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Abstract—This study addresses the prevalent decline in 

physical activity among university students in the contemporary 

information society, proposing an innovative deep learning-based 

framework for intelligent physical activity recognition. Central to 

this framework is the comprehensive utilization of high-precision 

Inertial Measurement Units (IMUs) integrated within 

smartphones, encompassing triaxial accelerometers, gyroscopes, 

and magnetometers, enabling multi-dimensional, real-time 

capture of students' daily activity postures. For algorithmic 

design, this research transcends traditional limitations by 

adopting the more advanced Transformer architecture as its core 

classifier. Through the distinct self-attention mechanism inherent 

to this architecture, the proposed method efficiently and 

precisely extracts critical spatiotemporal features from vast 

sensor data, thereby achieving accurate identification and 

classification of various physical activities, such as walking, 

running, and climbing stairs. Rigorous evaluation results 

demonstrate significant advantages in key performance metrics, 

including recognition accuracy, when compared to conventional 

recurrent neural networks (e.g., Long Short-Term Memory 

networks, Recurrent Neural Networks) and classic machine 

learning algorithms (e.g., Random Forest), with a validation 

accuracy reaching 93.97%. This forward-looking research 

outcome not only provides a reliable and efficient technological 

means for monitoring the physical activity status of university 

students but also establishes a robust data foundation for the 

future development and implementation of targeted health 

intervention measures. 

Keywords—Activity recognition; smartphone; transformer 

architecture; inertial measurement units 

I. INTRODUCTION 

In recent years, the widespread adoption of smartphones 
and rapid advancements in mobile computing technology have 
positioned sensor-based Human Activity Recognition as a focal 
point in research fields such as health monitoring, intelligent 
assistance, and sports analytics [1]. Traditional methods for 
monitoring physical activity, such as questionnaires, field-
based equipment assessments, or manual observation, suffer 
from limitations including subjectivity, high costs, and poor 
compliance, making them inadequate for large-scale, long-term, 
and precise monitoring. Consequently, there is an urgent need 
for intelligent, convenient, and efficient physical activity 
recognition technologies to address the shortcomings of 
conventional methods. 

The perception of physical activities forms the cornerstone 
of intelligent recognition. Currently, the primary approaches to 

physical activity perception encompass time-series data-based 
sensing and image-based visual sensing [2]. The use of diverse 
sensor modalities for activity detection and classification has 
emerged as a transformative technology for real-time and 
autonomous monitoring in areas such as behavioral analysis in 
smart home environments, assisted living, daily activity 
monitoring, elderly care, rehabilitation, entertainment, and 
security surveillance. Wearable devices, smartphones [3], and 
ambient sensing equipment are equipped with an array of 
sensors, including accelerometers, gyroscopes, magnetometers, 
heart rate monitors, pressure sensors, and compact cameras, to 
facilitate activity recognition and monitoring [4]. These sensor 
data undergo preprocessing to extract feature sets, such as 
time-domain, frequency-domain, or wavelet transform features, 
which are then processed using machine learning algorithms to 
classify and continuously monitor human activities. 

The perception of time-series data, such as acceleration 
signals, provides a convenient approach for activity recognition. 
By integrating these data with intelligent algorithms, accurate 
identification of human activities can be achieved. Yin et al. 
developed a two-stage method for detecting anomalous 
activities using wireless body sensors [5]. In the first stage, 
they trained a one-class Support Vector Machine (SVM) on 
common normal activities to filter out those highly likely to be 
normal. Subsequently, they used Kernel Nonlinear Regression 
(KNLR) to derive an anomaly activity model from the general 
normal model, reducing false positives in an unsupervised 
manner. Saeed et al. proposed a novel self-supervised 
technique for feature learning from sensor data, which did not 
require semantic labels (i.e., activity categories) [6]. They 
trained a multi-task temporal convolutional network to 
recognize transformations applied to input signals. By 
leveraging these transformations, they demonstrated that a 
simple binary auxiliary task could generate robust supervisory 
signals, extracting valuable features for downstream tasks. 
Janidarmian et al. performed an extensive analysis of feature 
representations and classification techniques for activity 
recognition, comparing 293 classifiers in the most 
comprehensive study to date [7]. They applied Principal 
Component Analysis (PCA) to reduce feature vector 
dimensionality while preserving essential information. Iloga et 
al. observed that deep learning techniques addressed some 
limitations but required significant computational resources 
and produced feature vectors with limited interpretability [8]. 
To address these challenges, they developed a Human Activity 
Recognition (HAR) technique based on Hidden Markov 
Models (HMMs). 
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Smartphones equipped with various sensors, such as 
accelerometers, gyroscopes, and magnetometers, can capture 
high-frequency data on posture, orientation, and velocity 
changes during human motion, generating continuous time-
series data [9]. These data accurately capture unique patterns of 
periodic or non-periodic movements, such as running, jumping, 
and walking [10]. For instance, accelerometers record linear 
motion, while gyroscopes detect rotational motion, together 
providing a comprehensive representation of the body’s 
dynamics in three-dimensional space [11]. Through 
preprocessing, feature extraction, and pattern recognition of 
sensor data, different physical activities can be effectively 
distinguished [12]. Compared to other wearable devices, 
smartphones, as indispensable tools in university students’ 
daily lives, offer widespread availability and portability, 
making them an ideal platform for time-series data collection 
in physical activity sensing [13]. Lara et al. developed the 
Centinela system [14], which integrated acceleration data with 
vital signs to achieve high-accuracy activity recognition. The 
system identified five activities: walking, running, sitting, 
standing, and descending. They evaluated eight classifiers and 
three time window sizes, achieving an overall accuracy of 
95.7%. Micucci et al. created a novel acceleration sample 
dataset [15], collected using an Android smartphone designed 
for human activity recognition and fall detection. The samples 
were categorized into 17 fine-grained classes and grouped into 
two coarse-grained classes: one comprising 9 types of 
Activities of Daily Living (ADL) and another including 8 types 
of falls. Mario proposed a novel mechanism for detecting 
specific activities using data from a single triaxial 
accelerometer [16]. They employed convolutional neural 
networks to automatically extract the most relevant features to 
characterize acceleration patterns, enabling cross-activity 
recognition. 

