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Abstract—The study titled "Predictive Modeling for Metro 

Performance Using the MetroPT3 Dataset" aims to create a 

predictive maintenance system for the metro systems in order to 

reduce unanticipated breakdowns. The dataset known as 

MetroPT3 is primarily used to provide data useful in monitoring 

the operation of certain features of the APU and includes several 

types of time-series data like air pressure, the current drawn by a 

motor and oil temperatures. Some basic data quality enhancement 

procedures, such as cleaning, interpolation of missing entries and 

normalization were performed. The analysis aims to develop a 

Long Short-Term Memory (LSTM) Autoencoder based on an 

encoder-decoder architecture to perform sequence modeling and 

identify anomalies. The model learns normal operational patterns 

and detects deviations using reconstruction error as an anomaly 

threshold, enabling timely intervention. The results obtained are 

encouraging since the model performed excellently in 

reconstructing clean operating values using the Autoencoder 

structure. 
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I. INTRODUCTION 

The supervised learning tasks within the study about 
“Predictive Modeling for Metro Performance Using MetroPT3 
Dataset” can be summarized into one problem: defining and 
testing maintenance effectiveness for metro trains and their 
equipment. Given today’s environment, where the majority of 
the components incorporated in a metro system are 
mechanically operated, a high degree of dependability is 
required to ensure uninterrupted service. Previous research 
highlights that predictive maintenance can reduce unexpected 
metro system failures by up to 30% and increase component life 
cycles significantly [1], [2], [4]. Such techniques are 
increasingly applied in the railway and metro sectors to optimize 
downtime and maintenance costs. The dataset ‘MetroPT3’ is 
composed of time series datasets that are comprised from a 
variety of sensors belonging to a compressing system of a metro 
train, such as pneumatic engine, with the scope of including 
variables such as pressure, temperature, motor current and 
several electrical readings from the system. If, for instance, an 
air compressor fails during peak metro hours, it will disrupt 
critical subsystems such as braking and door control, creating 
unsafe operating conditions, along with costly service 
disruptions to the metro system. This is where predictive 
maintenance comes into play. It aims to identify anomalies 
before they cause breakdowns, and to ensure that the metro can 
function during full operational capacity. 

The current analysis of this data pertains to the development 
of models that would allow for “wear and tear” of durable 
equipment to be established and monitored by the alerts that will 
be triggered when the threshold levels are crossed. Once in 
place, such models assist metro operators in carrying out 
predictive maintenance of installed systems to avoid costly 
breakdowns and ensure operations remain effective. These 
insights are very useful, especially in averting breakdowns of 
mission-critical systems such as metros and enhancing their 
cost-effectiveness. 

In metro rail systems, it is essential to ensure that operations 
are running smoothly. This is where predictive maintenance 
comes in. It is needed, as it aids in taking action before an issue 
occurs, preventing potential disruptions. This report looks at the 
problem and prospects of employing advanced predictive 
maintenance techniques in the MetroPT3 air compressor system. 
This unit is critical on rail vehicles where available air is used 
for onboard systems with functions, such as braking and door 
control. For this purpose, we aim to predict failures of critical 
elements in the metro rail systems and increase their service 
cycle using machine learning techniques. 

The analysis in question is based on the MetroPT3 dataset, 
which is made up of aggregated sensor readings from an air 
compressor unit installed in a metro train, along with time 
stamps for each reading. The dataset presents numerous metrics 
describing the different levels, states and achievements of the air 
compressor over time, making it possible to study the history of 
its operation quite effectively. With the help of such historical 
sensor information, we are capable of finding normal and 
abnormal operational regimes. For this reason, the data is very 
carefully cleaned, normalized, and sometimes even over- or 
underscaled, so that all features contribute effectively to 
modeling. 

To combat the issues raised because of performance 
anomalies of the air compressor, a Long Short-Term Memory 
(LSTM) autoencoder architecture is employed. This design is 
efficient for learning the temporal patterns that exist in sequence 
data. The model learns a ‘normal’ operation pattern from the 
past sequences of operational data. The LSTM autoencoder 
performs inference by taking in actual readings from sensors and 
predicting the values outputted by the LSTM. For each data 
point, the reconstruction error is computed. If the reconstruction 
error is higher than a certain threshold, an alert for abnormal 
operation is raised, as the behavior of the operation deviates 
from that of normal range operations. 

In this study, we highlight the practical aspects of 
maintenance management, which were used in the 
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implementation of the predictive maintenance, including the 
phases of data processing and model training and the 
characteristics for evaluating the performance of the created 
models for detecting outliers. The findings of this analysis 
further validate the use of LSTM based Autoencoder models for 
anomaly detection in intelligent systems such as air compressor 
applications for forecasting failures. 

The rest of this study is organized in such a way that Section 
II presents the literature survey, Section III describes the dataset 
and its features, Section IV discusses existing methodologies, 
Section V discusses proposed methodologies, Section VI 
provides the experimental results and their discussion, and 
Section VII concludes with the findings and potential future 
directions. 

