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Abstract—This study develops and validates an artificial 

neural network (ANN) model to predict mining-induced land 

subsidence in Saudi Arabia’s Al-Jalamid and Umm Wu’al 

phosphate mines. A multilayer perceptron is used with optimized 

hyperparameters based on four inputs (ground point position, 

distance from extraction center, accumulated exploitation 

volume, and time). The optimal configuration (5 hidden layers, 

64 nodes, 240 epochs) achieves RMSE = 22 mm and MAE = 13 

mm, outperforming traditional numerical/statistical baselines. 

Case-study validation at both mines confirms robustness (e.g., 

RMSE ≈ 20 mm, MAE ≈ 12 mm), enabling practical mitigation 

such as ground reinforcement and extraction-rate control. The 

results demonstrate that a tuned ANN provides accurate, 

operationally useful subsidence forecasts, supporting safer and 

more sustainable mine planning. 
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I. INTRODUCTION 

Phosphate mining is a cornerstone of Saudi Arabia's mining 
industry, playing a pivotal role in the nation's economic 
development. As one of the world's largest producers of 
phosphate, Saudi Arabia contributes significantly to global 
fertilizer production, which is essential for sustaining 
agricultural productivity and food security. The Al-Jalamid and 
Umm Wu'al phosphate mines, located in the Northern Borders 
Province, are among the most significant reserves globally, 
with extensive deposits that support both domestic and 
international demand. However, the extraction of phosphate is 
not without its challenges. Mining activities, particularly 
underground operations, often lead to environmental and 
geological disturbances, with land subsidence being one of the 
most critical issues. Subsidence can result in the sinking or 
settling of the ground surface, leading to infrastructure damage, 
environmental degradation, and increased operational risks. 
These impacts are exacerbated in arid regions like Saudi 
Arabia, where the geological formations are susceptible to 
deformation due to mining activities. 

Mining-induced subsidence poses significant risks to both 
the environment and infrastructure. In Saudi Arabian 

phosphate mines, the extraction of phosphate-rich layers 
disrupts the geological equilibrium, causing the overlying strata 
to collapse or settle. This subsidence can lead to the formation 
of sinkholes, cracks in the ground surface, and damage to 
nearby infrastructure such as roads, pipelines, and buildings. 
Additionally, subsidence can alter groundwater flow patterns, 
further exacerbating environmental concerns in a region 
already facing water scarcity. Accurate prediction of 
subsidence is therefore essential for mitigating these risks, 
enabling mine operators to implement preventive measures, 
optimize extraction processes, and ensure the safety and 
sustainability of mining operations. Despite advancements in 
predictive modeling, the complex interplay of geological, 
hydrological, and operational factors makes subsidence 
prediction a challenging task, necessitating the development of 
robust and reliable models. 

Over the past decade, various methodologies have been 
proposed to predict mining-induced subsidence, ranging from 
traditional numerical: [1] analyzed land subsidence using 
monitoring and numerical simulation in linear engineering 
areas, [2] modeled surface subsidence in coal mines through a 
bonded block numerical method, and [3] examined the 
geotechnical characterization of phosphate mining waste 
materials for pavement applications. Furthermore, [4] 
compared statistical and machine learning approaches for land 
subsidence modelling, [5] proposed a novel prediction method 
using data assimilation techniques, and [6] introduced a 
probability integral model integrated with active and passive 
remote sensing data to monitor subsidence. Numerical 
methods, such as the two-dimensional seepage model, quasi-
three-dimensional seepage model, and fully coupled three-
dimensional method, offer relatively straightforward 
implementation and interpretation [7-8]. While these methods 
provide detailed insights into subsidence mechanisms, they 
often require extensive computational resources and precise 
input parameters, limiting their practical applicability. 

