergence
behavior, particularly for sparse data, highlighting an ongoing
effort to refine the core learning mechanism of SOMs [23].

The application landscape for SOMs also continues to
expand. They are being utilized for analyzing large time series
data, with new algorithms like “SOMTimeS” developed to
cluster and visualize complex time series using Dynamic Time
Warping (DTW) while significantly improving computational
efficiency through pruning techniques [24]. This makes SOMs
more practical for real-world scenarios involving massive
streams of temporal data. Additionally, SOMs are finding
applications in diverse areas such as analyzing movement
patterns in athletes for injury prevention [25] and even in high-
energy physics for probing rare particle decays by identifying
specific event topologies [24]. These recent works collectively
underscore a trend towards developing more robust, scalable,
and integrated SOM solutions, reflecting their enduring value
in contemporary data science and machine learning.

A secure convicts activity graph involves the structured
monitoring and management of convict activities within
penitentiary institutions, emphasizing the integration of
physical, procedural, and dynamic security measures. Physical
security includes modern perimeter systems, electronic
surveillance, and access control, while procedural security
focuses on strict adherence to rules, search protocols, and the
use of incentives and penalties. Dynamic security highlights
the importance of building trustful relationships between
staff and convicts, training personnel to resist manipulation,
and fostering positive interpersonal skills [26]. Ensuring
the personal security of convicts also requires constant
supervision, educational activities, and collaboration with
law enforcement agencies to prevent illegal acts and protect
human rights [27]. Additionally, the digitalization of convict
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labor and activities is seen as a promising approach to
improve rehabilitation outcomes and reduce recidivism,
though it requires careful legal and organizational planning
[28]. Psychological support and resocialization programs are
also crucial, as they help convicts adapt to law-abiding life
and address negative behaviors, with staff playing a key role
in facilitating positive change [29]. Overall, a secure convicts
activity graph is achieved by combining advanced security
technologies, effective monitoring, digitalization, and strong
psychological and educational support within correctional
settings.

B. Secure Convicts Activity Graph

The foundational principle relies on graph theory applica-
tions in cybersecurity and intelligence. Graph databases and
analytical techniques are increasingly employed to represent
entities (e.g., inmates, staff, locations, contraband, communica-
tion devices) as nodes and their interactions or relationships as
edges [30], [31]. This allows for the visualization and algorith-
mic detection of attack paths, anomalous behaviors, and hidden
patterns that are difficult to discern from linear data [30],
[31]. For instance, a knowledge graph-based framework can
support crime investigators by inferring digital evidence and
identifying hidden patterns in interconnected data, a concept
directly transferable to understanding inmate networks [32].
The use of Graph Neural Networks (GNNs) further enhances
this by leveraging relational structures to learn and make
predictions, improving anomaly detection and classification of
patterns by considering contextual relationships between nodes
[33], [34].

However, applying such graph-based analysis to “con-
vict activity” presents unique challenges within correctional
facilities’ security landscape. Correctional institutions face
persistent threats including contraband trafficking (drugs, cell
phones, weapons), gang activities, and inmate-on-inmate or
inmate-on-staff violence [35], [36]. Understaffing and the
sheer volume of inmate interactions further complicate se-
curity efforts [37]. Graph models can potentially map in-
mate movements, communication patterns (e.g., visits, phone
calls, electronic messages), social associations, and access
to resources, enabling the proactive identification of security
threats [32]. For example, detecting unusual clustering of
inmates, frequent interactions between individuals not typically
associated, or unusual access patterns to restricted areas could
indicate planning of illicit activities or a breakdown in facility
control. The UNODC’s Handbook on Dynamic Security and
Prison Intelligence emphasizes the importance of staff knowing
their prisoners and understanding what is happening within
the prison, aligning with the goal of deriving actionable
intelligence from observed activities [20].

Crucially, the development and deployment of “secure con-
vict activity graphs” must navigate significant data privacy and
ethical considerations. The collection, sharing, and analysis
of personal data from incarcerated individuals raise profound
concerns, particularly given their diminished autonomy and
the potential for misuse of such information [38], [39]. The
“digital panopticon” effect, where digital technologies enable
pervasive monitoring within carceral settings, highlights the
need for robust legal and ethical frameworks to protect inmate

data [39]. While tools exist for analyzing correctional data
(e.g., Bureau of Justice Statistics tools for prisoner data, parole,
and probation), explicit guidelines on the ethical implemen-
tation of sophisticated graph-based surveillance systems are
paramount [40]. Any system designed to monitor and analyze
inmate activities must prioritize the safety and security of both
inmates and staff, while strictly adhering to privacy regulations,
human rights principles, and avoiding over-classification or
discriminatory practices [35], [39], [41]. The balance between
enhanced security and preserving fundamental rights requires
careful consideration and transparent governance.

