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Abstract—Image-based plant disease identification methods 

have demonstrated potential in enhancing crop protection 

through early detection. However, the development of this field 

faces several challenges, such as the scarcity of high-quality 

annotated data, significant intra-class variation and high inter-

class similarity among plant diseases, and the limited 

generalization ability of current models under diverse domain 

conditions. We extensively investigated 110+ latest papers on 

plant disease identification, aiming to present a timely and 

comprehensive overview of the most recent advances in the field, 

along with impartial comparisons of strengths and weaknesses of 

the existing works. Specifically, we begin by reviewing traditional 

machine learning and deep learning methods, which form the 

foundation for many current models. We then introduce a 

taxonomy of transfer learning methods, including instance-based, 

mapping-based, and network-based methods, and analyze their 

effectiveness in enhancing classification performance by 

leveraging prior knowledge under data-constrained scenarios. 

Subsequently, we examine recent advances in few-shot learning 

methods for plant disease identification, categorizing them into 

model-based, metric-based, and optimization-based methods, and 

evaluate their capabilities in addressing data scarcity and 

improving identification accuracy. Finally, we summarize the 

current limitations and outline promising future research 

directions, with the aim of guiding continued development in this 

area. 
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learning; crop protection; early detection; data scarcity 

I. INTRODUCTION 

Plant disease identification has emerged as a significant 
area of research. Timely identification of plant diseases is 
critical for reducing crop losses and minimizing the use of 
pesticides [1]. Image-based plant disease identification has 
emerged as a fast, accurate, and reliable method for early 
detection [2],[3]. These methods typically involve several 
stages, such as image acquisition, image processing, feature 
extraction, and classification. 

However, image-based methods face critical challenges. 
Variations in noise, background, and lighting in plant disease 
datasets often affect identification accuracy [4]. In addition, the 
diversity of tasks, such as identifying citrus diseases [5], 
tomato diseases [6], and wheat diseases [7], combined with the 
presence of grafted, hybrid, and genetically modified plants, 
exacerbates issues of data scarcity and class imbalance in plant 

disease identification. These challenges underscore the need for 
new image-based techniques, such as few-shot learning (FSL) 
[8], [9], transfer learning (TL) [10], [11]. 

Previous studies have explored various methods for plant 
disease identification. For example, support vector machines 
(SVMs) [12], convolutional neural networks (CNNs) [13], 
TL[14], and generative adversarial networks (GANs) [15]. 
However, existing surveys are predominantly architecture-
centric [3],[16], offering limited guidance when data conditions, 
rather than model choice, are the primary bottleneck. In 
practice, field performance is more often constrained by 
domain shift, class imbalance, and scarce labels than by 
marginal architectural differences. To ground our review, we 
conducted a structured search across IEEE Xplore, Scopus, 
Web of Science, and Google Scholar covering 2019 to 2025, 
complemented by backward and forward citation tracing to 
capture seminal earlier work. The search queries combined 
keywords including plant disease, early detection, leaf disease 
identification, transfer learning, domain adaptation, and few-
shot learning. From over 230 retrieved studies, we retained 116 
directly relevant papers on image-based plant disease 
identification. 

To address the identified gap, we adopt a scenario-driven 
taxonomy organized by three data regimes: (i) tasks with 
sufficient samples, (ii) tasks with limited samples but abundant 
related task data, and (iii) tasks with limited samples and no 
related data. The objective is to map method families to each 
regime. We synthesize prior work, identify recurring 
limitations, and provide scenario-specific recommendations for 
method selection under realistic field conditions. For 
navigation, an overview diagram is placed at the beginning of 
Section II (Fig. 1), linking data regimes to the technique 
families reviewed in Sections II-IV. 

II. MACHINE LEARNING OR DEEP LEARNING FOR PLANT 

DISEASE IDENTIFICATION 

When a sufficient amount of data is available, both 
machine learning (ML) and deep learning (DL) methods have 
proven effective in various plant disease classification tasks. In 
this section, a classification method is proposed that combines 
traditional ML, DL, and their fusion. Fig. 1 illustrates the 
classification methods reviewed in this study, providing 
practical guidance for plant disease identification under 
varying data scenarios. 