With significant advancements in deep learning for image 
processing, intelligent recognition of human activities based on 
image data has seen rapid development. Niu et al. developed a 
framework for human activity detection and recognition in 
outdoor video surveillance applications [17]. They introduced 
an efficient activity representation method that identified 
distinct interaction patterns among groups based on simple 
statistical data from tracking trajectories, without requiring 
complex Markov chains, Hidden Markov Models (HMMs), or 
Coupled Hidden Markov Models (CHMMs). Sung et al. 
utilized RGBD sensors (Microsoft Kinect) as input devices and 
computed a set of features based on human posture, motion, 
and image and point cloud data [18]. They designed an 
algorithm based on a hierarchical Maximum Entropy Markov 
Model (MEMM), treating individual activities as compositions 
of sub-activities, and employed dynamic programming to infer 
a two-layer graph structure. Ni et al. proposed a novel 
framework for complex activity recognition and localization, 
effectively integrating information from grayscale and depth 
image channels across multiple layers of the video processing 
pipeline [19]. Koppula et al. modeled complex spatiotemporal 
relationships (termed affordances) between human postures 
and objects using Conditional Random Fields (CRFs), inferring 
multiple possible graph structures and approximating graphs 
with additive features for efficient dynamic programming [20]. 
Albanese et al. developed a computational framework for 

human activity representation based on Petri Nets [21]. They 
introduced the PPN-MPS algorithm for the first question and 
proposed two algorithms (naive PPN-MPA and PPN-MPA) for 
the second. Rodrigues et al. developed a multi-timescale model 
to capture temporal dynamics across different time scales, 
predicting future and past states for a given input posture 
trajectory [22]. 

In the domain of physical activity recognition, deep 
learning techniques have demonstrated exceptional capabilities 
in feature extraction and pattern recognition, establishing them 
as the most advanced and effective algorithmic paradigm. For 
time-series data collected by smartphones, Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and their variants, such as Long Short-Term Memory networks 
(LSTMs) and Gated Recurrent Units (GRUs), have been 
widely applied to physical activity recognition [23]. 
Additionally, models incorporating attention mechanisms 
further enhance the ability to capture critical motion features 
[24]. For image data, CNNs remain the dominant algorithm for 
physical activity recognition. Transfer learning based on 
pretrained ImageNet models significantly improves 
performance in image-based activity recognition tasks. By 
leveraging posture information derived from human skeleton 
keypoint detection, combined with algorithms like Graph 
Convolutional Networks (GCNs), complex physical activities 
can be analyzed more effectively through posture changes and 
action sequences. Furthermore, Transformer models have 
shown significant potential in processing image sequences and 
capturing global features, opening new research directions for 
image-based physical activity recognition [25]. 

Transformer technology continues to demonstrate 
significant potential in processing time-series and tabular data. 
To this end, this study proposes a novel method for intelligent 
recognition of physical activities in students using 
Transformer-based models and smartphone sensors. The 
method leverages high-precision inertial sensors embedded in 
smartphones, such as accelerometers and gyroscopes, to collect 
motion data. Through the Transformer neural network, feature 
extraction and classification are performed to automatically 
identify various physical activities, including walking, running, 
and climbing stairs. Compared to traditional time-series models 
such as Long Short-Term Memory (LSTM) networks, vanilla 
Recurrent Neural Networks (RNNs), and machine learning 
methods like Random Forest, the proposed method 
demonstrates a significant advantage in recognition accuracy. 
In terms of algorithmic architecture, this study pioneers the 
application of Transformer models in the domain of university 
students' daily activity recognition. Leveraging its distinctive 
self-attention mechanism, the proposed framework achieves 
efficient and precise extraction of crucial spatiotemporal 
features from massive sensor datasets. Regarding practical 
applications, the research not only develops a reliable and 
efficient monitoring system for collegiate physical activities 
but more significantly incorporates an innovative class-
balancing mechanism that effectively mitigates recognition 
performance degradation caused by the data imbalance issue. 