Recent advancements (2023-2025) demonstrate SOMs’
evolving role in data analysis, which can offer valuable
techniques transferable to complex relationship analysis. Im-
proved SOM algorithms based on “virtual winning neurons”
have been proposed to boost clustering accuracy and stability
for real-time processing of high-dimensional data, mitigating
sensitivity to noise [42]. Furthermore, hybrid models inte-
grating SOMs with Convolutional Neural Networks (CNNs)
have shown enhanced accuracy, for instance, in predicting
insecticide resistance in malaria vectors, proving more robust
than standalone CNN models [43]. Other innovative directions
include incorporating a “reweighted zero-attracting term” into
the SOM’s loss function to improve accuracy and convergence,
particularly for sparse data [44]. The application landscape for
SOMs also continues to expand, being utilized for analyzing
large time series data with new algorithms like “SOMTimeS”
for efficient clustering and visualization [34], and finding di-
verse applications such as in athlete movement pattern analysis
for injury prevention [45] and high-energy physics for probing
rare particle decays [46]. These recent works collectively un-
derscore a trend towards developing more robust, scalable, and
integrated SOM solutions, potentially offering methodological
insights for secure convict activity graphs.

III. METHODOLOGY

This section presents a hybrid algorithm integrating Self
Organizing Maps (SOM), Secure Convex Dominating Sets
(SCDS), and Genetic Algorithms (GA) to generate conflict
free academic timetables that respect teacher eligibility, time
constraints, and room availability. Fig. 1 provides an overview
of the proposed framework and the integration of its three main
components.

A. Problem Overview

Let S denote the set of subjects, T the set of available time
slots (from 07:00 to 21:00), R the set of rooms, and E the set
of teachers. Each subject s ∈ S has a fixed duration ds, and
must be assigned to a time slot t ∈ T and a room r ∈ R,
and handled by a teacher e ∈ Es, where Es ⊆ E denotes
the subset of eligible teachers for subject s. Moreover, each
teacher e ∈ E has a weekly teaching load limit in terms of the
number of units they can handle. The primary objective is to
generate a timetable that minimizes scheduling conflicts and
satisfies all constraints.

B. Self-Organizing Map (SOM)

To identify latent structure among subjects, a Self-
Organizing Map (SOM) is employed to perform unsupervised
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Fig. 1. Overview of the proposed hybrid SOM + SCDS + GA timetabling framework.

clustering. Each subject is encoded as a three-dimensional
feature vector comprising the normalized duration of the
subject, the normalized number of eligible teachers, and an
entropy-based randomization component to introduce diversity.
A 3×3 SOM neural grid is trained on these vectors to cluster
subjects with similar characteristics. These clusters inform the
scheduling process by promoting temporal or spatial coherence
in the arrangement of subjects, facilitating better initialization
and crossover phases in the genetic algorithm.

C. Secure Convex Dominating Set (SCDS)

A conflict graph G = (V,E) is constructed, where each
vertex v ∈ V represents a subject, and an edge exists between
two vertices if their corresponding subjects share at least one
eligible teacher, indicating a potential scheduling conflict. The
SCDS is then approximated using a greedy strategy to identify
a minimal subset of influential subjects that dominate the
graph. This concept is based on the work of Enriquez and
Canoy [47], who introduced Secure Convex Dominating Sets
(SCDS) as a way to control influence in a graph structure. Pri-
oritizing these subjects during initial chromosome generation
helps mitigate high-conflict areas early in the scheduling pro-
cess, thereby enhancing convergence and reducing constraint
violations in later generations.

D. Genetic Algorithm (GA)

The Genetic Algorithm operates on a population of candi-
date timetables, where each individual (chromosome) encodes
a full schedule as a mapping of subjects to assigned time

slots, rooms, and teachers. The initial population is generated
by assigning high-priority subjects (from the SCDS set) first,
followed by the remaining subjects, while respecting all con-
straints.

The fitness function evaluates each chromosome based on
the following criteria:

• Constraint satisfaction: All subjects must be scheduled
without violating teacher availability, room capacity, or
time overlaps.

• Teacher load balance: Minimize deviations from the
ideal teaching load for each teacher.

• Room utilization efficiency: Prefer compact and continu-
ous usage of rooms across the timetable.

