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Abstract—Structural variations (SVs) play a pivotal role in 

human genetics, influencing gene expression, disease mechanisms, 

and phenotypic diversity. Despite the advancements in short-read 

sequencing technologies, long-read sequencing offers superior 

resolution for detecting SVs, particularly in complex genomic 

regions. In this study, DeepIndel, a novel computational 

framework, is presented that leverages long-read sequencing data 

combined with a deep learning model to identify SV breakpoints 

accurately. This approach captures complex breakpoint patterns 

by aligning long reads to a reference genome and extracting 23 key 

features at each genomic location, including read support, 

candidate length, and strand-specific information. DeepIndel has 

been evaluated on the HG002 dataset, achieving exceptional 

performance with high precision and reliability in detecting 

insertions and deletions, with F1 scores (94.27% for insertions, 

91.09% for deletions) and thereby demonstrating significant 

improvements over existing state-of-the-art tools, offering a more 

precise and robust approach to SV detection. This work advances 

structural variant analysis, with promising implications for 

genomic research, disease understanding, and personalized 

medicine. 
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I. INTRODUCTION 

The average human genome differs by 4 to 5 million 
positions compared to the reference genome, resulting in 
approximately 20 million altered nucleotides [1]. These 
variations fall into three broad categories: single-nucleotide 
polymorphisms (SNPs), small insertions and deletions (indels), 
and structural variations (SVs). SVs, typically defined as 
genomic alterations exceeding 50 base pairs, introduce more 
base pair changes than SNPs and are enriched 50-fold for 
quantitative trait loci, underscoring their significant role in 
phenotypic diversity and disease [2],[3]. These variations 
profoundly influence gene expression, chromatin structure, and 
genome stability, and they are associated with numerous 
conditions, including cancer, neurological disorders such as 
autism and schizophrenia, and metabolic diseases like obesity 
[4],[5]. Their central role in human biology makes 
understanding SVs essential for advancing precision medicine 
and uncovering the genetic underpinnings of complex diseases. 
Recent large-scale analysis, such as those examining structural 
variation across 1,019 diverse human genomes using long-read 

sequencing, further underscore the need for precise SV detection 
methods to capture the full spectrum of genomic diversity [6]. 

Next-generation sequencing (NGS) technologies have 
revolutionized the detection of genomic variants, offering two 
primary approaches: de novo assembly and read alignment. De 
novo assembly, which constructs genomes without using a 
reference, provides an unbiased strategy for variant discovery 
[7], but is computationally demanding, making it less practical 
for routine applications [8]. In contrast, alignment-based 
methods rely on existing genomic knowledge to efficiently 
identify variants, providing a cost-effective solution [9]. 
However, short-read sequencing data have inherent limitations, 
including reduced sensitivity for large SVs, difficulties in 
resolving repetitive or low-complexity regions, and inaccuracies 
in split-read mapping. These challenges are further exacerbated 
by sequencing biases and the diploid nature of the human 
genome, limiting the comprehensive detection of SVs [10], [11]. 

Various computational tools have been developed to address 
the limitations of short-read sequencing. Dysgu, for example, 
uses machine learning and deep learning algorithms to enhance 
the sensitivity and precision of SV detection [12]. Despite these 
advancements, short-read sequencing inherently struggles with 
resolving large-scale genomic rearrangements and low-
mappability regions. This limitation has driven the adoption of 
long-read sequencing technologies, such as Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT). These 
platforms produce reads tens of kilobases in length, enabling 
direct and detailed characterization of SVs, including those in 
complex genomic contexts. Tools like Pepper Margin 
DeepVariant exemplify the potential of long-read data in 
detecting single-nucleotide variants (SNVs) and SVs with high 
accuracy, even in regions with segmental duplications or other 
challenging genomic features [13]. 