 Section II provides a detailed introduction to the overall 
framework and the intelligent recognition algorithm of the 
proposed method. Section III conducts an in-depth analysis of 
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the utilized data, and Section IV evaluates the recognition 
performance of the proposed method in comparison with other 
approaches. Section V presents a discussion and analysis. 
Finally, Section VI summarizes the findings of this study. 

II. PORTABLE PERCEPTION AND INTELLIGENT 

RECOGNITION OF HUMAN ACTIVITIES 

To accurately and comprehensively monitor and assess the 
types and states of physical activities among university 
students, this study innovatively proposes a portable 
monitoring method based on smartphone technology and deep 
learning. Its overall framework, clearly illustrated in Fig. 1, 
delineates the entire data flow and processing pipeline. This 
method capitalizes on the pervasive and ubiquitous nature of 
modern smartphones, specifically leveraging their integrated 
high-precision inertial sensors, such as triaxial accelerometers 
and triaxial gyroscopes. These sensors enable the portable 
sensing of human activities, capturing detailed motion data 
with remarkable accuracy, thereby establishing a robust 
foundation for subsequent analytical procedures. In the data 
processing phase, the raw sensor signals undergo a series of 
meticulous preprocessing steps. Specifically, the data is first 
subjected to precise segmentation in both the time and 
frequency domains, dividing it into fixed-length windows to 
ensure that each window encapsulates complete activity 
information. Subsequently, these segmented data are 
normalized to eliminate scale discrepancies between different 
sensors or individuals, ensuring data consistency. Following 
normalization, a rich set of time-domain and frequency-domain 
features is extracted from the signals, designed to capture the 
unique patterns of distinct physical activities. These extracted 
features collectively form a structured tabular dataset, where 
each sample comprises a carefully selected array of diverse 
features, preparing the data for input into the machine learning 
model. 

Building upon this foundation, this research innovatively 
designs and proposes an optimized Transformer network 
model specifically tailored for this tabular data. This model 
integrates advanced deep learning techniques, including a 
unique mapping projection mechanism and a sophisticated 
positional encoding strategy. These techniques enable the 
Transformer network to effectively process the non-sequential 
structure inherent to tabular data and capture complex 
relationships and potential temporal dependencies among 
features (even though the data has been tabularized). Through 
this powerful model, we achieve highly accurate classification 
of various human activities, thereby robustly supporting the 
continuous monitoring and assessment of university students' 
activity types and states. This portable, efficient, and precise 
monitoring method promises to offer a revolutionary tool for 
managing the physical health of university students. 

The physical activity recognition model proposed in this 
study leverages the robust modeling capabilities of the 
Transformer architecture combined with the characteristics of 
multidimensional feature data. Originally designed for natural 
language processing tasks, the Transformer model has gained 
widespread attention due to its superior sequence modeling and 
global information capture mechanisms. The model processes 

input tabular data through four core components—input 
projection, positional encoding, Transformer encoder, and 
classification head—to capture complex dependencies among 
features and generate probabilistic predictions for activity 
categories. Compared to traditional vanilla Recurrent Neural 
Networks (RNNs) or Convolutional Neural Networks (CNNs), 
the Transformer architecture employs a self-attention 
mechanism to process tabular data in parallel, significantly 
enhancing its ability to model multidimensional features while 
mitigating issues such as vanishing gradients. The input 
projection module maps raw tabular data features into a high-
dimensional model space, improving feature representation. 
The positional encoding module introduces positional 
information to the tabular data, addressing the Transformer’s 
inherent lack of sequence awareness. The Transformer encoder, 
utilizing multiple layers of multi-head self-attention 
mechanisms and feed-forward networks, captures intricate 
dependencies within the tabular data. The classification head 
pools the encoded sequence features and maps them to the 
category space, producing the final activity predictions. Each 
component incorporates recent advances in deep learning, 
ensuring the model’s efficiency and robustness in handling 
time-series data. The following sections provide a detailed 
description of each module. 

 
Fig. 1. Overall framework of the proposed method. 