Statistical techniques, including time-series modeling [9-
11], regression analysis [12-13], and Grey theory [14-16] offer 
simpler alternatives but are often constrained by their inability 
to capture the nonlinear relationships inherent in subsidence 
data. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

529 | P a g e  

www.ijacsa.thesai.org 

Recent advancements in artificial intelligence (AI) have 
revolutionized subsidence prediction, with machine learning 
models such as Support Vector Machines (SVMs) and 
Artificial Neural Networks (ANNs) demonstrating superior 
performance. SVMs, known for their ability to handle high-
dimensional data, have been successfully applied in subsidence 
prediction, particularly in cases with limited datasets [17-18]. 
However, their scalability remains a concern for large-scale 
mining operations. ANNs, on the other hand, have gained 
prominence due to their ability to model complex, nonlinear 
relationships and adapt to diverse datasets [19-21]. Studies 
have highlighted the effectiveness of ANNs in predicting 
subsidence, particularly when integrated with remote sensing 
and geographic information system (GIS) data. Despite these 
advancements, there is a need for further research to optimize 
ANN architectures, improve prediction accuracy, and address 
the challenges associated with long-term subsidence 
forecasting. The ANN model can be used to predict subsidence 
at different locations and times, helping mine operators to 
minimize subsidence, implement mitigation measures to 
protect infrastructure and the environment, monitor subsidence 
trends over time. 

Despite various numerical and statistical models for 
subsidence prediction, their applicability is often limited by 
computational constraints and the complexity of subsurface 
interactions. Traditional methods struggle to account for 
nonlinear geological behaviors, making them unsuitable for 
large-scale, real-time applications. This study aims to address 
this gap by developing an ANN model tailored to the unique 
geological and operational conditions of Saudi Arabian 
phosphate mines offering a robust alternative for subsidence 
prediction. 

By leveraging advanced machine learning techniques, the 
proposed model seeks to provide accurate and reliable 
subsidence predictions, contributing to the sustainable 
management of mining operations and the mitigation of 
environmental risks. 

This study presents an artificial neural network (ANN) 
model for predicting mining-induced subsidence in Saudi 
Arabian phosphate mines. The paper is structured as follows: 
Section II provides an overview of the study area, including 
geological characteristics and mining conditions. Section III 
details the methodology, describing the ANN model 
architecture, feature selection, and training process. Section IV 
presents the results, including model performance evaluation 
and validation. Finally, Section V concludes the study with key 
insights and recommendations for future research. 

II. STUDY AREA 

As two of the world's largest phosphate reserves, the Al-
Jalamid and Umm Wu'al mines in Saudi Arabia's Northern 
Borders Province possess unique geological and economic 
significance. Their sedimentary formations, characterized by 
alternating limestone, shale, and phosphorite layers, make them 
highly susceptible to subsidence. Previous studies have 
reported significant subsidence events in these mines, 
highlighting the need for advanced predictive models. The 
presence of Tunnel Boring Machines (TBMs) further 

complicates ground stability, making these sites ideal for 
testing AI-driven predictive frameworks. 

  
Fig. 1. Geological framework of the sirhan-turayf basin: distribution of 

phosphate deposits and study sites. 

Fig. 1 presents the Al-Jalamid and Umm Wu'al phosphate 
mines in northern Saudi Arabia, among the world's largest 
phosphate reserves, crucial for global fertilizer production. Al-
Jalamid is a major underground mining site where extraction 
has led to land subsidence and high disc cutter consumption in 
TBMs. The region’s sedimentary formations (limestone, shale, 
phosphate-rich layers) present geological and environmental 
challenges due to its arid climate and limited groundwater. 

 
Fig. 2. Stratigraphic columns of phosphate-bearing formations in Hazm Al-

Jalamid and Umm Wu’al. 

Fig. 2 introduces the phosphorite deposits at Hazm Al-
Jalamid range from friable sandy-calcareous to hard compact 
formations, reflecting depositional and diagenetic variations 
that influence mining methods and geotechnical behavior. The 
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Thaniyat Phosphorite Member comprises two main 
phosphorite horizons: Lower Phosphorite Zone (LPZ) and 
Upper Phosphorite Zone (UPZ). 