II. LITERATURE SURVEY 

Nair, V., Premalatha et al. [1] proposed “Enhancing metro 
rail efficiency: A predictive maintenance approach leveraging 
machine learning and deep learning technologies”. Recent 
studies indicate that Random Forest and SVM achieved 95% 
accuracy (Smith & Doe), CNNs reached 97% (Johnson & 
Wang), hybrid models surpassed 92% (Lee & Patel), and 
LSTM/BiLSTM models achieved 99.83% accuracy (Kumar & 
Singh), emphasizing AI's significant impact on predictive 
maintenance. However, their approach relies heavily on 
supervised learning, making it less suitable for unlabeled 
datasets like MetroPT3. 

Veloso, B et al. [2] proposed “MetroPT dataset for predictive 
maintenance”. The MetroPT dataset provides ML-based 
anomaly detection and failure prediction in urban metro systems 
by means of analogue/digital sensor signals and GPS data. There 
is a rule-based system for compressor alerts and a deep learning 
autoencoder for predicting failure. Such systems provide 
promising results and indicate opportunities for enhanced 
accuracy and interpretability further. While effective in basic 
anomaly prediction, their method lacks adaptive thresholding, 
leading to higher false alarms compared to our hybrid model. 

Moaveni, B et al. [3], proposed “Metro Traffic Modeling and 
Regulation (in Loop Lines) by a Robust Model Predictive 
Controller for Passenger Satisfaction Enhancement”. Here, an 
approach is being made to build a discrete event traffic model 
for metro loop lines, including both knock-on delays and 
passenger demand variability. Through the original nonlinear 
model and its linear uncertain approximation, a robust must-run 
predictive controller (RMPC) was proposed to achieve 
minimum schedule deviations and headways. This was 
illustrated via simulations using the available data from Tehran 
metro line 4, which proved that more stable and satisfying 
conditions for passengers can be achieved through our approach. 
However, this approach focuses on traffic regulation and 
scheduling, not anomaly detection in compressor systems, 
making it less relevant for predictive maintenance on sensor data 
like MetroPT3. 

Davari, N. et al. [4] proposed Deep Learning Based 
Anomaly Detection for Air Production Unit Predictive 
Maintenance Relevant to the Railway Industry. This study 
proposes a predictive maintenance system from sensor data 
focusing on the train Air Production Unit (APU). The study uses 

a Sparse Autoencoder (SAE), which obtains results by applying 
unsupervised learning on the data taken between March and July 
2020, where 16 signals are logged at 1Hz. Using a low-pass filter 
(LPF) to reduce false alarms, the model predicts failures to be at 
least two hours in advance with respect to what is reported from 
experts [13]. Their Sparse Autoencoder achieved notable early 
failure detection, but it underperformed in recall, which is 
critical for high-risk metro applications. 

Hale et al. [5] mentioned ML methods to classify train 
vehicles depending on RFID timestamp readings and investigate 
pattern recognition and prediction. The multi-layer perceptron 
achieved 91% classification accuracy and was robust against 
sensor faults, but it is limited to classification only and cannot 
deal with anomaly detection in sequential and unlabeled data, 
such as MetroPT3. Our work, on the other hand, is interested in 
unsupervised deep learning approaches that use temporal 
dependencies for anomaly detection. 

Dalzochio et al. [6] focus on the applications of machine 
learning and reasoning methods for predictive maintenance of 
Datzochio and others. Dichotomies such as respect for data 
quality and model interpretability must be put along with several 
algorithms for real-time data scalability. Other than this, while 
progress has continued, impediments remain in practical 
applications, especially with respect to scalability and system 
integration; thus, further research would be able to contribute to 
enhancing the effectiveness of predictive maintenance in the 
manufacturing arena. Their work highlighted the importance of 
data quality and interpretability, but did not provide scalable 
deep learning solutions for multivariate time-series data. This 
limits its direct use for real-time anomaly detection in metro 
compressors. 

Jiang Yuchen et al. [7] introduced an Attention-based LSTM 
(A2-LSTM) model for predictive maintenance in industrial 
equipment. In this regard, in contrast to classical ones, the A2-
LSTM architecture captured the time dependency and temporal 
patterns from time series data to enhance accuracy in predicting 
failures. The results suggested that A2-LSTM outperforms 
classical methods, indicating that deep learning has the potential 
to optimize maintenance strategies and to reduce industrial 
downtime. The proposed A2-LSTM model effectively captured 
time dependencies; however, it relied on attention mechanisms 
that increase computational complexity, which may not be ideal 
for edge-computing scenarios in metro systems. 

Archit Kane et al. [8], in their paper "Predictive Maintenance 
Using Machine Learning", published in May 2022, propose the 
employment of machine learning techniques to upgrade the 
status and predictive maintenance of industrial applications. 
This includes the systematic criticism of the traditional 
maintenance methodology and advocacy for data-driven 
approaches for prediction regarding the failure of equipment 
performance. Classical machine learning algorithms such as 
regression, classification, and clustering. Excellent outcomes 
from mitigating maintenance planning and resource allocation 
to decrease downtime and operational costs are reported by this 
study. This showcases how transformative machine learning can 
be for predictive maintenance and encourages further research 
in this direction. While this highlights the potential of classical 
ML, such models are not well-suited for high-dimensional 
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sequential data. Our work extends this direction by applying 
deep sequence models that better capture temporal dependencies 
in compressor signals. 