*Corresponding Author. 
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Fig. 1. Scenario-driven taxonomy of image-based plant-disease identification methods under diverse data conditions. The diagram maps three data regimes 

(sufficient data, limited data with related sources, and limited data without related sources) to representative technique families. (ML, DL and their fusion; transfer 

learning; few-shot learning). 

A. Traditional Machine Learning Methods 

Traditional ML methods rely on extracting features such as 
color, texture, and shape, making the models interpretable. 
Support Vector Machines (SVM) are particularly effective in 
handling high-dimensional data [17], while the K-Nearest 
Neighbors (KNN) algorithm is known for its simplicity and 
reliability [18]. Additionally, Naive Bayes (NB) classifiers are 
efficient when processing large datasets [19]. Furthermore, 
ensemble learning methods like Random Forests (RF) and 
Gradient Boosting Trees combine multiple weak learners to 
improve overall performance and robustness [20]. 

Logistic Regression (LR), NB, and Discriminant Analysis 
(DA) are often used to simplify complex problems by 
assuming feature independence, which reduces high-
dimensional data to simpler forms. Appeltans et al. [21] trained 
an LR classifier to detect five classes of leek white tip disease, 
achieving an overall accuracy of 96.74%. However, LR tends 
to perform poorly in cases involving nonlinear or multi-feature 
problems, especially when multicollinearity among features is 
present [22]. DA assumes that data follows a normal 
distribution and that different groups have equal covariance. 
Mahmud et al. [23] used DA for real-time detection of 
strawberry PM disease in the field by extracting texture 
features with color co-occurrence matrices. This method 
achieved a maximum accuracy of 95.45%. However, DA may 

not perform well if the data does not meet the assumption of 
normal distribution [24]. NB works well with different types of 
data distributions. For instance, Prashar et al. [19] used NB 
combined with a firefly optimization method to identify 494 
rice leaf images from five disease categories. However, NB 
may suffer from reduced accuracy when dealing with features 
not present in the training data or when ignoring dependencies 
between features. 

SVM, KNN, and Decision Trees (DT) are non-parametric 
models that do not rely on specific data distribution 
assumptions or linear relationships among features. KNN 
works well for small datasets with low-dimensional image 
features [18]. Devi et al. [25] combined Harris corner 
detection, Histogram of Oriented Gradients, and KNN for 
peanut disease classification. This method achieved an 
accuracy of 97.67%. SVMs may face challenges with high-
dimensional data due to the "curse of dimensionality" [26]. To 
address this, Javidan et al. [27] used Principal Component 
Analysis to reduce feature dimensions and applied ReliefF to 
select key features. RF improves model accuracy by combining 
the results of multiple DTs. Basavaiah et al. [20] compared RF 
and DT classifiers for plant disease detection. RF achieved a 
higher accuracy of 94%, while DT reached 90%. Table I 
summarizes traditional ML methods for plant disease 
identification.
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TABLE I.  SUMMARY OF TRADITIONAL ML METHODS FOR PLANT DISEASE IDENTIFICATION 

Methods Dataset Type of features Accuracy (%) Disadvantages 

RF [20] Tomatoes, self-built Text, color, and shape 94.00 Requires large datasets. 

OWs+KNN [18] Strawberries, self-built Spectral 93.33 Sensitive to irrelevant features. 

SLIC_SVM [17] Tea, self-built Shape and textural 98.50 Depends on hyperparameters. 

LDA+LR [21] White, self-built Hyperspectral 96.74 Limited on high-dimensional. 

CCM+DA [23] Strawberries, self-built Color and textural 95.45 Not suitable for nonlinear data. 

NB+Firefly [19] Paddy, self-built Color and textural 98.64 Conditional independence. 

SVM+FOA [26] Tomatoes, PlantVillage Text, color, and shape 91.10 Slow convergence. 
 

B. Deep Learning Methods 

DL enables the automatic extraction of hierarchical 
representations from large and complex datasets. Methods such 
as CNN, recurrent neural network (RNN), and Transformer 
effectively capture intricate patterns and features in plant 
imagery, offering significant advantages over traditional ML 
methods. 