A. Projection of the Input Data 

The input projection module aims to map raw tabular data 

features ( B DX R ) to the model’s internal dimension (dmodel) 
to meet the input requirements of the Transformer encoder 
while enhancing feature representation through nonlinear 
transformations. The projection process encompasses linear 
transformation, layer normalization, activation functions, and 
dropout operations, defined as follows: 
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parameters of the linear transformation. Layer normalization 
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where,  and 2  denote the mean and variance, 

respectively, model,
d  R  are learnable parameters, and ò  is a 

small constant to prevent division by zero. The ReLU 
activation function introduces nonlinearity, enhancing the 
model’s expressive capacity. Dropout randomly zeros elements 
with probability (pdropout), mitigating overfitting. Layer 
normalization standardizes the feature distribution, alleviating 
internal covariate shift and improving training stability. 
Together, the ReLU activation function and dropout operations 
enhance the model’s nonlinear modeling capability and 
generalization performance. 

B. Position Coding Transformer 

The Transformer architecture is inherently insensitive to the 
order of input tabular data, necessitating the explicit addition of 
positional information to preserve the sequential characteristics 
of the data. To retain the order information of tabular data 
features, this study employed sine and cosine functions to 
generate positional encodings, defined as: 

model model2 / 2 /
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where, 
{0,1, ,max_len 1}t  

 denotes the feature step, 

and model{0,1, ,( /2) 1}i d  
 represents the dimension index. 

max_len is the maximum feature length. The positional 
encoding is added to the projected input, followed by a dropout 
operation, defined as follows: 

1 0 [: ]Dropout( )T Z Z PE
  (4) 

where, 
model

[: ]

T d

T


PE R

 denotes the positional encoding 
truncated to the first T rows. The sine and cosine functions 
generate periodic signals, enabling the model to distinguish 
between different features while maintaining smooth frequency 
variations. Fixed positional encodings, as opposed to learnable 
encodings, reduce the number of parameters and offer better 
generalization across tabular data of varying lengths. The 
dropout operation further enhances model robustness, 
preventing over-reliance on positional encodings. 

C. Transformer Encoder 

The Transformer encoder serves as the core component of 
the model, tasked with capturing complex dependencies among 
features in tabular data. It consists of L stacked encoder layers, 
each comprising a multi-head self-attention mechanism and a 
feed-forward neural network (FFN), augmented by residual 
connections and layer normalization. For the l-th layer, given 

the input ( 
model

1

B T d

l
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), the multi-head self-attention is 

computed as follows: 
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represent the query, key, and value matrices, respectively, 
model

, , , model head head, , /; ;kd d

Q h K h V h kd d n n


 W W W R
 denotes the 

number of attention heads, kd
 is the scaling factor used to 

stabilize gradient computations, and head{1, , }h n 
 represents 

the multi-attention head. The multi-head self-attention 
mechanism enables the model to focus on different parts of the 
sequence in parallel, capturing diverse feature dependency 
patterns. Residual connections preserve the original input 
information, mitigating gradient vanishing issues in deep 
networks. The feed-forward neural network (FFN) applies a 
nonlinear transformation independently to each time step, 
enhancing feature representation, and is defined as follows: 

1 1 2 2ReLU( )l

  F Z W b W b
  (6) 

Here, 
model ff ff model modelff

1 2 1 2 ff, ,, ,
d d d d dd d
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   W W b bR R R R

 
denotes the dimension of the feed-forward neural network. The 
FFN enhances the model’s nonlinear modeling capability, 
capturing complex data patterns. Residual connections and 
layer normalization further improve training stability, enabling 
the stacking of additional layers to increase the model’s 
capacity. 

D. Classification Head 

The classification head employs a MultiLayer Perceptron 
(MLP) to map the pooled feature vectors to a probability 
distribution over activity categories, generating the final 
predictions for physical activities. Specifically, the 
classification head first applies a global pooling operation, such 
as mean pooling or max pooling, to the sequence features 
output by the Transformer encoder, extracting representative 
global features. These features are then fed into a multilayer 
perceptron consisting of multiple fully connected layers, each 
incorporating nonlinear activation functions (e.g., ReLU) and 
dropout operations to enhance the model’s expressive power 
and generalization performance. Finally, a softmax function is 
applied to map the output to a probability distribution over the 
activity categories, enabling precise classification of physical 
activities. 

pool 3 3 4 4Softmax(Dropout(ReLU(LayerNorm( ))) )  Y Z W b W b
 (7) 

Here, 
model ff ff ff

3 4 3 4,, ,
d d d C d C    W W b bR R R R

. The 
deep classification head enhances the model’s classification 
capability through additional linear layers, layer normalization, 
and nonlinear activation functions. Dropout operations 
effectively mitigate overfitting, improving the model’s 
generalization performance on test data. The softmax function 
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ensures that the output forms a valid probability distribution, 
making it suitable for multi-class classification tasks. 