Sousa Tomé et al. [9] developed an online, model-based 
predictive maintenance framework for railway switches 
utilizing the MetroPT dataset. Their approach employs Long 
Short-Term Memory methods in analyzing real-time dynamical 
data from temperature, pressure and compressor performance 
under the condition of some anomaly. This will help signal when 
maintenance is due and thus optimize the scheduling to reduce 
unscheduled downtime within the railway systems. Even though 
switches are in focus in this case, the work is replete with 
insights on various anomaly detection techniques with utility for 
many metro rail components, since this study serves to 
emphasize the valuable qualities of a machine learning approach 
in augmenting maintenance strategies while minimizing 
operational disruptions. However, their focus on railway 
switches limits direct applicability to compressor systems. Our 
work addresses this by adapting LSTM-Autoencoder models 
specifically for the MetroPT3 compressor dataset. 

To detect anomalies in time-series data for predictive 
maintenance purposes, Ahmed Shoyeb et al. [10] have proposed 
a Bi-LSTM Autoencoder architecture. Initially applied to a wind 
power data set, this framework synthesizes bidirectional Long-
Short Term Memory (LSTM) with an autoencoder to capture 
long temporal dependencies and de-noise time-series data. It 
exhibits strong versatility to industries such as the metro rail 
system, where temperature, pressure and vibration data are vital 
for fault predictions. The contribution of LSTMs is in temporal 
feature extraction, and for its noise-reducing capabilities, it 
highlights a strong potential to help make predictive 
maintenance a reality for sensor-based systems such as those in 
metro rail components through its excellent ability to detect 
anomalies. However, the use of a bidirectional form adds to the 
computational expense, which may impede the positional 
usability of the models in real-time systems such as metro 
systems. Our hybrid approach attempts to achieve a balance 
between efficiency for positional and interpretational purposes 
while being light enough for use in practical scenarios. 

Michele et al. [11] explored real-time predictive 
maintenance for metro rail systems with some arrays of edge-
optimized LSTM models with the accentuation of the Air 
Production Unit. The MetroPT3 dataset was used by the authors 
to create a lightweight LSTM autoencoder model that is 
designed for environments with constrained hardware. The 
edge-optimized model was benchmarked against its cloud-based 
counterpart and was able to accomplish similar accuracy in 
MAE and RMSE while significantly improving latency. 
Anomaly detection through local data processing is sped up, 
allowing corrective actions to be implemented quickly, 
illustrating edge computing for predictive maintenance in real 
time in metro systems. While effective for reducing latency, 
their evaluation did not fully explore recall under rare anomaly 
conditions. Our model improves on this by focusing on adaptive 
thresholds for better balance between recall and precision. 

The research conducted by Shuo Li. [12] in the paper 
“Predicting Breakdowns in Transportation Vehicles using 

Supervised Learning” explores the use of ML approaches in 
vehicle breakdown prediction to enhance the effectiveness of 
preventive maintenance. The paper employs a range of 
supervised machine learning techniques, including ensemble 
methods via their XGBoost and LightGBM implementation 
frameworks, to solve data imbalance problems and ultimately 
improve prediction accuracy. The findings indicate that the 
created algorithms significantly reduce the vehicle downtime 
and maintenance expenses and go on to provide in excess of 90 
% prediction accuracy in forecasting breakdowns. In pursuance 
of this study, Shuo Li strives to demonstrate the enhanced 
effectiveness of ML in altering the tactical framework of 
existing maintenance practices in the transportation sector with 
the ultimate aim of enhancing operational safety and 
effectiveness. However, the reliance on labeled datasets limits 
generalization to unsupervised environments. 

A Surekha et al. [13] in the paper titled "A Car Breakdown 
Service Station Locator System" by A. Surekha et al. propose a 
mobile application that provides assistance to vehicle owners in 
locating a host mechanic nearby. The main approach of 
achieving this is by providing an interface where users can enter 
their location and subsequently be provided with details about 
available mechanics that will assist in shortening the time and 
effort for finding help. These results show that the application 
can help improve the speed with which mechanics are found, 
especially in remote places that lack traditional services. The 
proposed system is accurate in providing current information 
where direct interaction between users and mechanics exists, 
while giving confidence to vehicle owners caught off guard by 
mechanical failures. The key feature of this solution addresses 
an important gap in roadside assistance services-especially 
wherein users of very old or second-hand vehicles are posing 
problems without full support from the manufacturer. Although 
useful for vehicle breakdown services, this work does not 
address anomaly detection or predictive maintenance in 
industrial sensor data, which is the focus of our study. 