Long-read sequencing has significantly advanced our ability 
to map and characterize SVs, overcoming many limitations of 
short-read methods. The extended read lengths allow for the 
detection of previously undetectable variants and improve 
mapping accuracy in repetitive and low-complexity regions. 
Recent studies have highlighted the utility of long reads in 
resolving complex genomic rearrangements and characterizing 
mobile elements, offering deeper insights into human genetic 
variation [14],[15]. Computational tools designed for long-read 
sequencing data, such as Sniffles [16], cuteSV [17], and SVIM 
[18], have significantly improved the sensitivity and precision 
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of SV detection. DeBreak [19], a more recent tool, employs 
density-based clustering to enhance breakpoint accuracy, 
particularly for large insertions and deletions. Additionally, pbsv 
[20] (developed by Pacific Biosciences) focuses on detecting 
structural variants with high precision and recall using HiFi 
long-read data, making it highly suitable for resolving SVs in 
challenging genomic regions. Another tool, NanoVar [21], is 
optimized for ONT and PacBio long-read data and demonstrates 
notable accuracy in detecting both small and large SVs by 
combining sequence information with sophisticated algorithms 
for breakpoint characterization. Lastly, combiSV [22] 
incorporates a comparative genomics-based approach to 
leverage existing reference datasets, enabling improved 
detection of complex SVs, particularly in repeat-rich regions, by 
integrating genomic signatures from multiple samples. Despite 
these advances, challenges persist, including the effective 
integration of multi-locus rearrangements and the detection of 
SVs in repetitive regions. 

There are two main approaches for detecting indels from 
long-read sequencing: alignment and assembly. Tools like 
Sniffles, cuteSV, and SVIM rely on signature detection and 
clustering, yet they struggle with breakpoint accuracy in 
repetitive regions, with benchmarks indicating recall below 90% 
[16]. DeBreak employs density-based clustering to improve 
large indel detection, while NanoVar and pbsv are optimized for 
ONT and HiFi reads, respectively, though limitations persist 
[19], [20]. Recent advancements, such as SAVANA [29], use 
haplotype-resolved analysis for somatic SVs and tumor purity 
estimation but are less effective for germline indels, and 
SUMMER [30] offers a Nanopore pipeline for variants without 
DeepIndel’s ResNet-based feature learning. MEHunter [31] 
leverages transformers for mobile element variants, and 
TEforest [32] applies machine learning to TE indels from short 
reads, highlighting gaps in long-read generalization and diploid 
context handling. DeepIndel addresses these shortcomings with 
distinct advantages: 1) 23 strand-specific features enhance 
breakpoint resolution in complex regions, 2) a ResNet-50 
architecture, extending Pepper-Margin [13], mitigates vanishing 
gradients through residual connections for deeper, more 
effective learning, 3) superior F1 scores (94.27% insertions, 
91.09% deletions on HG002) outperform Sniffles and DeBreak, 
and 4) tailored optimization for PacBio HiFi reads outpaces 
Nanopore-focused tools like SUMMER. Compared to deep 
learning models in similar fields, DeepIndel surpasses MAMnet 
(a CNN for indel genotyping with simpler layers) [33] and 
SVcnn (a multi-type SV tool with ~88–90% F1) [34], achieving 
a 3 to 5% F1 improvement due to its specialized feature 
matrices. These strengths position DeepIndel as a robust 
solution for precision medicine, particularly for detecting 
disease-associated indels in challenging genomic landscapes. 

While current methods excel in isolated breakpoint 
detection, they often fail to account for the interconnections 
between loci involved in complex rearrangements. Here, we 
propose a novel computational method designed to address these 
gaps. This approach leverages the power of long-read 
sequencing to accurately detect and classify three distinct SV 
categories, including large insertions and deletions of unique 
genomic elements. By incorporating advanced computational 
techniques, it demonstrates superior precision and recall 

compared to existing tools when applied to real-world datasets. 
This innovative methodology provides a robust framework for 
improving indel detections and understanding its implications in 
human genetics and precision medicine. 