Genetic operations include single-point crossover and adap-
tive mutation. Crossover is performed by swapping subsets
of assignments between two parent schedules, while mutation
introduces diversity by randomly reassigning a subject to a
different valid slot or room. Elitism is applied to preserve the
best-performing individuals across generations.

E. Hybrid Scheduling Algorithm

The following algorithm outlines the step-by-step process,
from preprocessing to final schedule generation:

www.ijacsa.thesai.org 53 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

Algorithm 1 Hybrid SOM + SCDS + GA Timetabling (Part
1)
Input: Subjects S, Rooms R, Teachers E, Durations D,
Eligibility Es

Steps:
1) Preprocessing and Clustering:

a) Encode each subject with a feature vector: duration,
number of eligible teachers, and injected random noise
for distributional diversity.

b) Train a Self-Organizing Map (SOM) to cluster subjects
based on these features.

2) Conflict Graph and Dominating Set Construction:
a) Construct a teacher conflict graph G where nodes

represent subjects and edges indicate shared teachers.
b) Approximate the Secure Convex Dominating Set

(SCDS) from G to identify high-impact subjects.
c) Prioritize subjects in the SCDS for early placement to

minimize downstream scheduling conflicts.
3) Initial Population Generation:

a) Generate an initial population of chromosomes (candi-
date schedules).

b) For each chromosome:
• Schedule subjects by SOM clusters and SCDS

order.
• Validate assignments against teacher eligibility,

classroom availability, and time slot constraints.

Algorithm 2 Hybrid SOM + SCDS + GA Timetabling (Part
2)
Steps (continued):

4) Evolutionary Optimization:
a) Iterate for a predefined number of generations:

• Evaluate fitness of each chromosome based on
metrics such as conflict count, fairness, and teacher
load balance.

• Select top-performing chromosomes for reproduc-
tion.

• Apply genetic operations—crossover and muta-
tion—to generate offspring.

• Form the next generation from selected elite and
new offspring.

5) Final Output Selection:
a) If a conflict-free schedule is found:

• Return the best-performing chromosome as the final
schedule.

b) Else:
• Return the most optimal fallback chromosome with

minimal constraint violations.
Output: A conflict-free (or near-optimal) academic schedule
that satisfies all hard constraints, including teacher eligibility,
subject duration, and room allocation.

F. Component Roles and Novelty

The proposed hybrid scheduling framework synergistically
combines three powerful computational techniques—Self-

Organizing Maps (SOM), Secure Convex Dominating Sets
(SCDS), and Genetic Algorithms (GA)—each fulfilling a
specialized role in the generation of conflict-free, constraint-
aware academic timetables. Their integration fosters both local
structure optimization and global solution quality. The distinct
roles of each component are outlined below:

1) SOM: Utilizes unsupervised neural clustering to group
subjects based on similarity across features such as normal-
ized duration, teacher eligibility breadth, and entropy-based
complexity. This clustering facilitates intelligent initial subject
placement, promoting spatial and temporal coherence while
minimizing room-time fragmentation and imbalance in teacher
assignments.

2) SCDS: Employs graph-theoretic principles to detect
a subset of critical, high-conflict subjects—typically those
associated with constrained teacher availability or high inter-
subject dependency. Scheduling these subjects early mitigates
potential deadlocks and improves the feasibility of downstream
allocations.

3) GA: Applies an evolutionary search process to itera-
tively improve timetable quality. Through genetic operations
such as crossover, mutation, and selection, GA explores the
solution space while satisfying hard constraints (e.g., teacher
eligibility, unit load, room capacity) and optimizing soft ob-
jectives (e.g., fairness, compactness, and load distribution). Its
population-based mechanism enhances exploration and avoids
premature convergence.

4) System novelty: The integration of neural clustering
(SOM), structural prioritization (SCDS), and evolutionary
refinement (GA) creates a flexible, adaptive, and efficient
scheduling framework. It balances local structure (conflict
resolution) and global optimization (fitness evolution), which
traditional heuristics or standalone AI models fail to achieve
effectively.

IV. RESULT AND DISCUSSION

To evaluate the efficiency and robustness of the proposed
hybrid timetabling system integrating Self-Organizing Maps
(SOM), Secure Convex Dominating Set (SCDS), and Genetic
Algorithm (GA), we conducted multiple simulation experi-
ments under various configurations.