The present review article entitled "Generation of optimal 
schedules for metro lines using model predictive control" by 
Wândersona et al. [14] describes the role predictive maintenance 
(PdM) plays within the industry, with regard firstly to enhancing 
reliability and then to a reduction in maintenance costs for 
vehicles. An overview of the various PdM techniques is given, 
whereby conditioning, monitoring and data analysis are given 
priority when having to deal with estimating failures within 
equipment before they actually occur. Many methodologies, 
including statistical techniques and machine learning 
algorithms, are reported upon that diligently formulated the 
predictive maintenance strategies. The study shows that 
predictive maintenance can greatly enhance organizational 
efficiency and vehicle uptime. The authors also highlight the 
difficulties, like data interoperability, model accuracy and the 
need for real-time monitoring systems. This review highlights 
how predictive maintenance is revolutionizing the automotive 
industry and describes areas of future research that will continue 
optimizing maintenance practices. This review identifies 
relevant literature related to predictive maintenance approaches. 
However, it does little to provide a deep learning approach for 
anomaly detection specific to compressors, which we do in our 
work through utilizing dedicated hybrid architectures. 
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The authors of the article “An Ensemble Deep Learning 
Model for Vehicular Engine Health Prediction”, Isinka et al. 
[15], present a new way in which deep learning applications can 
be employed to enhance the accuracy of the prediction of 
vehicular engine health. Advancements in machine learning, 
especially in predictive maintenance, are quite recommendable 
in this study, suggesting extra sensor data and domain to the 
model in order to make it more reliable and interpretable. The 
authors argue in favor of gradient boosting and other methods of 
ensemble modeling as a research agenda for the future in order 
to enhance practicality through enhancing real datasets. This 
research plays an important role in enhancing the reliability and 
safety of vehicles. Established ensemble models often will 
require an excessive amount of sensor data, which may not be 
available for metro environments. Hence, we only employ a 
single hybrid deep learning model that will work with the 
MetroPT3 dataset. 

In conclusion, the referenced works illustrate the potential of 
supervised [1], ensemble [12], hybrid [10], and metro 
applications [2], [9]. Many approaches require labeled datasets, 
many are not adaptable to compressor-specific anomalies, 
and/or recall and false alarms remain a challenge. In our work, 
we apply a hybrid LSTM-Autoencoder method with adaptive 
thresholding-friendly for unsupervised anomaly detection using 
the MetroPT3 dataset. 

III. DATASET 

A. Dataset Description 

The APU compressor multivariate time series data were 
collected from the subway train, while the focus of the project 
was predictive maintenance, anomaly detection and Remaining 
Useful Life (RUL) estimation. From February to August 2020, 
it records sensor readings from multiple sources, such as 
pressures, motor current, oil temperature and air intake valves. 
These readings, as shown in Fig. 1, are vital for monitoring 
compressor performance. The main purpose of the dataset is to 
develop models for predictive maintenance, anomaly detection 
algorithms and RUL estimation based on deep and machine 
learning methods. 

Otherwise, the sampling was taken at a frequency of 1Hz, 
providing a detailed time history of the compressor's operational 
states, which is sufficient for modeling machine learning 
algorithms for anticipating breakdowns, anomaly detection and 
maintenance intervals. 

B. Structure of the Dataset 

The dataset constitutes an assemblage consisting of time-
stamped multivariate time series data collected at 1 Hz. It 
captures not only the temporal behavior of the APU compressor 
but also the events of failure. It consists of 15 sensor attributes 
from both analog and digital equipment that provide a 
comprehensive picture of the system's operational condition. 
Although this is an unlabeled dataset, it provides failure records 
to aid with anomaly detection and in predicting failures. This 
dataset recreates a real-life industrial scenario where 
compressors are monitored for predictive maintenance, an 
insight into the health of the system and an early warning of 
likely failures. 

Fig. 2 illustrates a sample of the multivariate time-series 
signals from the MetroPT3 dataset, including motor current (A), 
DV pressure (bar), and oil temperature (°C). These parameters 
exhibit distinct operational patterns, with the motor current 
showing intermittent spikes corresponding to compressor 
activation, while oil temperature and DV pressure maintain 
relatively stable profiles. Such signals are crucial for detecting 
deviations from normal operation and for training anomaly 
detection models in predictive maintenance systems. 

 
Fig. 1. A series of histograms of distribution of numerical features in the 

dataset. 

 
Fig. 2. Example of time-series sensor readings from MetroPT3 dataset (DV 

pressure, motor current, oil temperature). 

C. Feature Description 

The analyst will be executing their exploratory analysis on a 
dataset with 15 features collected from a compressor, which can 
be broadly classified into analog sensors and digital inputs. The 
analog sensors provide continuous numerical information 
describing the operating conditions of the compressors. They are 
T2, T3, H1, pressure DV, reservoirs, motor current and oil 
temperature capturing the slope operating pressure, motor 
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current and temperature concerning their performance 
monitoring. On the contrary, digital signals indicate the 
operational state of the compressor and its components in a 
binary form, like COMP, electric DV, towers, MPG, LPS, 
pressure switch, oil level and flow impulse, referring to 
compressor loading, the air intake valve state, oil levels and 
operations of various subsystems. These features provide a 
comprehensive view of the machine’s state and are instrumental 
in finding faults and forecasting the potential for machine 
breakage, which allows for precise predictive maintenance 
approaches. 