II. MATERIALS AND METHODS 

The Pepper-Margin DeepVariant uses a frequency-based 
caller to identify the single-nucleotide variants (SNVs) and short 
indels [13]. In DeepIndel, this approach of Pepper-Margin has 
been extended by effectively using the prior knowledge we had 
about our datasets. Our method (Section II.E) tends to look for 
the exact location of breakpoint events as mentioned in the BED 
(Browser Extensible Data) files. By analyzing the different 
features around these breakpoints, the model can effectively call 
for SVs at different genomic locations of the human genome 
with an excellent level of fidelity. 

A. Model 

DeepIndel centers around a deep learning (CNN)-based 
residual network architecture designed for multi-class 
classification. The inputs to the network are the feature matrices 
extracted from our positive and negative samples (Section II B). 
The matrices are then fed to a neural network. Upon training the 
network, it finally predicts which SVs are the most likely to 
occur at a specific location. A high-level overview of the model 
can be seen in Fig. 1. 

 
Fig. 1. High-level overview of the model. 

B. Sample Extraction 

In this three-class (namely: Insertion, Deletion and Non-
Indel) SV classifier, we denote the Insertion and Deletion 
candidates as the set of positive samples and the Non-Indel 
candidates as the set of negative ones. 

 

Fig. 2. Placing windows at deletion breakpoints. 

1) Positive samples: 

a) Insertion: At the positions where an insertion 

breakpoint is encountered (either the beginning or ending one), 

we place our windows at those locations to obtain the features 

(Section D) for the generation of our input image matrices.  

b) Deletion: Likewise, at the deletion breakpoints, we 

place our windows at the beginning or ending locations, where 

the breakpoints are mentioned. Fig. 2 depicts a 104 bp (base 

pairs) long deletion event and an emplacement of our windows 

is shown in this figure. 
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2) Negative samples: In the case of non-indels, we choose 

random genomic locations in the sample other than any of the 

insertion or deletion events to place our windows. To 

successively obtain these, we choose the regions between the 

ending and starting breakpoints of two consecutive events, 

respectively. An example of emplacement is shown in Fig. 3. 

 
Fig. 3. Choosing window placement for non-indels. 

C. Creating a Summary of Potential Variants 

The main pipeline of our proposed model first creates a 
summary of potential candidate variants at the different window 
locations. To achieve this, we follow the steps outlined below: 

All the reads that have a mapping quality greater than the 
threshold min_mapq are chosen initially. The mapping quality 
refers to how confidently a particular read has been mapped to a 
specific position in the reference genome. Next, for the INDEL 
variants, the candidates with average base quality above 
min_indel_baseq are considered among the initial ones. 

To precisely identify the insertion or deletion candidates, we 
identify the insertion positions with a cumulative insertion 
frequency higher than insert_frequency and a cumulative 
deletion frequency higher than delete_frequency. These 
thresholds are checked independently for insertions and 
deletions, and all potential variant candidates from here are 
recorded. For each candidate, a final additional filtering is 
performed to ensure that at least candidate_support_threshold 
reads support the variant. 

D. Obtaining Feature Matrix 

After choosing the potential candidate variants, we extract a 
feature matrix from those windows, or “sites”. The matrix 
represents a summary of the read alignments in those respective 
sites. 

In the input matrices, we encode four different features in a 
total of 23 rows (see Fig. 4). The dimension is chosen to include 
both the features of the forward strands and the reverse strand 
reads in a single matrix. We represent the matrices here as RGB 
images to illustrate the comparative values obtained at each 
index and to differentiate among the four nitrogenous bases and 
their respective events. 

Here we describe the list of features that are encoded in our 
Feature Matrix: 

 REF: Encoding of the Reference Base. The four different 
bases are converted to four colors. We used the encoding 
mapping as A: “Blue”, G: “Green”, T: “Yellow”, and C: 
“Red”. 

 IL, DL: Encoding of the candidate length of the INDELs. 
I and D are used based on the candidate types, Insert and 
Delete, respectively. 