CNNs are powerful tools for extracting image features 
through layers of convolution, pooling, and fully connected 
operations. They can improve performance by increasing 
network depth, but deeper networks often make training more 
challenging. ResNet [28] addresses this issue by introducing 
residual connections, which facilitate gradient flow, allowing 
the training of much deeper models.  On the PlantVillage 
dataset, a widely used public dataset, the PDICNet model 
based on ResNet-50 achieved an accuracy of 99.73% [13]. In 
contrast, DenseNet [29] connects each layer to every other 
layer in a feed-forward way, improving feature sharing and 
reducing redundancy. Multi-headed DenseNet was tested on 
the PlantVillage and achieved an accuracy of 98.17% [30]. 

Unlike ResNet and DenseNet, MobileNet is designed to 
reduce the number of parameters and computational cost. 
However, its accuracy may be lower for more complex datasets, 
as noted by Bi et al. [31]. They improved the MobileNet and 
achieved an accuracy of 73.50%. Multi-kernel depthwise 
separable convolutions are employed to reduce the number of 
model hyperparameters. Lite-MDC [32] utilizes only 2.20M 
parameters and achieves an accuracy of 99.78% on 
PlantVillage. These methods are compatible with mobile and 

embedded systems, where computational efficiency is critical. 
By focusing on diseased areas and reducing the influence of 
background noise, attention mechanisms contribute to 
improved classification accuracy [33]. The rE-GoogLeNet 
model adds the ECA attention mechanism into the Inception 
module and achieves an accuracy of 99.58% [34]. XSE-
TomatoNet [35] combines SE blocks with multi-scale feature 
fusion to enhance the classification performance of EntricNet-
B0. 

For real-time applications, improved models such as 
YOLOv5s [36] and DM-YOLO [37] have been proposed to 
achieve faster inference while maintaining high detection 
accuracy. However, despite their efficiency in spatial object 
detection, these models are limited in capturing temporal 
dependencies across image sequences. To address this, RNNs 
have been employed for analyzing time-lapse images and video 
data, enabling the modeling of dynamic changes in plant 
growth and disease progression [38]. 

Vision Transformers (ViTs) have demonstrated strong 
performance in plant disease identification by modeling long-
range dependencies. A recent study reported an optimized ViT 
architecture that attained state-of-the-art performance on 
PlantVillage [39]. To improve inference efficiency and reduce 
model complexity, recent studies have begun replacing 
traditional Transformer modules with Mamba-based 
architectures. LF-Mamba [40] improves the decoder’s spatial 
resolution and enhances its ability to extract complex disease 
features, while significantly reducing the number of parameters. 
Table II summarizes DL-based methods for plant disease 
identification. 

TABLE II.  SUMMARY OF DL METHODS FOR PLANT DISEASE IDENTIFICATION 

Methods Dataset Accuracy (%) Parameters (M) Disadvantages 

Multi-headed DenseNet [30] PlantVillage [41] 98.17 \ Higher memory requirements. 

RIC-Net [42] PlantVillage 99.55 19.10 Complex structure. 

RE-GoogLeNet [34] Rice, self-built 99.58 9.18 Difficult to optimize. 

PDICNet [13] PlantVillage 99.73 \ Difficult to optimize. 

XSE-TomatoNet [35] Tomato, PlantDoc 99.11 \ Requires high input resolution. 

MobileNet [31] Apple, self-built 73.50 \ Lower detection accuracy. 

Lite-MDC [32] PlantVillage 99.77 2.20 Unable to localize disease regions . 

YOLOv5s [36] MSMSVDD 93.10 8.30 Less effective for small objects. 

DM-Yolo [37] Tomato, self-built 92.50 50.07 Lower training stability. 

G-RecConNN [38] Banana, self-built 93.60 \ Vanishing gradient issues. 

Optimized ViT [39] PlantVillage 99.77 13.02 More computational resources. 

LeafMamba [40] FGVC8 92.50 0.99 Limited capability in local feature. 
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C. Hybrid Methods 