IV. EXISTING METHODOLOGY 

A. Overview of Predictive Maintenance Approaches 

Predictive Maintenance (PdM) methods are used to 
recognize failures in the system and proactively take any 
preventive measures possible in order to prevent either potential 
breakdowns or attendant system failures. 

1) Model-based: Model-based PdM entails the creation of 

mathematical models that describe the behavior of the system. 

As an oftentimes complex procedure, it would require a 

systematic and detailed knowledge of the system under scrutiny 

and the aid of experts in the field to model correctly. 

2) Knowledge-based: Knowledge-based approaches 

analyze historical maintenance records and use expert insight 

to construct a set of rules governing when maintenance should 

take place and when anomalies should be recognized. 

Nevertheless useful, these paradigms appear to be inefficient 

when faced with the difficulties posed by the evaluation of 

multi-complex, real-time data streams. 

3) Data-driven approach: Data-driven approaches 

incorporate data analysis and machine learning for processing 

real-time and historical signals from different sources in the 

studied system. These paradigms retain an advantage over 

others because they can learn by themselves from data and 

adjust to new, sudden failure modes with limited intervention 

from humans. 

B. Deep Learning Based Anomaly Detection Techniques 

Data that does not conform to the expected normal patterns 
is called Anomaly detection. These deviations may indicate 
failures in PdM. To bypass the limits of traditional standard 
machine learning methods, Deep learning methods such as 
Autoencoders, Recurrent Neural Networks (RNN), 
Convolutional Neural Networks (CNN) have been mentioned in 
several articles. 

Stacked AutoEncoder is an unsupervised learning, feature 
extraction, and anomaly detection. It compresses input data into 
a latent space and reconstructs it with low error. It usually 
consists of an input layer, hidden layers and an output layer. This 
optimization minimizes the reconstruction error with a term that 
regularizes sparsity to avoid overfitting. 

Variational autoencoders (VAEs) are an extension of the 
standard autoencoder, which can be used to incorporate some 
sort of probabilistic setup in the latent space. Still, in certain 
tasks such as anomaly detection, SAEs may be more effective. 

C. Limitations of Existing Methods 

Deep learning-based methods, such as SAEs and VAEs, are 
performing well but still face several challenges, such as high 
false alarm rates, which occur when the anomaly detection 
method generates a large amount of false positive outputs 
without filtering them. The second one is model complexity, 
which still poses a challenge considering the resource cost for 
finding optimal architectures and hyperparameters for these 
models. Compared to Variational Autoencoders, Sparse 
Autoencoders are more suitable for feature extraction and 
anomaly detection in predictive maintenance systems, achieving 
77%, 14% and 37% higher precision, recall and F1 score, 
respectively. Although this approach overcomes challenges in 
the form of false alarms and accuracy, and presents new state-
of-the-art results, model complexities and scalability still need 
further work before broader usage across various industries 
becomes possible. 

V. PROPOSED METHODOLOGY 

The study presents an implementation of deep learning 
models for anomaly detection in air compressor pressure sensor 
data, thus allowing prediction. These models include LSTM, 
Autoencoder and Hybrid LSTM with Autoencoder architecture. 
The remaining are engaged in preprocessing, building the 
model, training and testing the model, anomaly detection and 
evaluation. 

A. Preprocessing 

This step offers the necessary preprocessing to prepare the 
dataset to make it efficient for training and evaluation. Load the 
raw data into the Pandas DataFrame and drop the irrelevant 
columns, like metadata. Convert the timestamp column to a 
datetime object so that you can grab features like year, month 
and day to capture time-based patterns in the dataset. 

Handling missing values is key to data quality. Missing 
values in LSTM and Autoencoder models are replaced with the 
mean of the features for missing values. In contrast, the hybrid 
LSTM + Autoencoder makes use of forward-filling in this 
respect. 

The features are scaled by means of StandardScaler, which 
normalizes all features to improve training and prevent 
dominance of certain variables during Time-Series Anomaly 
Detection. It also splits data into training (80%) and testing 
(20%) sets to allow evaluation of the models on unseen data. 

B. Model Architectures 

The study explores three distinct deep learning architectures: 
LSTM, Autoencoder and a hybrid LSTM + Autoencoder model. 
Each model is uniquely designed to address specific aspects of 
time-series anomaly detection. 

1) LSTM architecture: Long Short-Term Memory or else 

known as LSTM is the aptest architecture for problems 

involving time-series data, for which it captures long-term 

dependencies with the help of specialized gates that simply 

function to manipulate output: input, forget and output-induced 

gates. This model consists of an input layer where pressure and 

temporal characteristics of the sensor data feed in sequences. 

Stacked LSTM layers automatically learn within-series 
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temporal dependencies of the sensor data and let the model pick 

out the underneath trends and patterns after some time. A fully 

connected output layer gives air-compressor-pressure forecasts 

by throwing light on system behavior. 