 RF: Count of the forward strand reads that support the 
reference allele. 

 IS, DS: Count of the forward strand reads that support the 
alternate allele. I and D are used based on candidate 
types, Insert and Delete, respectively. 

 AF, GF, TF, CF: Total read count in forward strands 
expressing each base. The opacity of the colors is scaled 
in the range [0, 255]. The opacity is increased if its base 
has a higher frequency. 

 IF: Total number of insertions based on forward strand 
reads. 

 DF: Total number of deletions observed at specific 
positions in the genome, based on forward-strand reads 
that are anchored to those positions. 

 ∗F: Total number of deletions observed from forward 
strand reads, without anchoring them to particular 
positions in the genome. 

For reverse strands, these features are encoded identically 
(denoted with R). 

In summary, the following set of metrics is encoded from the 
above features (as mentioned in Fig. 4): 

1) Candidate length: The length of candidates at a certain 

position or over a span of region, denoted by IL and DL. 

2) Read support: The number of reads supporting the 

reference allele. Since multiple candidates can be reported by 

different reads over the same specific region, the read support 

is calculated as the percentage of reads that support the same 

signature there. It is denoted by RF (for the reference allele) and 

IS, DS (for the alternate allele). 

3) Base counts: The number of bases that are aligned with 

the reads on a specific column, denoted by AF, GF, TF and CF. 

4) Candidate counts: The number of candidates being 

reported over a specific region. It is counted as the actual counts 

of candidates that are reported by several reads over a span of 

region, denoted by IF, DF and ∗F. 

 
Fig. 4. Encoding of features. 
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E. The Network Architecture 

We fundamentally used a modified version of the ResNet-
based architecture (see Fig. 5) to train our dataset. Our model 
comprises four layers from an upper level, with each consisting 
of three convolutional layers along with batch normalizations 
and ReLU activations. In between the layers, we used dropout 
regularizations to avert overfitting to the training data. We 
trained our model using a batch size of 512 for 200 epochs, 
optimizing with the Adam algorithm at a learning rate of 0.1. 
The loss function employed was Cross-Entropy Loss. For 
activation functions, we used ReLU in the mid-level layers and 
SoftMax in the output layer. We have used the modified version 
of ResNet-50, which incorporates specific optimizations tailored 
to our dataset and task requirements. ResNet (Residual 
Network) is preferred over other well-known models like 
VGG16 and GoogleNet due to its superior handling of the 
vanishing gradient problem, allowing it to train much deeper 
networks effectively. This is achieved through the introduction 
of residual connections, which facilitate the learning of residuals 
rather than direct mappings, thereby improving performance and 
efficiency [23], [24], [25]. Comparative studies have 
demonstrated that ResNet-50 consistently outperforms VGG16 
and GoogleNet in various benchmarks, making it a more reliable 
and efficient choice for deep learning tasks [24]. The matrices 
initially extracted are 23×33 by dimension, where the 23 rows 
represent the features and the 33 columns indicate one window 
size. We resized these into 30×30 square images to be fed into 
the network. For each pass throughout the whole network, we 
used a SoftMax activation in the end for classifying our three 
signatures: Insertion, Deletion and non-indels. The convolution 
layers comprise a deep architecture that effectively identifies the 
subtle changes in patterns along with the indicative SVs 
throughout its learning process. The residual layers are also used 
for preserving the significant variation features across layers. 

 
Fig. 5. The overall network architecture for DeepIndel. 