Hybrid ensemble methods leverage the complementary 
strengths of different architectures to improve image feature 
extraction, mitigate overfitting caused by feature bias, and 
enhance generalization [53]. To balance performance and 
efficiency, recent studies have explored combining CNN-based 
feature extractors with traditional classifiers, integrating CNNs' 
spatial feature learning with the interpretability of classical 
methods [43],[44]. Meanwhile, many hybrid methods reduce 
model complexity by replacing parts of complex architectures 
with lightweight components, while maintaining or even 
enhancing predictive performance [45]. For example, 
SSD_Mobile-NetV2 [46] uses only 50.9% of the parameters 
compared to SSD_VGG, yet achieves improvements in 
precision, recall, F1-score, and mean Average Precision (mAP) 
by 4.37%, 3.3%, 3.8%, and 8.79%, respectively. Furthermore, 
CNNs are often employed to replace or supplement parts of 
Transformer architectures, providing more efficient local 
feature modeling and faster inference in real-time or resource-
constrained plant disease detection scenarios. ConvViT [47], 
which combines CNNs with Transformer, outperforms models 
such as ResNet, ViT, and ResMLP by improving accuracy by 
4.53% while reducing the number of parameters and FLOPs by 
more than 10%. 

SoyaTrans [48] utilizes CNNs to extract local features and 
a Transformer module to capture global dependencies. With 
only 5.2 million parameters, it achieves an accuracy of 98.00% 
on the PlantVillage dataset. This result demonstrates that 
integrating multiple learning paradigms can outperform models 
based on a single architecture. Table III summarizes the latest 
performance of hybrid methods in plant disease identification 
tasks. 

TABLE III.  SUMMARY OF RECENT PERFORMANCE OF HYBRID METHODS 

IN PLANT DISEASE IDENTIFICATION 

Ensemble Methods Dataset 
Accuracy 

(%) 

Parameters 

(M) 

CNN+Transformer [47] PlantVillage 99.84 59.00 

VGG19+InceptionV3 [49] PlantVillage 98.66 \ 

VGG16 + RF [43] PlantVillage 94.00 0.26 

KNN+ Transformer [44] PlantVillage 99.93 \ 

SoyaTrans [48] PlantVillage 98.00 5.20 

VGG-ICNN [50] PlantVillage 99.16 23.20 

CNN + RNN [51] 
AI maize 
dataset 

97.85 0.4 

Ensemble models [52] 
New 

PlantVillage 
99.89 \ 

D. Discussion and Summary 

Traditional ML, DL, and hybrid methods provide effective 
solutions for plant disease classification. The choice of method 
depends on the specific challenges of the task, such as data 
availability, feature complexity, and computational resources. 
Traditional ML methods are lightweight and interpretable due 
to their reliance on handcrafted features. However, their 
effectiveness is limited by feature quality and poor robustness 
under varying field conditions. DL methods automatically 
extract features from raw data. They are powerful at capturing 

complex disease patterns and usually achieve higher accuracy 
than ML when sufficient labeled data is available. However, 
they are data- and resource-intensive, less interpretable, and 
often struggle with robustness under real-world field conditions. 
Hybrid ML-DL methods combine the strengths of both 
paradigms. DL models are used for robust feature extraction, 
while traditional ML algorithms provide lightweight and 
interpretable decision-making. This balance reduces reliance 
on manual features and lowers computational cost compared 
with full DL pipelines. However, their effectiveness is 
constrained by the need for precise feature-model integration 
and limited robustness to previously unseen crops and disease 
types [54]. 

III. TRANSFER LEARNING FOR PLANT DISEASE 

IDENTIFICATION 

TL allows models trained on one plant species to be applied 
to related species. It helps address limited data and domain 
variability, especially under class imbalance [55]. However, a 
comprehensive review specifically focused on “agricultural TL” 
remains lacking [56]. This section reviews three major TL 
methods, namely instance-based, mapping-based, and network-
based. 

A. Mapping-Based Transfer Learning 

Mapping-based TL reduces the distribution gap between 
source and target domains by learning a shared feature space or 
an explicit mapping function. MViT [57] employs an 
adversarial framework augmented with the Wasserstein 
distance to learn domain-invariant representations, projecting 
source and target samples into a common latent space with 
closely matched distributions. Maximum Mean Discrepancy 
[58] offers a theoretically grounded measure of domain shift by 
aligning the mean embeddings of source and target features in 
a reproducing-kernel Hilbert space. CLA [59] first performs 
self-supervised contrastive pre-training, then applies a domain-
adaptation layer that explicitly aligns the resulting feature 
distributions. CORrelation Alignment [60] efficiently matches 
the second-order statistics of source and target features, 
delivering low computational overhead and good scalability. 
Attention-based alignment [61] further narrows the domain gap 
by highlighting discriminative regions while suppressing 
irrelevant background noise. 