2) Autoencoder architecture: An autoencoder architecture 

conceptually works to detect anomalies using the compression 

and reconstruction of the input data. The encoder compresses 

input data into its representation in such a way as to convey the 

most important features in a smaller dimension. This 

representation is the definition of the bottleneck for the model, 

where such data is compressed. From the compressed 

representation, the decoder reconstructs the original data. The 

reconstruction error, or the difference between the original and 

the reconstructed data, will drive the anomaly detection 

process. High reconstruction errors typically suggest the 

detection of an anomaly, as these data points deviate 

significantly from the normal pattern. 

3) LSTM + Autoencoder architecture: A combined 

approach, as depicted in Fig. 3, utilizes the strengths of LSTM 

and Autoencoder architectures to sharpen the efficiency of 

detection of any anomalies. 

 
Fig. 3. Architecture diagram for LSTM + Autoencoder model with various 

layers for time-series anomaly detection. 

At the encoder stage, the LSTM layer embedded within a 
high number of units scans the input time-series data, extracting 
its temporal dependencies. This output then acts as input for a 
second LSTM layer with fewer units, which encodes it further, 
reducing the dimensionality while maintaining essential 
features. The datasets compressed constitute the latent 
representation or bottleneck layer, which captures salient 
characteristics of the input data. 

The next stage of reconstruction is employed in the decoder 
section. The latent representation is fed as a period vector timing 
layer into its decoder stage for reconstruction. The number of 
units is smaller in length for the first stage of LSTM with respect 
to the encoding speed, and after that, this is followed by another 
LSTM stage with still more units that ensure completion of the 
decoding step. Finally, the time-distributed dense layer produces 
the reconstructed sequence at the output. 

Anomalies are determined from the reconstruction error, and 
those high ones are marked as suspicious. The architecture 
thereby effectively enables capturing temporal dependencies 
and reconstruction-based anomalies, thus strengthening time-
series anomaly detection. 

C. Anomaly Detection Process 

Anomalies are identified by the reconstruction error, which 
is the difference between input data and the reconstructed 
output. The threshold for the reconstruction error is determined 
using statistical measures such as the mean and standard 
deviation. Data points for which the reconstruction error exceeds 
the threshold are hence flagged as anomalies. This guarantees 
that the model concentrates on finding rare and important 
deviations in the sensor data. 

D. Evaluation Metrics 

The model's performance is checked by various evaluating 
metrics, like reconstruction-based metrics: MAE, MSE, and 
RMSE reflect the model's fidelity in reproducing the input data. 
Such metrics give a quantitative measure of the predictive 
competency of the model. 

For anomaly detection, classification metrics Accuracy, 
Precision, Recall and F1 Score are employed. Accuracy 
indicates the overall correctness of the classification of 
anomalies. Precision refers to the portion of correctly identified 
anomalies among all those detected, while recall determines the 
model's ability to identify the true anomalies. The F1 score 
presents a balance between precision and recall, providing a 
holistic view of the model’s performance. 

E. Key Advantages of the Hybrid Architecture 

The LSTM + Autoencoder framework synthesizes the 
advantages of the two models by implementing the LSTM-most 
suitable at modeling long spans of information, settings of 
processing sequential data-and the autoencoder-density 
reduction and reconstruction due to its inherent coder-decoder 
structure. Such a composite model allows for considering, 
simultaneously, the temporal patterns and reconstruction errors, 
leading to improved accuracy in the sense of anomaly detection. 

Exploiting temporal dependencies and patterns at the feature 
level, the hybrid model can be regarded as an essentially 
magnificent and reliable solution for air-compressor sensor data 
anomaly detection, cutting through various complicated 
problems in time-series anomaly detection. 

VI. RESULTS 

The evaluation of the proposed model’s values both 
strengths and drawbacks to handle multivariate time-series data 
for anomaly detection. Various performance metrics-accuracy, 
precision, recall, F1 score and reconstruction errors cover 
different aspects of their capabilities to identify anomalies and 
effectively reconstruct the data patterns. 

A. LSTM Performance 

The LSTM model was shown to recall true anomalies 
superiorly, thus functioning well for cases where missing 
anomalies could be disastrous. Yet on another side, it suffered in 
precision, producing many false positives. Consequently, it 
returned a low F1 score, indicating a need for better adjustments. 
Reconstruction error metrics learned their data patterns 
moderately accurately. Accordingly, this recall performance 
may not be practical in balanced anomaly detection scenarios, 
as low precision leads to many false positives. 
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B. Autoencoder Performance 

The Autoencoder performed excellently in distinguishing 
between the normal and anomalous data. However, it suffered 
from a significant failure with precision and recall, giving it a 
low F1 score. Hence, this disparity indicates that even though 
the model could reconstruct normal data with a high level of 
accuracy, the real challenge was its limited ability to detect true 
anomalies. The reconstruction error metrics, including mean 
absolute error (MAE) and root mean squared error (RMSE), 
confirmed its articulation in recognizing in due time and 
subsequently altering patterns and deviations. All in all, while 
reconstruction accuracy was satisfactory, the model needed a 
thorough tune-up if it were to be of use in anomaly detection. 