F. Validation Metrics 

To test DeepIndel, we took the HG002 dataset, which has 
confirmed structural variant (SV) annotations from the Genome 
In A Bottle (GIAB) project, as it is a gold-standard benchmark. 
We analyzed the model’s performance by assessing its precision 
(true positives / [true positives + false positives]), recall (true 
positives / [true positives + false negatives]), and F1-score 
(harmonic mean of precision and recall) using the model’s 
evaluation framework from the previous section. All of these are 
important for assessing its performance. Having a high degree 
of performance is important because it decreases the number of 
incorrect diagnoses, which is particularly important in clinical 
settings. Strong recall, however, ensures that indels associated 
with rare diseases are captured, which adds value to the genetic 
studies. The F1-score is particularly useful as a summary 
measure in model evaluation, especially in precision medicine, 
where both sensitivity and specificity are important, and it 
measures the degree to which precision and recall work in 
tandem. Comparisons presented in subsequent sections illustrate 
how DeepIndel can be guided to better detect SVs in challenging 
genomic contexts using this validation technique. 

III. DATASET PREPARATION 

A. Benchmark Datasets 

To assess the performance of DeepIndel, we used the PacBio 
HiFi2 long-read sequencing dataset with the GRCh37 human 
genome as the reference genome. We used a well-characterized 
reference sample, HG002 (Source: AshkenazimTrio/NIST SVs 
Integration v0.6), from the GIAB (Genome In A Bottle) projects 
[28]. 

B. Preprocessing 

To make the dataset suitable for our model, we had to 
perform some preprocessing on our dataset. Most of the 
processing was done on the Ubuntu 20.04 operating system. 

1) Read alignment: DeepIndel accepts sorted BAM files as 

input and utilizes state-of-the-art long-read aligners to construct 

SV detection pipelines. Aligners that demonstrate robust 

performance in handling large insertions and deletions or that 

are capable of generating accurate split alignments are 

particularly preferred. For our framework, we aligned the 

simulated reads to our reference genome GRCh37 using 

Minimap2 (v2.17-r941) [26]. Minimap2 initially generates a 

file in SAM format, which is a text-based generic alignment 

format used for storing read alignments against a reference 

sequence. Next, to get the sorted BAM, we used Samtools [27] 

to convert the SAM format to its respective BAM. 

2) Indexing of VCF file: The BED files were first converted 

into VCF (Variant Call Format) files to enable the 

representation of genomic variants. This conversion was done 

using bed2vcf. Subsequently, the VCF index files were 

generated to facilitate the matching of records at each 

breakpoint position. For this purpose, we utilized tabix. The 

VCF files being indexed with tabix enabled us to query for 

specific genomic regions, allowing for the retrieval of variants 

located within those regions. 

ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6
ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6
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IV. RESULTS 

A. Evaluation Criteria 

To evaluate the performance of different SV callers along 
with DeepIndel, each of them was given a task to identify 
variants from the same chromosomal locations in our test 
dataset. Initially, all 22 chromosomes from GRCh37 were taken 
and using the above-mentioned pipeline, we received around 
31000 positive and 19700 negative samples (as 2D matrices). 
Then we split into a 60:15:25 ratio for training, validation and 
testing sets, respectively. The models were trained individually 
with train and validation datasets, taking 30×30 feature matrices 
as input. After being fed into the network, the outcomes were 
measured based on the performance scores for successfully 
calling variants at each possible location. 

B. Performance in Long Reads 

In this section, the performance comparison of DeepIndel is 
presented with state-of-the-art structural variant calling models 
like DeBreak, pbSV, cuteSV, Sniffles, and SVIM. The 
comparison was made across their precision, recall and F1-
score. 

1) Insertion: DeepIndel demonstrates superior insertion 

precision, outperforming all other models except SVIM with an 

impressive precision rate of 93.19%. For recall, DeepIndel 

demonstrates a strong performance too, with a recall rate of 

95.38%. DeepIndel achieves an F1 score of 94.27%, ranking 

highly among all models and presenting an excellent balance 

between precision and recall. Fig. 6 illustrates these 

performance metrics for each model on insertions. 

 

 

 
Fig. 6. Performance comparison in insertion: precision, recall, f1-score. 