A. Experimental Setup

All simulations were run on a machine with 16GB RAM
and an Intel i7 processor. Each test case varied in terms of:

• Number of subjects (|S|),

• Number of rooms (|R|),

• Number of teachers (|E|),

• Teacher eligibility density (fraction of subjects a teacher
can teach),

• Weekly teaching unit limits.

The system was tested on both moderate and worst-case
datasets. Worst-case scenarios were designed by:
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• Assigning multiple subjects to the same teacher,

• Having fewer rooms than needed,

• Reducing eligibility to create dense conflict graphs.

B. Simulated Test Cases

The simulated scenarios, summarized in Table I, represent
a progression from low-conflict to extreme-conflict environ-
ments. Each configuration is designed to evaluate specific di-
mensions of the system’s performance under increasing levels
of scheduling complexity.

C. Performance Metrics

We evaluated each configuration using the following met-
rics:

• Success Rate: Proportion of runs producing a valid
schedule,

• Avg. Runtime: Time (in seconds) required to produce a
solution,

• GA Convergence: Average number of generations to reach
feasibility.

Table II presents the quantitative results averaged over 10
independent runs for each test case.

D. Big O Time Complexity Analysis

To assess theoretical scalability, we analyze the algorithm’s
composite time complexity by decomposing it into its principal
modules.

Let:

• n = |S| (number of subjects),

• m = |R| (number of rooms),

• t = |E| (number of teachers),

• g (number of generations in GA),

• p (GA population size).

The asymptotic time complexity per component is as
follows:

• SOM Clustering: Linear in the number of subjects and
features, resulting in O(n).

• SCDS Approximation: Pairwise teacher-subject conflict
graph construction and dominating set estimation leads
to O(n2) in the worst case.

• GA Optimization: Each generation evaluates p chromo-
somes, and each chromosome evaluates n subject assign-
ments, yielding O(pn) per generation and O(gpn) in
total.

Thus, the total time complexity of the algorithm is:

O(n2 + gpn)

This complexity reflects a design balance: the quadratic
preprocessing phase (SCDS) enables reduced search space and
better initialization for the evolutionary GA component. While
GA dominates runtime in large-scale cases, its effectiveness
in pruning infeasible solutions early ensures practical conver-
gence for real-world datasets.

E. Discussion

The integration of Secure Convex Dominating Sets (SCDS)
significantly enhanced feasibility under high-conflict condi-
tions. In challenging scenarios such as TC4 and TC5, the
proposed hybrid system outperformed baseline heuristics (e.g.,
greedy and random-first-fit), which frequently failed to produce
valid schedules.

The Self-Organizing Map (SOM) component facilitated
pre-clustering of subjects based on duration, teacher eligibility,
and entropy. This clustering enabled tighter grouping of com-
patible subjects, reducing fragmentation in both room usage
and time allocation. Meanwhile, the Genetic Algorithm (GA)
component proved effective in refining schedules when initial
attempts failed, although it introduced higher runtime overhead
in worst-case instances due to longer convergence times.

Overall, the hybrid SOM + SCDS + GA framework demon-
strated the following advantages:

• High validity across complex scheduling cases,

• Graceful performance degradation in worst-case
conditions,

• Scalability suitable for small to moderately sized aca-
demic institutions.

1) Performance analysis in high-conflict scenarios: The
experimental results reveal that in “Very High” and “Extreme”
conflict scenarios (TC4 and TC5), the system’s success rate
dropped to 80% and 60%, respectively. This performance
degradation is attributed to the increased density of scheduling
conflicts and reduced solution space feasibility. To address
these limitations and improve convergence in extreme conflict
densities, we propose the following specific enhancement
strategies for integration into the existing SOM+SCDS+GA
framework:

• Local search integration Implement a hybrid GA-Local
Search approach where Simulated Annealing (SA) or
Tabu Search (TS) is applied to the best chromosomes in
each generation. Specifically:

◦ Apply SA with exponential cooling schedule
(Tk = T0 · αk, where α = 0.95) to the top 20%
of chromosomes

◦ Use neighborhood operations such as subject swapping,
time slot shifting, and teacher reassignment
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TABLE I. SIMULATED SCENARIOS AND CONFLICT CHARACTERISTICS

Test Case |S| |R| |E| Eligibility Density Max Units/Teacher Conflict Level

TC1 (Baseline) 20 6 10 0.6 18 Low

TC2 (Sparse) 40 10 20 0.8 18 Moderate

TC3 (Tight Rooms) 40 5 20 0.8 18 High

TC4 (Dense Conflicts) 30 6 10 0.4 15 Very High

TC5 (Worst Case) 50 4 8 0.3 12 Extreme

TABLE II. SIMULATION RESULTS ACROSS TEST SCENARIOS (10 RUNS
EACH)