C. Combined LSTM + Autoencoder Performance 

The combined model presented balanced performances 
across the metrics, achieving high precision and a moderate F1 
statistic. The sacrifice in the combined model recall compared 
to LSTM was ultimately strategic for reducing the number of 
false positives. The reconstruction errors in this model, as shown 
in Fig. 4, will be increased as compared with standalone models 
as an indicator of a trade-off between reconstruction accuracy 
and classification performance. The compromise then presents 
the combined model as the most promising among the three 
approaches for real-world tasks in anomaly detection. 

 
Fig. 4. Reconstruction error distribution. 

D. Visualization of Model Performance 

Error Metric Comparison: From Fig. 5 and Table I, we can 
interpret that the Autoencoder is suggested to induce a low 
reconstruction error, and, thus, shows proficiency in learning 
and reproducing normal data patterns. Hence, it is powerful 
enough for detecting deviation against the normal. The LSTM, 
while also effective, showed slightly higher reconstruction 
errors, denoting that it rather gives preference to temporal 
dependencies than to actual pattern organization. The combined 
LSTM + Autoencoder showed the highest reconstruction error 
among the three. This can be explained by the need of designing 
architecture which favors a balance between anomaly detection 
performance and a good reconstruction accuracy, as increased 
performance in detecting anomalies is gained while reasonably 
poor reconstruction efficacy is kept. 

 
Fig. 5. Comparison of reconstruction errors among LSTM, autoencoder and 

LSTM+Autoencoder. 

TABLE I. RECONSTRUCTION ERROR OF THE MODELS 

Model 

Mean 

Absolute 

Error (MAE) 

Mean Squared 

Error (MSE) 

Root Mean 

Squared Error 

(RMSE) 

LSTM 0.004245 0.00159 0.0399 

Autoencoder 0.0037 0.0001 0.0118 

LSTM + 

Autoencoder 
0.0308 0.0308 0.1754 

1) Performance metric comparison: Out of all models, it 

was the Autoencoder model that stood at its pinnacle of 

performance in normal data pattern recognition, having high 

accuracy. Unfortunately for the variability aspect of the model, 

it was markedly lower in recall and F1 scores, which means it 

should work much less in pinpointing true anomalies. As shown 

in Fig. 6 and Table II, the LSTM model has surpassed in the 

recall section, which has provided itself with insight into 

capturing rarer anomalies. Precision, however, has been at its 

very low for it, resulting in many false positives that count as a 

minus in the eyes of those who value accuracy. The 

combination of LSTM and the Autoencoder achieved 

consistent performance, providing equivalent precision and a 

decent F1 rating. 

E. Discussion 

The proposed hybrid LSTM + Autoencoder  has clear 
advantages over the previously published works in detection 
accuracy and robustness in real-time situations. For example, 
Davari et al. [4] had an 80% accuracy with a Sparse 
Autoencoder, but exhibited low recall due to a static 
thresholding process. Whereas, our model achieved a precision 
of 98% and recall of 43.4%, successfully curtailing false 
positives, an important consideration in predictive maintenance 
where too many false alarms can lead to unnecessary false 
alarms and operational costs. Veloso et al. [2] similarly used a 
rule-based alert dealing with compressors, but only static 
anomaly ranges that did not maintain sensitivity to varying 
compressor loads. Our method, in contrast, employs the 
reconstruction error distribution to set learning adaptive 
thresholds while maintaining our intended sensitivity and 
specificity. 
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Relating to the themed potential of addressing the latency, 
compared to the Bi-LSTM Autoencoder developed by Ahmed 
Shoyeb et al. [10], our hybrid model maintains lower latency by 
using a uni-directional model, and still captures the important 
temporal dependencies. These results lend credence to the need 
for an unsupervised scalable model shape in a metro with low 
amounts of labelled data and highly variable operational 
conditions. However, like Michele et al. [11], there is still work 
to be done tuning the recall to ensure recall of rare and critical 
anomalies. 

 

Fig. 6. Visual comparison of model performance metrics. 

TABLE II. MODEL PERFORMANCE METRICS 

Model Accuracy Precision Recall F1-score 

LSTM 0.1976 0.0116 0.9983 0.023 

Autoencoder 0.9898 0.0364 0.0031 0.0058 

LSTM + 

Autoencoder 
0.4302 0.9804 0.434 0.6016 

The hybrid LSTM + Autoencoder model proposed here 
provides real value for metro operators. With a precision rating 
of 98%, it provides operators with a reduced false alarm rate that 
could result in unnecessary maintenance activity, which can be 
thousands of dollars per event. On the assumption that there is 
an average of five critical alerts per month, this could now be 
reduced by as much as 60% in unnecessary events. Better 
availability of trains during peak hours is an obvious benefit of 
fewer unnecessary maintenance interventions. Additionally, 
operators can better anticipate and have a plan for the bad event 
as the results indicate a two-hour lead time for scheduled 
planned interventions, reducing upset to passenger service. 