III. ANALYSIS OF HUMAN ACTIVITY PERCEPTION DATA 

The proposed method facilitates efficient and accurate 
human activity recognition. The HAPT (Human Activity 
Recognition Using Smartphones) dataset [26], a widely 
adopted benchmark in HAR research, and available through the 
UCI Machine Learning Repository, captures diverse daily 
activities using smartphone-embedded inertial sensors. The 
dataset comprises time-series signals collected at 50 Hz from a 
waist-mounted smartphone, including: triaxial accelerometer 
data (X/Y/Z axes) quantifies linear acceleration patterns 
associated with body movements such as walking, sitting, or 
transitioning between postures. Triaxial gyroscope data (X/Y/Z 
axes) measures angular velocities to characterize rotational 
dynamics during activities like turning or limb motion. This 
multimodal sensor fusion provides complementary kinematic 
representations, enabling robust activity classification while 
maintaining temporal granularity critical for motion analysis. 
The standardized sampling protocol ensures consistent signal 
resolution across all recorded activities. The dataset for this 
study was collected from 30 volunteers aged between 19 and 
48 years. During the experiments, a Samsung Galaxy S II 
smartphone was securely placed at the waist of each participant. 
This specific placement was chosen to optimize the capture of 
core trunk movements, thereby facilitating a more accurate 
recognition of whole-body activities. Participants were 
instructed to perform 12 predefined daily activities, each 
explicitly labeled. Fig. 2 illustrates the triaxial accelerometer 
and triaxial gyroscope signals recorded from one participant 
during an activity. The raw signals were preprocessed for noise 
reduction using a median filter and a third-order low-pass 
Butterworth filter with a cutoff frequency of 20 Hz. The clarity 
and distinctness of these signals demonstrate the smartphone's 
capability to accurately and effectively capture human motion 
data during activities. This provides compelling evidence for 
the feasibility of using smartphones as a robust tool for human 
activity recognition. 

The complete dataset comprises a substantial volume of 
sensor readings. Following meticulous preprocessing and 
segmentation, these readings are transformed into a large 
collection of time-series samples. Data segmentation involves 
dividing continuous sensor data into fixed-length windows, 
typically 2.56 seconds (equivalent to 128 sampling points). 
Overlapping between windows is often employed to ensure 
each window comprehensively captures complete activity 
information. During the feature extraction phase, a diverse set 
of time-domain and frequency-domain features is extracted 
from the raw accelerometer and gyroscope signals for each 
2.56-second window. These features are specifically designed 
to encapsulate the unique patterns associated with different 
human activities. 

Following the crucial feature extraction step, each 
individual time window is successfully transformed into a 
high-dimensional feature vector. For instance, in the HAPT 
dataset, each such sample is represented by 561 carefully 
selected features, and these high-dimensional vectors 

subsequently serve as input data for training and inference with 
various machine learning models. To offer a more intuitive 
perspective, allowing for a clear understanding of the unique 
distribution patterns of these feature values across different 
activity types. Fig. 3 illustrates the 561 feature values for a 
single sample within a specific activity class. From the visual 
representation in this figure, it is evident that all 12 distinct 
human activity types, including walking, ascending stairs, 
descending stairs, sitting, standing, lying, and a range of 
complex transitional movements (such as standing-to-sitting, 
sitting-to-standing, sitting-to-lying, lying-to-sitting, standing-
to-lying, and lying-to-standing), exhibit notably distinct feature 
curves. Specifically, when the human body is engaged in 
dynamic physical activities, the extracted feature values tend to 
be quantitatively higher. Conversely, when the body is in a 
static or non-moving state, such as sitting or lying, the 
corresponding feature values are generally observed to be at 
lower levels. A particularly interesting phenomenon is 
observed during standing posture, where the distribution of 
feature values demonstrates an intriguing duality: 
approximately half of the feature values display relatively high 
magnitudes, while the other half are comparatively smaller. 
Although these differences in feature values indeed provide a 
basis for distinguishing between various activity types and 
demonstrate a certain discriminatory capability, recognizing 
the inherent and significant inter-individual variability in 
behavioral characteristics, we acknowledge the limitations of 
existing methods. Therefore, future research urgently needs to 
develop more advanced and intelligent methods and algorithms 
to achieve more accurate and faster recognition and 
classification of human physical activity types, thereby better 
adapting to the complex and diverse patterns of human 
movement in real-world scenarios. 

 
(a) Variation curves of the three-axis acceleration (m/s2). 

 
(b) Variation curves of the three-axis gyroscope (rad/s). 

Fig. 2. Two types of perception signal curves of a certain tester. 
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                                                                        (a) Walking                                                                  (b) Ascending stairs 

  
                                                                 (c) Descending stairs                                                                           (d) Sitting 

  
                                                                         (e) Standing                                                                             (f) Lying 

  
                                                          (g) Standing-to-sitting transition                                         (h) Sitting-to-standing transition 

  
                                                            (i) Sitting-to-lying transition                                                             (j) Lying-to-sitting transition 
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                                                        (k) Standing-to-lying transition                                                             (l) Lying-to-standing transition 

Fig. 3. Display of characteristic curves of different types of activities. 