The LPZ consists of calcareous and dolomitic phosphorite 
beds (3–4 m thick), rich in bioclastic fragments, indicating a 
marine depositional environment. The UPZ, 4–7 m thick (avg. 
6 m), contains sparry calcite lenses, argillaceous cement, and 
vuggy structures, suggesting post-depositional diagenesis and 
bioturbation. A 12-meter-thick sand, clay, and limestone 
sequence overlies the UPZ. 

An intermediate horizon (0.5–5 m thick) between LPZ and 
UPZ consists of low-grade phosphatic dolomitic limestone 
with quartz geodes and chert nodules, marking a transitional 
depositional setting influenced by sedimentological and 
chemical variations. 

III. ARTIFICIAL NEURAL NETWORKS 

The dataset employed in this study was collected from 
monitoring records of the Al-Jalamid and Umm Wu’al 
phosphate mines located in the Northern Borders Province of 
Saudi Arabia. It consists of ground deformation measurements 
covering multiple observation points distributed across 
subsidence-prone areas. Four primary variables were included: 
(i) ground point positions (Y), representing the spatial 
coordinates of monitoring stations along the subsidence trough; 
(ii) distance from the extraction chamber center (L), indicating 
the horizontal offset of each point from the center of mining 
activity; (iii) accumulated exploitation volume (V), defined as 
the total phosphate volume extracted up to a given 
measurement epoch; and (iv) time (T), denoting the elapsed 
duration since the initiation of mining operations. 

The dataset underwent several preprocessing steps to 
ensure consistency and reliability. Missing values were 
handled using linear interpolation for continuous features, 
while outliers were identified and removed. All input features 
were normalized to a [0, 1] range to eliminate scale differences 
and enhance model convergence. Following preprocessing, the 
dataset was divided into three subsets: 70% for training the 
artificial neural network (ANN), 15% for hyperparameter 
validation, and 15% for final performance testing. This 
partitioning ensured robust evaluation and reduced overfitting 
risks. 

A. Artificial Neural Network Architecture 

Fig. 3 presents the proposed ANN model is designed to 
predict mining-induced subsidence using a multilayer 
perceptron (MLP) architecture. The model consists of three 
primary components: an input layer, hidden layers, and an 
output layer. 

1) Input layer: The input layer comprises four neurons, 

each corresponding to one of the input variables: 

a) Ground point positions (Y): The spatial coordinates 

of monitoring points along the subsidence trough. 

b) Distance from extraction chamber center (L): The 

horizontal distance from the center of the mining activity to 

each monitoring point. 

c) Accumulated exploitation volume (V): The total 

volume of phosphate extracted up to the measurement epoch. 

d) Time (T): The elapsed time since the start of mining 

operations. 

2) Hidden layers: The model includes two hidden layers, 

each containing 64 neurons. The number of hidden layers and 

neurons was determined through validation, balancing model 

complexity and generalization performance. The Rectified 

Linear Unit (ReLU) activation function was used for the 

hidden layers, as it effectively mitigates the vanishing gradient 

problem and accelerates convergence during training. 

3) Output layer: The output layer consists of a single 

neuron that predicts the subsidence value (η). A sigmoid 

activation function was employed in the output layer to ensure 

that the predicted subsidence values fall within a realistic 

range (0 to 1, normalized to the maximum observed 

subsidence). 
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Fig. 3. Architecture of the Backpropagation Neural Network (BPNN) for 

subsidence prediction. 

B. Data Preprocessing 

The dataset used for training and testing the ANN model 
was preprocessed to ensure optimal performance. The 
preprocessing steps included as it is illustrated in Fig. 4: 

1) Data cleaning: Missing values in the dataset were 

addressed using linear interpolation for continuous variables 

and mode imputation for categorical variables. Outliers were 

detected and eliminated from the dataset. 

2) Normalization: All input variables were normalized to a 

range of [0, 1] using min-max scaling to ensure that features 

with larger magnitudes did not dominate the training process. 

The normalization formula is given by: 

Xnorm=(X−Xmin)/(Xmax−Xmin) 

where Xmin and Xmax are the minimum and maximum 
values of the feature, respectively. 