For cross-species plant disease identification, adversarial 
domain adaptation is used to learn domain-invariant 
representations. A representative method is DANN [62], which 
performs well under pronounced domain shifts, including 
highly non-linear settings and large cross-domain datasets. 
Other strategies reduce domain discrepancy by explicitly 
constraining the diagnostic model. FMDA [63] minimises the 
“distance” between source and target, thereby lowering domain 
divergence. Using unlabelled target data without explicit 
feature alignment can exacerbate domain mismatch. 
Unsupervised domain adaptation methods [64] learn shared 
feature spaces from abundant unlabelled target images, 
aligning source and target domains through non-adversarial 
means. Zero-shot TL [65] builds a discriminative, transferable 
embedding that bridges source and target domains even when 
their class sets do not overlap. 
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B. Network-Based Transfer Learning 

Network-based TL focuses on modifying the architecture 
itself so that it can more effectively adapt to new tasks or 
domains. These methods exploit the learned by a pre-trained 
backbone, and enhance identification performance through 
optimizing the architecture [66]. In addition to direct 
architectural adjustments, several studies have reported further 
gains in overall accuracy, generalization, and overfitting 
resistance by employing multi-model fusion or model 
ensembling [67]. INC-VGGN [68] integrates a pre-trained 
VGGNet with an Inception module, combining VGG’s ability 
to capture deep hierarchical representations with Inception’s 
multi-scale feature extraction, thereby improving the network’s 
capacity to model fine-grained details. SLViT [69] merges a 
Transformer encoder with a CNN, striking a balance between 
recognition performance and computational cost. The 
incorporation of attention mechanisms has opened an 
additional optimization avenue. For example, Sudhesh et al. 
[70] introduced an attention module into a DenseNet121 with 
an RF framework, reinforcing the network’s focus on disease-
relevant regions. 

Unlike single-stage TL, two-stage TL introduces an 
intermediate adaptation phase that further tailors a network to 
the target task. Es-MbNet [71], for example, re-trains on the 
target data, leading to a marked performance gain, after an 
initial weight initialization stage. A similar method keeps the 

first ten layers of a pre-trained VGG-16 network fixed, 
appends two inception blocks, and then fine-tunes the modified 
architecture with target data, reaching 99.23% accuracy [72]. 
In addition, knowledge distillation is emerging as an effective 
transfer-learning technique. By distilling the feature 
representations of a pre-trained Vision Transformer into a 
lightweight student model, this method significantly reduces 
model complexity while maintaining competitive performance 
[73]. 

C. Instance-Based Transfer Learning 

Instance-based TL fine-tunes models that have been pre-
trained on large-scale datasets such as ImageNet and reuses 
them as feature extractors, thereby enabling efficient 
knowledge transfer to a target task [74]. For example, a pre-
trained VGG16 optimized with stochastic gradient descent with 
momentum (SGDm) achieved 98.33% accuracy in 
distinguishing healthy fruit from fruit infected by the 
Mediterranean fruit fly [75]. A pre-trained MobileNetV2 
reached 99.30 % accuracy in detecting tomato leaf diseases on 
the PlantVillage [76]. A fine-tuned VGG-16 attained 95.00% 
classification accuracy across 11 tomato disease classes [77]. 
Even on very small datasets, the approach remains effective. 
Yu et al. [78] fine-tuned a pre-trained ResNet-18 on a dataset 
of only 120 images and achieved 99.53 % accuracy, while Liu 
et al. [79] reported 99.45% accuracy for apple-disease 
recognition using a pre-trained Inception-V3 model. 

TABLE IV.  SUMMARY OF TL METHODS FOR PLANT DISEASE IDENTIFICATION (%) 