The class distribution of the dataset utilized in this study is 
presented in Table Ⅰ. The training set comprises 7,767 samples, 
while the test set contains 3,153 samples, yielding a split ratio 
of approximately 2.46:1. This partitioning is considered 
reasonable and aligns with conventional machine learning data 
splitting standards, such as 70%-30% or 80%-20% 
distributions. Within the dataset, Classes 1 to 6 are identified as 
major categories, exhibiting substantial sample sizes. 
Specifically, each of these classes contains over 1,000 samples 
in the training set and more than 400 samples in the test set, 
collectively constituting the vast majority of the data. 
Conversely, Classes 7 to 12 are designated as minority 
categories, characterized by extremely sparse sample 
representation. For instance, the training set for minority 
classes contains no more than 90 samples each, and the test set 
no more than 50 samples each. Notably, Class 8 is the most 
underrepresented, with only 23 samples in the training set and 
10 samples in the test set, indicating a severe class imbalance 
issue within the dataset. 

To elaborate, the largest class, Class 5, contains 1,423 
samples in the training set, which is 62 times larger than the 
smallest class, Class 8, with only 23 samples; a similar 
disparity is observed in the test set. Furthermore, the combined 
total of minority classes (Classes 7 to 12) accounts for only 4.5% 
of the total samples in the training set and 5.3% in the test set. 
This extreme imbalance implies that conventional evaluation 
metrics, such as overall accuracy, may be predominantly 
influenced by the majority classes, thereby potentially masking 
performance deficiencies on the minority classes. It is worth 
noting that the proportion of samples for each class is largely 
consistent between the training and test sets. For instance, 
Class 1 accounts for 15.8% of the training set and 15.7% of the 
test set. This consistency suggests that the data partitioning 
maintained distributional uniformity, effectively mitigating 
potential biases introduced by the split. Nevertheless, the 
dataset presents a small-class risk: certain minority classes, 
such as Classes 8, 10, and 12, possess extremely low sample 
counts in the test set (no more than 27 samples each), which 
could lead to significant volatility in evaluation results. Overall, 
the dataset exhibits a pronounced long-tail distribution, where 
the insufficient number of samples in minority classes may 
constrain the model's generalization capabilities. 

TABLE I.  ANALYSIS OF THE CLASS DISTRIBUTION OF THE DATASET 

Class Train dataset Test dataset 

1 1226 496 

2 1073 462 

3 987 420 

4 1293 508 

5 1423 556 

6 1413 545 

7 47 23 

8 23 10 

9 75 32 

10 60 25 

11 90 49 

12 57 27 

Total 7767 3153 

IV. COMPARATIVE TESTING AND ANALYSIS 

A. Model Training and Evaluation 

In order to fully verify the accuracy and feasibility of the 
proposed method, human perception data is used to update the 
constructed recognition network. In addition, three other 
classic machine learning algorithms were used for comparison. 
The assessment results are shown in Table Ⅱ. All evaluated 
models demonstrated excellent performance on the training set, 
clearly indicating their strong ability to fit the training data. 
Specifically, Random Forest achieved 100% accuracy, 
precision, recall, and F1-Score on the training set. While its 
training performance was perfect, a significant drop in 
performance on the validation set strongly suggests severe 
overfitting. In contrast, Long Short-Term Memory (LSTM) 
networks, and vanilla Recurrent Neural Networks (RNNs) 
maintained metrics between 97% and 98% on the training set, 
performing well but slightly below Random Forest. Of 
particular note, Transformer2 (employing a class-balancing 
strategy) exhibited near-perfect performance on the training set, 
with an accuracy of 99.95%. This is likely attributable to the 
adopted class-balancing strategies, such as oversampling or 
weighted loss, which enabled the model to better learn and 
recognize minority classes, thereby improving overall training 
effectiveness. 
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TABLE II.  COMPARISON OF THE EVALUATION EFFECTS OF DIFFERENT RECOGNITION ALGORITHMS 

Methods 
Training process Validation process 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Random forest 1 1 1 1 0.9083 0.9095 0.9083 0.9074 

LSTM 0.9799 0.9810 0.9799 0.9799 0.9230 0.9247 0.9230 0.9226 

Vanilla RNN 0.9813 0.9819 0.9813 0.9813 0.9241 0.9273 0.9241 0.9232 

Transformer 0.9776 0.9784 0.9776 0.9766 0.9247 0.9280 0.9247 0.9238 

Transformer2 (class-balanced) 0.9995 0.9995 0.9995 0.9995 0.9397 0.9404 0.9397 0.9396 
 