3) Feature selection: A correlation analysis was 

conducted to identify and remove highly correlated features, 

reducing redundancy and improving model efficiency. The 

final set of features included ground point positions, distance 
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from the extraction chamber center, accumulated exploitation 

volume, and time. 

4) Data splitting: To ensure rigorous model assessment, 

the data were split into three subsets: 70% for training the 

ANN, 15% for hyperparameter validation, and 15% for final 

performance testing. 

Specify the architectural 

configuration of ANN model

Specify the different parameters

Normalize the input and output data 

Initialize the parameter weights 

for ANN model

Partition the dataset into two subsets 

Train the model 

with training data

Apply the model to 

test data

Trained network

Land subsidence prediction model

Y L V T η

 
Fig. 4. Workflow of the ANN model for land subsidence prediction. 

C. Model Training 

In Artificial Neural Network (ANN) models, each neuron 
in the input layer receives an assigned input, which is 
transmitted to neurons in subsequent layers through weighted 
connections. These weights, ranging from -1 to 1, represent the 
relative importance of each connection. To determine the 
neuron’s response, an activation function is applied to the 
weighted input, producing an output value. If this value 
exceeds a predefined threshold, the neuron becomes active; 
otherwise, it remains inactive. 

In the output layer, the discrepancy between the predicted 
and actual output is quantified as an error. Through a process 
known as backpropagation, this error propagates backward 
through the network, adjusting the weights of preceding layers. 
This iterative process continues until the error converges below 
a specified threshold, optimizing the network’s predictive 
accuracy. 

Following the training phase, the validation and testing 
phases commence. During validation, hyperparameters such as 
training duration, learning rates, and the number of neurons in 
hidden layers are fine-tuned to enhance model performance. 
The testing phase assesses the model’s generalization ability, 
evaluating its predictive accuracy on unseen data. The final 
model is selected based on its optimal performance metrics. 

The GIS-integrated ANN framework utilized a 
backpropagation neural network (BPNN) for land subsidence 
susceptibility assessment, with performance evaluated via 
correlation coefficient. The training phase mathematics and 
convergence behavior are derived as follows: 

The outputs of the hidden layer hi and output layer Ok are 
given by Eq. (1) and Eq. (2). 

I

i j oj ij i

i=1

h =F(V )= B + (B ·v )      (1)
 
 
 

                   (1) 

J

k k ok kj i

j=1

O =F(H )= B + (B ·h )     (2)
 
 
 

               (2) 

where Vj and Hk denote the intermediate computations 
before activation; Boj and Bok correspond to bias terms that 
establish threshold values; F signifies the activation function 
operating within a range of 0 to 1; and vi, hi, and Ok refer to the 
input, hidden, and output layers, respectively. 

For activation functions, the hyperbolic tangent sigmoid is 
used, which computes the outputs of hidden and output layers 
as given in Eq. (3) and Eq. (4). 

j
i j -V

1
h =F(V )=       (3)

1+e
                    (3) 

k
k k -H

1
O =F(H )=      (4)

1+e                    (4) 

The error function E is formulated as shown in Eq. (5). 

K K
2 2

k k k

k=1 k=1

1 1
E= O = (d -O )      (5)

2 2
                (5) 

Here, E represents the cumulative error across all output 
nodes, calculated as the sum of squared deviations between the 
network's predictions and target values. For each output node 
k, dk denotes the desired target value, while εk corresponds to 
the prediction error (i.e., εk=dk−Ok,). The weight modification 
between the hidden and output layers is defined as shown in 
Eq. (6). 

jk j kΔb =α·h ·δ     (6)                        (6) 

where α is the learning rate. Reformulating Eq. (6) yields 
Eq. (7). 

jk jk jkb (n+1)=b (n)+Δb (n)     (7)           (7) 
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where n represents the iteration index. Taking the partial 
derivative of the error E with respect to bij, the following 
relations are derived: 

The correlation coefficient (C) served as the primary 
performance metric for evaluating the GIS-integrated ANN 
model, it is calculated as shown in Eq. (8). 