Test Case Success Rate (%) Avg. Runtime (s) Avg. Generations

TC1 (Baseline) 100 1.8 12

TC2 (Sparse) 100 3.2 18

TC3 (Tight Rooms) 90 4.7 25

TC4 (Dense Conflicts) 80 6.9 35

TC5 (Worst Case) 60 10.3 50

◦ Integrate this as a post-processing step after GA
crossover and mutation operations

• Diversity-Preserving Strategies: Enhance population
diversity through:

◦ Niching mechanisms: Implement fitness sharing
to maintain multiple solution clusters, preventing
convergence to a single local optimum

◦ Adaptive mutation rates: Increase mutation probability
from 0.1 to 0.3 when population diversity falls below
a threshold

◦ Immigration strategy: Introduce 10% random
immigrants every 20 generations to maintain genetic
diversity

• Multi-Population Approach: Deploy multiple GA
populations with different initialization strategies:

◦ Population 1: SCDS-prioritized initialization (current
approach)

◦ Population 2: SOM cluster-based initialization with
different parameters

◦ Population 3: Random initialization with constraint-
guided repair mechanisms

◦ Exchange best individuals between populations every
15 generations

These enhancements would be integrated into the exist-
ing framework by modifying the GA component (Step 4 in
Algorithm 1) to include local search phases and diversity

mechanisms, while maintaining the beneficial preprocessing
effects of SOM clustering and SCDS prioritization.

2) Limitations: The current implementation requires fur-
ther optimization for extreme conflict densities such as TC5.
Future work will focus on implementing the proposed en-
hancement strategies and evaluating their effectiveness through
comparative studies in high-conflict scenarios.

V. CONCLUSION

This study presented a hybrid timetabling framework that
successfully integrates Self-Organizing Maps (SOM), Secure
Convex Dominating Sets (SCDS), and Genetic Algorithms
(GA) to address the complex scheduling needs of academic
institutions. By combining neural clustering, conflict-aware
prioritization, and evolutionary optimization, the system goes
beyond traditional scheduling techniques. It intelligently bal-
ances teacher availability, subject eligibility, room limitations,
and time constraints—key factors that often make timetabling
a tedious and error-prone task.

Simulation results across varied scenarios, including in-
tentionally difficult test cases, confirmed the system’s robust-
ness and adaptability. Even under high-conflict conditions, the
model generated feasible schedules with minimal compromise,
offering strong potential for real-world deployment in schools
and universities. The SOM component allowed subjects with
similar constraints to be grouped, while the SCDS ensured that
bottlenecks were addressed early in the scheduling process.
GA served as a flexible optimizer that adapted solutions over
time, especially when initial attempts failed.

Despite its strengths, the system’s performance in ex-
tremely constrained environments suggests opportunities for
further refinement—such as integrating local search or
diversity-preserving strategies to speed up convergence. Look-
ing ahead, the framework can be extended to support pref-
erences, co-teaching scenarios, or multi-campus institutions,
making it a valuable tool for smart academic planning in
dynamic educational environments.

While the current framework demonstrates promising re-
sults, several avenues for future research and development
emerge from this work. First, integrating local search tech-
niques such as simulated annealing or tabu search could
enhance convergence speed in extremely constrained environ-
ments. Additionally, implementing diversity-preserving strate-
gies within the GA component could prevent premature con-
vergence and maintain solution quality across longer optimiza-
tion runs. The framework’s modular design opens opportunities
for incorporating additional real-world complexities. Future
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extensions could include support for instructor preferences and
soft constraints, co-teaching scenarios where multiple faculty
members share course responsibilities, and multi-campus in-
stitutions with resource sharing across locations. Furthermore,
adaptive parameter tuning mechanisms could be developed
to automatically adjust SOM learning rates, SCDS selection
criteria, and GA operators based on problem characteristics.
From a practical deployment perspective, future work should
focus on developing user-friendly interfaces for academic ad-
ministrators, real-time constraint modification capabilities, and
integration with existing student information systems. Long-
term research directions include exploring deep reinforcement
learning approaches for dynamic rescheduling, incorporating
uncertainty modeling for enrollment fluctuations, and extend-
ing the framework to handle semester-long optimization with
mid-term adjustments. These enhancements would position
the hybrid framework as a comprehensive solution for smart
academic planning in increasingly dynamic educational envi-
ronments.
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