Model Structure Basis Source Domain Target Domain Accuracy Recall F1 Precision 

MViT [57] PlantVillage PlantDoc [80] 70.00 69.00 67.00 68.00 

CPAM-DSAN [61] Dataset300 Rice, self-built 95.25 95.25 95.34 95.38 

Transformer [73] ImageNet Rice, self-built 92.00 91.00 89.00 88.00 

ResNet18 [78] ImageNet Soybean, self-built 99.53 99.55 99.54 99.53 

Inception-V3 [79] ImageNet PlantVillage 99.45 99.10 99.00 98.84 

MobileNetV2 [76] ImageNet PlantVillage 99.30 \ \ \ 

VGG19 [67] ImageNet rice, self-built 93.00 89.90 90.50 92.40 

XceptionNet [70] \ Rice, self-built 93.87 85.00 85.00 85.00 

VGG16 [77] ImageNet tomato, public 95 93.55 94.00 94.55 

ResNet50 [81] 2018 AI challenge 2018 AI challenge 97.30 \ \ \ 

VGG16 [75] ImageNet Citrus, self-built 98.33 99.33 99.34 99.35 

VGG19 [68] ImageNet PlantVillage 91.83 \ \ \ 

VGG16 [72] ImageNet Tomato，self-built 99.23 99.29 99.20 99.12 

Es-MbNet [71] ImageNet PlantVillage 99.61 98.08 98.08 \ 

VGG16 [66] ImageNet Rice and wheat, self-built 97.99 \ \ \ 

DANet [82] CPD P1, self-built CPD P2, self-built 96.75 \ \ \ 

STA-GAN [83] ImageNet Cucumber, self-built 98.97 \ \ \ 

AlexNet [84] ImageNet PlantVillage 96.63 91.00 91.00 92.00 

DTL-SE-ResNet50 [85] AI Challenger 2018 Vegetable, self-built 97.24 92.58 94.85 \ 

D. Discussion and Summary 

The choice of TL paradigm ultimately reflects trade-offs 
between resource availability, domain similarity, and the 
complexity of the target task. Instance-based TL fine-tunes pre-

trained models with minimal changes, making it lightweight 
and suitable for resource-limited tasks when domains are 
closely aligned. Its drawback is strong dependence on domain 
similarity and risk of negative transfer under large gaps. 
Mapping-based TL aligns source and target features via 
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statistical measures, adversarial training, or attention. It is 
effective when related source data are abundant but target data 
are scarce, though it often adds complexity, unstable training, 
and low interpretability under large domain shifts. Network-
based TL adapts architectures for deeper transfer, yielding 
strong performance in complex or fine-grained tasks with large 
domain differences, but at the expense of high computational 
and data demands. Table IV summarizes various transfer 
learning techniques and their effectiveness in plant disease 
identification, highlighting the source and target domains, 
accuracy, recall, Precision, F1 scores, and model architectures. 

IV. FEW-SHOT LEARNING FOR PLANT DISEASE 

IDENTIFICATION 

ML, DL, and TL methods typically require a large amount 
of labeled data for model training, but in practical applications, 
obtaining such data can be very challenging or expensive. FSL 
Methods aim to address the issue of learning and generalizing 
in the absence of labeled samples. 

A. Model-Based Few-Shot Learning 

The limited availability of labeled samples often results in 
significant class imbalance, which poses a major challenge for 
plant disease identification models. To address this issue, 
researchers have explored synthetic data generation methods to 
enhance prediction performance, such as Variational 
Autoencoders [86],[87], GANs [88], [89], and Diffusion 
Models [90], [91] are widely used to generate new samples. 
For example, Singh et al. [92] used a Conditional GAN to 
synthesize maize leaf images for data augmentation, which 
enhanced classification performance compared with using real 
images alone. Texture Reconstruction Loss Cycle GAN [93] to 
generate realistic citrus Huanglongbing leaf data. This method 
improved the average accuracy of the classification network by 
2.76%. 

To improve model robustness, CNN_BIT [94] integrates a 
CNN with BiT, combining their feature extraction capabilities 
to address a few-shot learning task involving only 20 images 
per class. Some methods combined generative models with 
discriminative models. Generating more diversified plant 
disease images through training to improve the identification 
model's performance [95]. Sharma et al. [96] developed a 
conditional deep convolutional GAN (ClGan) with an 
improved loss and paired it with a compact classifier 
(ClGanNet) for maize leaves. It achieved 99.04% test accuracy 
and strong parameter efficiency. However, these methods 
struggle with limited adaptability and poor generalization 
under task distribution shifts. 