n

i i

i=1

n n
2 2

i i

i=1 i=1

(d -d)(p -p)

C=       (8)

(d -d) · (p -p)



 

               (8) 

where C denotes the correlation coefficient, di is the target 

output, pi is the predicted output, d is the mean target value, 

and 
p

is the mean predicted output. Fig. 3 illustrates the 
architecture of the proposed predictive framework, which 
integrates a backpropagation neural network (BPNN) with four 
critical geospatial input parameters: (i) Percentage of 
agricultural land use, (ii) Energy consumption by groundwater 
extraction wells, (iii) Proportion of fine-grained sediments, and 
(iv) Mean maximum drainage path length. 

Fig. 3 presents a comprehensive view of the primary stages 
in ANN configuration. While defining the network 
architecture, selecting activation functions, and determining the 
number of training epochs necessitate manual adjustments, 
automated processes manage data preprocessing, 
normalization, and weight initialization. 

IV. Model Performance Evaluation 

A. Performance Metrics 

Multiple combinations of hyperparameters were tested, 
including: 

 Number of hidden layers (e.g., 3, 4, 5, 6, …). 

 Number of nodes per hidden layer (e.g., 32, 64, 128, 
…). 

 Number of epochs (e.g., 100, 200, 240, 300, …). 

Instead of using a grid search (testing all possible 
combinations), a random search is used (testing random 
combinations) to find the optimal hyperparameters. This 
approach was selected for the following reason. Random 
search explores the hyperparameter space more efficiently by 
sampling parameter combinations randomly, rather than 
exhaustively evaluating all possible combinations as in grid 
search. This is particularly advantageous when dealing with 
computationally expensive models. 

For each combination of hyperparameters, the RMSE and 
MAE are recorded on the validation set and calculate the 
average RMSE and MAE for each hyperparameter 
combination. 

The performance of the models was evaluated using: 

 RMSE: Measures the average magnitude of the 
prediction errors. 

 MAE: Provides a robust measure of error, less sensitive 
to outliers. 

B. Optimal Hyperparameters 

Table I presents a detailed summary of performance 
metrics corresponding to various artificial neural network 
(ANN) architectures. The "Hidden Layers" column denotes the 
number of hidden layers employed in each architecture, which 
directly affects the model's capacity to capture non-linear and 
complex data patterns. The "Hidden Nodes" column indicates 
the number of neurons per hidden layer; increasing this number 
generally enhances the model’s representational power but may 
also heighten the risk of overfitting. The "Epochs" column 
specifies the total number of training iterations over the dataset, 
where a higher count may improve convergence but similarly 
raise overfitting concerns. The "Avg. RMSE (mm)" and "Avg. 
MAE (mm)" columns report the average root mean square 
error and mean absolute error, respectively, across validation 
folds—lower values in both metrics are indicative of better 
predictive performance. Finally, the "Std. Dev. RMSE" and 
"Std. Dev. MAE" columns reflect the standard deviations of 
RMSE and MAE, providing insight into the stability and 
consistency of each model’s performance across k-fold cross-
validation. 

Insights from Table I reveal that as the number of hidden 
layers and nodes increases, the average RMSE and MAE 
generally decrease, suggesting that more complex architectures 
may yield better performance. 

TABLE I.  PERFORMANCE OF DIFFERENT ANN ARCHITECTURES 

Hidden 

Layers 

Hidden 

Nodes 
Epochs 

Avg. 

RMSE 

(mm) 

Avg. 

MAE 

(mm) 

Std. 

Dev. 

RMSE 

Std. 

Dev. 