Performance on the validation set more accurately reflects a 
model's generalization capability—its ability to handle unseen 
data. Random Forest's performance significantly declined on 
the validation set, with an accuracy of only 90.83%, a stark 
contrast to its 100% training performance. This further 
confirms its severe overfitting, rendering the model unsuitable 
for direct real-world application. The LSTM model performed 
relatively well on the validation set, achieving an accuracy of 
93.30%, outperforming vanilla RNN. This indicates that 
LSTMs have an advantage in processing sequential data, 
particularly in capturing long-term dependencies. Vanilla RNN 
model showed comparable performance on the validation set, 
with accuracies around 92.4% to 92.5%, but slightly trailed 
LSTM. Vanilla RNNs’ performance might be limited by long-
range dependency issues, while the standard Transformer's 
optimization might be insufficient with limited data, preventing 
it from fully realizing its potential in sequential data processing. 
Most notably, Transformer2 (class-balanced) achieved the best 
performance on the validation set, with an accuracy of 93.97%. 
Furthermore, this model also showed the smallest performance 
gap between the training and validation sets, dropping from 
99.95% to 93.97%. This result strongly demonstrates the 
effectiveness of the class-balancing strategy, as it not only 
significantly mitigated overfitting but also substantially 
enhanced the model's generalization capability, allowing it to 
handle imbalanced datasets more effectively. 

In summary, while Random Forest achieved 100% 
accuracy on the training set, it only managed 90.83% on the 

validation set, indicating severe overfitting. This might be due 
to the tree-based model's oversensitivity to noise in the training 
data. The Transformer2 (class-balanced) model demonstrated 
the best generalization capability, exhibiting the smallest 
performance gap between its training and validation sets. This 
highlights the crucial role of class-balancing strategies in 
improving a model's generalization performance on 
imbalanced datasets. Among other sequential models, LSTM 
outperformed both vanilla RNN and the standard Transformer, 
suggesting that on moderately sized datasets, LSTM's 
sequential modeling capabilities still hold a significant 
advantage. Furthermore, this study clearly indicates that class-
balancing strategies can significantly enhance the Transformer 
model's generalization performance, especially in handling 
minority classes more favorably and robustly. 

To provide a more intuitive understanding of the training 
and validation processes of the proposed method, relevant 
evaluation curves are presented in Fig. 4. As depicted in the 
loss curve shown in Fig. 4(a) and Fig. 4(b), the training loss 
value decreases rapidly with an increasing number of training 
epochs. By approximately 30 training epochs, the training loss 
value has essentially approached zero and remains highly 
stable thereafter. The validation loss also gradually stabilizes 
around 0.1 at approximately 30 training epochs. Although 
some fluctuations are observed subsequently, the validation 
loss consistently remains within the vicinity of 0.15. This 
indicates that the model's fit on the validation set has reached a 
relatively stable state. 

  
                                                                            (a) Training loss                                                         (b) Validation loss 
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                                                                (c) Training accuracy                                                            (d) Validation accuracy 

Fig. 4. Training and validation process of the proposed method. 

Further analysis of the training accuracy curve in Fig. 4(c) 
reveals that the model's accuracy on the training set exceeded 
0.95 when the training epochs were merely 10. It then 
continued to improve, gradually stabilizing and ultimately 
approaching 1. Similarly, as shown in the validation accuracy 
curve in Fig. 4(d), the model's accuracy on the validation set 
reached approximately 0.95 at just 10 training epochs. Despite 
slight subsequent fluctuations, the validation accuracy 
consistently remained stable around 0.95. Overall, these curves 
collectively demonstrate that the method proposed in this study 
exhibits rapid convergence in the early stages of training and 
achieves high performance levels on both the training and 
validation sets. The swift convergence of training loss to near 
zero, coupled with the stable fluctuations of validation loss, 
indicates that while the model effectively learns features from 
the training data, it also possesses a commendable degree of 
generalization capability. The consistent stability of the 
validation accuracy around 0.95 further corroborates the 
model's robustness and effectiveness. 

V. DISCUSSION AND ANALYSIS 

To provide a more comprehensive analysis of the strengths 
and weaknesses of the proposed method, we conducted a 
detailed calculation of evaluation metrics for each activity class 
within the test set. The assessment results are shown in 
Table III. This approach effectively illustrates where the 
proposed method excels in recognition and where its 
performance is suboptimal. Overall, the classification model 
demonstrates excellent performance on the majority of classes, 
particularly those with higher support, but exhibits instability 
on categories with lower support, revealing a clear dependency 
on data availability. 