B. Metric-Based Few-Shot Learning 

Metric-based methods aim to learn a similarity metric to 
measure the similarity between samples. Prototypical Networks 
perform class prototype computation and distance-based 
classification [97]. Common distance metrics such as 
Euclidean distance and cosine similarity are widely used to 
compare feature representations between support and query 

samples in few-shot learning. A common strategy is to train the 
CNN-based feature extractor with supervised contrastive 
objectives, which pull together embeddings from the same 
class while pushing apart those from different classes under 
episodic sampling [98]. Some methods further enhance this 
approach by integrating triplet loss with efficient class-
boundary shallow learners, improving classification 
performance in low-data scenarios [99]. Alternatively, Circle 
Loss [100] was introduced to measure sample similarity by 
optimizing the relative distances among positive, anchor, and 
negative samples in the embedding space, leading to better 
feature discrimination. MAFDE-DN4 [101] enhances inter-
class separability in the embedding space by introducing 
additional discriminative distances for each class. However, 
these methods rely heavily on well-structured embeddings and 
are limited by intra-class variability and sensitivity to distance 
metrics. 

C. Optimization-Based Few-Shot Learning 

Optimization-based methods find the optimal decision 
boundary to distinguish different classes on a limited sample of 
instances. Meta-learning (learn-to-learn) methods [102] fall 
under this category, training a meta-learner to quickly adapt to 
new tasks using only a few training samples. Through transfer 
optimization, parameters or features of pre-trained models can 
be optimized for better generalization ability on few-shot tasks 
[103]. PMF+FA [104] integrates pre-training, meta-learning, 
and fine-tuning (PMF) with a novel Feature Attention module. 
This module highlights discriminative regions within images 
while suppressing the influence of complex backgrounds and 
irrelevant objects. However, these methods are hindered by 
initialization sensitivity, high computational cost from inner-
loop updates, and slow convergence in complex, non-convex 
spaces. 

D. Discussion and Summary 

FSL methods become increasingly useful for annotated 
data in plant disease identification. Their choice depends on the 
balance between data scarcity, task diversity, and available 
resources. Model-based FSL methods design architectures that 
rapidly adapt to new tasks by leveraging shared knowledge 
across episodes. They are effective for learning transferable 
representations and provide strong performance when tasks are 
diverse, but they often involve complex designs and high 
training costs. Metric-based FSL methods emphasize similarity 
between support and query samples using distance functions or 
embedding spaces. They are lightweight, intuitive, and well-
suited for cases where disease features are visually consistent, 
but their performance degrades when inter-class similarities are 
high or intra-class variations are large. Optimization-based 
FSL methods aim to improve task adaptation through 
specialized training strategies, such as meta-optimization or 
parameter initialization schemes. They can achieve superior 
accuracy under scarce data, but are computationally demanding 
and sensitive to hyperparameter tuning. Table V summarizes 
the recent performances of FSL methods applied to the 
identification of plant diseases. 
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TABLE V.  RECENT PERFORMANCES OF FSL IN PLANT DISEASES IDENTIFICATION 

Methods Backbone Datasets N-way K = 1 K = 5 K = 10 

Attn-CutMix [102] Transformer Cotton, self-built 3 72.90 88.00 \ 

Inception+SVM [99] Inception V3 PlantVillage 6 55.30 72.60 77.00 

ViT ProtoNet+FA [104] ViT PlantDoc, Public 5 \ 86.79 \ 

Swin-B [105] Transformer Barley, self-built 5 38.63 66.46 78.15 

PruneFSL [106] Resnet 12 Plantvillage 5 77.97 90.70 \ 

ResNet18+ProtoNet [97] ResNet18 PlantVillage 10 72.76 92.12 93.32 

MAFDE-DN4 [101] ResNet 12 PlantVillage 5 57.50 81.41 \ 

MixNet-XL [100] MixNet-XL PlantVillage 6 75.41 91.03 93.97 

SC-FSL [98] Resnet 18 PlantVillage 5 78.55 92.90 \ 

CNN + SVM [103] GoogleNet PlantVillage 38 \ 75.20 88.40 

STV2F6+PDFC [107] STV2F6 PlantVillage 5 91.81 95.32 95.50 
 

V. FUTURE DIRECTIONS 

Advancements in plant disease recognition technology are 
expected to continue driving significant progress in agriculture 
and contributing substantially to crop protection and 
management. Based on recent trends and developments, 
several promising directions and opportunities emerge. 

1) Future research will increasingly harness multi-modal 

data by integrating visual imagery, audio signals, spectral 

information, textual inputs, and environmental parameters. 