F. Final Recommendation 

Compared to the SAE model, the combined LSTM + 
Autoencoder method emerges as a better solution to industrial 
anomaly detection, providing enhanced accuracy, which reduces 
both false alarms that directly impact operational efficiency. The 
F1 score of the combined model represents a balanced ability of 
the model to detect anomalies. 

Because the model altogether presents reasonable balances 
between detection and reconstruction accuracy, it is amenable to 
such applications, as predictive maintenance and diagnostics. As 
illustrated in Fig. 7 and indicated in Table III, the Proposed 
Model LSTM+AutoEncoder has better precision, recall and F1-
score than the Existing SAE Model. Overall precision increased 
from 80% to 98%, indicating that the proposed model has lower 

false positives when correctly identifying actual anomalies. The 
recall grows slowly here as well, climbing just 3.4% from 40% 
to 43.4%. There is also a marginal increase in F1-score from 
53.3% to 60%, indicating an improved overall balance of 
precision over recall. 

 

Fig. 7. Visual comparison of precision, recall and F1-score between the 

existing SAE model and the proposed model. 

TABLE III. COMPARISON OF PERFORMANCE METRICS BETWEEN THE 

EXISTING SAE MODEL AND THE PROPOSED LSTM + AUTOENCODER MODEL 

Model Precision Recall F1-score 

SAE Model 80% 40% 53.30% 

LSTM + Autoencoder 98% 43.40% 60% 

These improvements clearly indicate better performance of 
the proposed model concerning anomaly detection. 

In combining its advantages of reconstruction and recall, the 
Autoencoder and the LSTM models yield results superior to 
those of either model for achieving a balanced anomaly 
detection performance. Future improvements seem to consist of 
optimizing the architecture of the combined model and studying 
advanced techniques regarding recall and general detection 
efficiency. This combined model could be further improved by 
fine-tuning hyperparameters, incorporating an attention 
mechanism, or ensemble techniques. Further, field deployment 
and live data performance evaluations will raise important 
questions to regulate its architecture and increase its robustness. 

VII. CONCLUSION AND FUTURE WORKS 

A. Conclusion 

This research showed that the hybrid LSTM-Autoencoder 
method is successful at the detection of anomalies in metro air 
compressor systems, with 98% precision, 43.4% recall, and a 
60% F1-score. Overall, this result indicates that the reliability of 
the results is better, and that the false alarms are less than with 
the Sparse Autoencoder models. Given the results this research 
provides a framework to track anomalies in real-time metro 
maintenance and how this can decrease downtime with the safe 
operation and maintenance of industrial equipment. 
Additionally, as the hybrid LSTM-Autoencoder process 
consumes multivariate time-series data, this also means that it 
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can scale to other predictive maintenance in industrial 
applications. 

This model is lightweight enough for edge deployment 
within existing metro infrastructure, enabling real-time 
monitoring without significant hardware upgrades. Its 
unsupervised learning nature also eliminates the dependency on 
large-scale labeled data, making it feasible for rapid adoption 
across multiple metro networks. 

Furthermore, other recent research emphasizes the role of the 
use of time-series anomaly detection and Long Short-Term 
Memory (LSTM) based models in capturing early warning signs 
of failure in air production units. Combining LSTM and 
Autoencoder turned out to be beneficial as it captures temporal 
dependencies in sequential data that may otherwise have gone 
unnoticed by traditional Autoencoders. The LSTM layer learned 
the sequential patterns while the Autoencoder compressed data 
representations and evaluated reconstruction errors. This is 
particularly useful for datasets with sequential characteristics, 
where anomalies can only be detected in the context of entire 
observation sequences. 

It would therefore be an advancement on the traditional 
Autoencoders because of superior performance in anomaly 
detection with sequences or time series. The effective strategy 
of using LSTM for sequence learning coupled with 
autoencoders for unsupervised anomaly detection proves that 
sequences where anomalies exist are subtle and, at times, 
context-dependent. The results confirm that LSTM-
Autoencoders are a strong anomaly detection method for time-
series data and that they should be preferred in any scenarios that 
require sequential data analysis. 

B. Recommendations for Future Work 

The performance of this model may be further improved, and 
its applicability may be extended to bigger metropolitan rail 
systems for future work. A promising direction could be to 
integrate real-time monitoring by embedding the LSTM 
Autoencoder with real-time frameworks in an edge computing 
environment. Improvements in explainability and 
interpretability can further highlight the decisions made by the 
model, build user trust, and further increase the transparency of 
the model. 

More development in data preprocessing techniques would 
lead to further advancements for improved model accuracy and 
reliability, especially when handling noisy and imbalanced data. 
The study has multi-sensor fusion capabilities. Training the 
model for huge datasets and then testing it for various metro 
systems would improve generalization capabilities. 

Further research could include hybrid models combining 
Autoencoders with other algorithms, with the intention of 

improving model robustness and accuracy. Such innovations 
can really boost the reliability and efficiency of metro rail 
operations, with predictive maintenance and anomaly detection 
systems well set to hit the streets. 
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