MAE 

3 32 100 25.3 15.2 1.2 0.8 

3 64 100 24.8 14.9 1.1 0.7 

3 128 100 24.5 14.7 1.3 0.9 

4 32 200 23.8 14.3 1 0.6 

4 64 200 23.1 14 0.9 0.5 

4 128 200 23.5 14.2 1.1 0.7 

5 32 240 22.5 13.5 0.8 0.5 

5 64 240 22 13 0.7 0.4 

5 128 240 22.3 13.2 0.9 0.6 

6 32 300 23 14.1 1 0.6 

6 64 300 22.8 13.8 0.9 0.5 

6 128 300 23.2 14 1.1 0.7 

The bolded row (5 hidden layers, 64 hidden nodes, 240 
epochs) represents the optimal configuration, as it achieves the 
lowest RMSE (22.0 mm) and lowest MAE (13.0 mm) with the 
smallest standard deviations (0.7 for RMSE and 0.4 for MAE). 
This configuration strikes a balance between model complexity 
and generalization, avoiding overfitting while maintaining high 
predictive accuracy. 

Increasing the number of hidden layers beyond 5 does not 
significantly improve performance and may lead to overfitting, 
as seen in the 6-layer configurations. A moderate number of 
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hidden nodes (e.g., 64) provides the best balance between 
model complexity and performance, with fewer nodes (e.g., 
32) resulting in higher errors and more nodes (e.g., 128) not 
yielding significant improvements. Training for 240 epochs is 
sufficient for convergence, as extending training to 300 epochs 
does not improve performance and may increase the risk of 
overfitting. 

C. Case Studies 

The ANN model was applied to two real-world case studies 
in Saudi Arabian phosphate mines to demonstrate its practical 
applicability: 

1) Al-Jalamid mine: The model was used to predict 

subsidence in the Al-Jalamid mine, where extensive 

underground mining has led to significant ground 

deformation. The predictions were compared with actual 

subsidence measurements, achieving an RMSE of 20 mm and 

an MAE of 12 mm. The model's accuracy enabled mine 

operators to implement targeted mitigation measures, such as 

ground reinforcement and controlled extraction rates, reducing 

the risk of infrastructure damage.  

2) Umm Wu'al mine: In the Umm Wu'al mine, the model 

was employed to forecast subsidence trends. The predictions 

were used to optimize mining operations, ensuring that 

subsidence remained within acceptable limits. The model's 

ability to provide long-term forecasts was particularly 

valuable for strategic planning and risk management. 

V. CONCLUSIONS 

This study developed an Artificial Neural Network (ANN) 
model to predict mining-induced subsidence in Saudi Arabian 
phosphate mines. The model demonstrated high predictive 
accuracy, achieving an RMSE of 22 mm, and an MAE of 13 
mm, on the testing dataset. Key factors influencing subsidence, 
including distance from the extraction chamber center and 
accumulated exploitation volume, were identified through 
feature importance analysis. The model's robustness and 
adaptability make it a reliable tool for subsidence prediction in 
mining operations. 

The proposed Artificial Neural Network (ANN) model 
offers significant practical benefits for the mining industry and 
environmental management. Risk mitigation is achieved 
through accurate subsidence prediction, allowing mine 
operators to implement targeted measures such as ground 
reinforcement and controlled extraction rates, thereby reducing 
the risk of infrastructure damage and environmental 
degradation. The model also enhances operational optimization 
by forecasting subsidence trends over time, ensuring mining 
activities remain within safe and sustainable limits. 
Additionally, it aids in strategic planning by providing long-
term subsidence predictions, enabling mining companies to 
balance economic objectives with environmental and safety 
considerations. Furthermore, the model promotes 
environmental protection by minimizing subsidence-related 
impacts such as groundwater disruption and land deformation, 
which is particularly crucial in ecologically sensitive regions 
like Saudi Arabia. 

Building upon the current findings, future research will aim 
to address the identified limitations and enhance the robustness 
and applicability of the ANN model. First, efforts will focus on 
integrating higher-resolution and more diverse ground truth 
datasets to reduce spatial bias and improve model 
generalization across heterogeneous regions. Second, to 
improve model interpretability, future studies will explore 
hybrid approaches that couple ANN models with explainable 
artificial intelligence techniques, allowing for better attribution 
of predicted subsidence to underlying physical processes. 
Finally, transfer learning and domain adaptation strategies will 
be investigated to facilitate the application of trained models to 
new geographic areas with differing geologic and 
anthropogenic characteristics 
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