This convergence of diverse data modalities will enable more 

comprehensive feature extraction, thereby enhancing the 

accuracy of pest and disease detection and classification. 

Advanced language models such as Claude, GPT-4, Gemini, 

and DeepSeek can play a pivotal role by combining visual 

inputs with descriptive textual data to improve early 

identification and nuanced assessment of plant health [108]. 

Additionally, integrating visible-spectrum imagery with 

infrared sensor data can significantly enhance the precision 

and timeliness of plant stress detection [109]. 

2) Few-Shot Domain Adaptation (FSDA): FSDA has 

demonstrated significant potential for addressing the 

substantial distribution differences and limited labeled data 

commonly encountered in real-world scenarios. Future 

research will focus on improving cross-task generalization, 

enabling models trained on source domains to effectively 

transfer to target domains with minimal or no labeled data, 

thereby alleviating performance bottlenecks caused by data 

scarcity [110]. Additionally, prototype aggregation methods 

further enhance robustness in few-shot and cross-domain 

scenarios by aggregating prototypes from multiple samples or 

domains, thus capturing finer intra-class structures and subtle 

differences [111]. 

3) Diffusion model-based sample generation: Utilizing 

diffusion models for generating interpretable synthetic 

samples represents an innovative direction in future research 

[112]. By generating interpretable synthetic samples, diffusion 

models provide intuitive visualizations that reveal the critical 

features learned by models, highlight potential biases, and 

uncover blind spots in training data. Additionally, in few-shot 

domain adaptation tasks, diffusion models guided by limited 

target domain samples can generate high-quality pseudo-

samples, effectively expanding the target domain distribution 

and alleviating label scarcity [113]. Future research will 

explore designing more semantically consistent and finely 

controlled conditional diffusion mechanisms, alongside 

advancements in efficient sampling and low-resource 

deployment, ultimately driving practical applications in high-

value fields such as medical imaging and agricultural remote 

sensing. 

4) Edge computing and mobile applications: With the 

proliferation of mobile technologies and edge computing 

infrastructure, plant pest and disease identification tools are 

expected to become increasingly accessible and widely 

adopted. Deploying sophisticated recognition models directly 

onto mobile and edge devices will facilitate real-time disease 

diagnosis, significantly reducing data transmission costs, 

minimizing latency, and improving overall responsiveness and 

usability in agricultural field environments [114]. 

5) Model interpretability: In agricultural applications such 

as plant pest and disease recognition, model interpretability is 

becoming a critical factor for enhancing system reliability and 

practical usability. Future research will focus on embedding 

interpretability mechanisms into lightweight models, enabling 

techniques such as Grad-CAM to function efficiently on 

mobile and edge devices to support real-time, in-field 

diagnostics [115]. At the same time, concept-based 

interpretability methods are expected to advance by 

identifying high-level semantic features, such as "leaf 

yellowing" or "marginal decay," which align closely with 

agricultural domain knowledge and improve the clarity and 

usefulness of model outputs [116]. Additionally, multimodal 

interpretability is likely to become a major research direction 

by integrating image data with sensor information and 

environmental context. 

VI. CONCLUSION 

Image-based methods for plant pest and disease 
classification hold significant potential in improving detection 
accuracy, which is crucial for early disease prediction and 
timely intervention. This review explores various approaches 
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in plant disease recognition through image analysis, covering 
traditional ML, DL, and hybrid methods. We explore their 
achievements and inherent challenges, such as data imbalance, 
complex training requirements, and domain adaptability. TL 
and FSL emerge as effective solutions to address the limited 
availability of annotated data, each offering distinct advantages 
and facing unique limitations. TL leverages pre-trained models 
from related domains to improve plant disease detection, with 
Mapping-based and Network-based TL showing high accuracy 
in tasks like tomato and soybean leaf disease classification. 
However, Instance-based TL is less effective due to issues with 
data distribution and domain mismatches. FSL trains models 
with minimal labeled data. Model-based FSL methods, such as 
those using GANs, generate synthetic data to enhance model 
generalization. Metric-based FSL, including Prototypical and 
Matching Networks, excels in classification tasks by learning 
similarity measures between labeled and unlabeled data. 
Optimization-based FSL enables rapid adaptation to new tasks 
but faces challenges such as overfitting and hyperparameter 
sensitivity. 
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