 

 

 
Fig. 7. Performance comparison in deletion: precision, recall, f1-score. 
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2) Deletion: DeepIndel exhibits strong performance in 

precision for deletions, achieving a precision rate of 90.42%, 

which is competitive with other models. For recall, DeepIndel 

achieves 91.76%, positioning it favorably compared to the other 

models. Regarding the F1-score, DeepIndel ranks well with a 

value of 91.09%, highlighting a good overall balance between 

precision and recall compared to the other models. Fig. 7 

illustrates these comparisons on deletions. 

V. DISCUSSION 

DeepIndel achieved outstanding accuracy in detecting SVs 
for the HG002 dataset, demonstrating the effectiveness and 
robustness of our approach. The high precision and recall rates, 
along with competitive F1 scores for both insertions and 
deletions, underscore the reliability of DeepIndel in variant 
calling tasks. The significance of these validation measures lies 
in their direct relevance to clinical utility: high precision reduces 
the risk of erroneous variant calls that could mislead therapeutic 
decisions, while robust recall ensures no critical SVs are missed 
in disease studies. The F1-score, achieving 94.27% for 
insertions and 91.09% for deletions, reflects a balanced 
performance that is essential for trustworthy genomic analysis. 
Thus, it’s highlighting its strong performance overall. However, 
the model’s performance was slightly better for insertions than 
for deletions. This variation in performance can be attributed, in 
part, to the characteristics of the benchmark dataset. The model 
was evaluated on the latest, most conserved BED file for HG002 
(HG002 SVs Tier1 v0.6.2.bed), which contains 5260 insertions 
and 4138 deletions [22]. The higher representation of insertions 
in the dataset provides a richer training and evaluation context 
for the model, potentially contributing to its superior precision 
and recall for insertions. In contrast, the slightly lower 
performance for deletions may reflect the relatively smaller 
number of examples available, as well as inherent challenges in 
accurately identifying deletions within the genomic sequence.  

While DeepIndel’s performance is commendable, there is 
room for improvement in refining feature extraction and 
window positioning near breakpoint candidates to address edge 
cases for deletions. Nevertheless, the consistent and competitive 
results across various performance metrics establish DeepIndel 
as a highly effective tool for SV detection. The findings from the 
HG002 dataset confirm the robustness of DeepIndel’s 
methodologies and its potential for broader genomic 
applications. Addressing minor limitations in feature extraction 
and ensuring robust truth datasets will further enhance the 
reliability and accuracy of the model. 

VI. CONCLUSION 

In this study, a novel deep learning framework, DeepIndel, 
was designed to enhance the accurate detection of indels from 
long-read sequencing data. By leveraging a comprehensive set 
of 23 genomic features extracted from aligned reads, the model 
effectively captures complex breakpoint patterns in challenging 
genomic regions. Trained on the HG002 benchmark dataset 
using a modified ResNet-50 architecture with residual 
connections, dropout regularization, and cross-entropy loss 
optimization, DeepIndel processes significant feature matrices 
to classify genomic sites as insertions, deletions, or non-indels 
with high fidelity. 

DeepIndel's advancements highlight the transformative 
potential of integrating long-read sequencing with deep learning 
for SV analysis, addressing limitations in traditional methods, 
such as difficulties in repetitive regions and interconnected loci. 
By improving precision and recall, this approach facilitates more 
reliable insights into genomic diversity, gene expression 
alterations, and disease associations, including cancer, 
neurological disorders, and metabolic conditions. This 
contributes to the broader goals of precision medicine, enabling 
better characterization of phenotypic diversity and personalized 
therapeutic strategies. 

Despite these strengths, some limitations and future 
opportunities are acknowledged that include potential 
refinements needed in feature extraction and window 
positioning to handle edge cases. Future directions will focus on 
expanding evaluations to diverse datasets beyond HG002, 
incorporating additional SV types like inversions and 
duplications, and optimizing for real-time clinical applications. 
Overall, DeepIndel marks a significant advancement in SV-
calling tools, paving the way for enhanced genomic research and 
its translation into impactful clinical outcomes. 
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