The proposed method performs exceptionally well on high-
support categories, namely Classes 1 to 6. These classes 
possess a relatively large number of samples, with each class 
having a support of over 400 samples. Across these activities, 
the model's precision, recall, and F1-Score are generally high. 
Notably, Classes 1, 2, 5, and 6 all achieved F1-Scores 
exceeding 90%, with Class 6 performing best at an F1-Score of 
98.32%, indicating near-perfect classification. However, for 
Class 3, despite an exceptionally high precision of 98.88%, its 
recall was relatively low at 84.05%. This suggests that the 

model is highly strict in its predictions for this class, potentially 
leading to a certain degree of missed detections. To balance 
precision and recall, future adjustments to the classification 
threshold could be considered to improve recall for this 
category. 

TABLE III.  EVALUATION EFFECT OF EACH TYPE OF HUMAN ACTIVITY 

Class Precision Recall F1-Score 
Support 

degree 

1 0.9215 0.9940 0.9564 496 

2 0.8920 0.9654 0.9272 462 

3 0.9888 0.8405 0.9086 420 

4 0.9287 0.8720 0.8995 508 

5 0.8798 0.9478 0.9126 556 

6 1 0.9670 0.9832 545 

7 0.8421 0.6957 0.7619 23 

8 0.7692 1 0.8696 10 

9 0.6786 0.5938 0.6333 32 

10 0.7619 0.6400 0.6957 25 

11 0.6875 0.6735 0.6804 49 

12 0.6552 0.7037 0.6786 27 

In contrast to the high-support categories, the proposed 
method's performance on low-support categories, namely 
Classes 7 to 12, was relatively poor and unstable. These classes 
have fewer samples, with each class having a support of less 
than 50 samples, leading to significant fluctuations in the 
model's evaluation metrics. For instance, in Class 8, although 
the model's recall was remarkably high at 100%, indicating its 
ability to capture all true positive samples, its precision was 
only 76.92%. This suggests a high false positive rate, where the 
model incorrectly identifies some samples as belonging to 
Class 8 when they do not. Furthermore, Class 9 exhibited low 
precision and recall, at 67.86% and 59.38% respectively, 
resulting in an F1-Score of 63.33%, the lowest among all 
categories. This clearly indicates that the model's 
discriminative ability for Class 9 is relatively weak. This 
instability primarily stems from insufficient data, as the model 
was unable to adequately learn the crucial features of these 
minority classes, leading to reduced generalization capabilities. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

572 | P a g e  

www.ijacsa.thesai.org 

It is important to note that some categories, such as Classes 
3, 8, and 12, exhibit an imbalance between precision and recall. 
This suggests that the model's classification thresholds may 
require optimization. Specifically, for categories with high 
precision but low recall (e.g., Class 3), the classification 
threshold could be appropriately lowered to improve recall 
while maintaining reasonable precision. Conversely, for 
categories with high recall but low precision (e.g., Class 8), the 
classification threshold could be raised to reduce false positives 
and enhance precision. While the model demonstrates excellent 
performance on data-rich categories, there remains significant 
room for improvement in its recognition effectiveness for 
small-sample categories. Future optimization efforts should 
focus on increasing the data volume for minority classes and 
further refining the model's classification strategies, for 
example, by adjusting classification thresholds or employing 
cost-sensitive learning. These measures aim to 
comprehensively enhance the model's overall performance, 
particularly its robustness in handling imbalanced datasets. 

From the above analysis, it can be seen that the method 
proposed in this study combines the data balance strategy with 
the Transformer model. Compared with traditional machine 
learning methods, it shows significant advantages in 
recognition accuracy. Although Reshmi et al. [27] proposed a 
recognition method based on feature selection, their work did 
not fully consider the impact of data imbalance on model 
performance. Pavliuk et al. [28] focused on exploring the 
application of transfer learning in the task of human activity 
recognition and did not delve deeply into the issue of 
unbalanced category distribution either. In fact, the problem of 
data imbalance is widely present in sensor-based activity 
recognition tasks, which can easily lead to the model being 
biased towards the majority of classes and a decline in 
generalization ability. Therefore, it must be fully considered in 
the method design stage. This study effectively alleviates this 
problem by introducing a balance strategy, thereby enhancing 
the robustness and recognition accuracy of the model in real 
scenarios. 

VI. CONCLUSION 

This study proposes a deep learning-based smartphone 
physical activity recognition framework, designed to address 
the prevalent decline in physical activity among college 
students. The framework's innovation lies in its utilization of 
high-precision Inertial Measurement Units (IMUs) embedded 
in smartphones to capture multi-dimensional real-time body 
postures during daily activities. It then employs an advanced 
Transformer architecture as the core classifier. The 
Transformer's unique Self-Attention Mechanism effectively 
extracts complex spatiotemporal features from sensor data, 
enabling precise recognition of various physical activities (such 
as walking, running, and climbing stairs). This integrated 
approach of intelligent sensing and advanced algorithms 
provides a reliable and efficient technological solution for 
monitoring college students' physical activity. 

1) After achieving 99.95% on the training set, the 

Transformer2 (class-balanced) model maintained an accuracy 

rate of 93.97% on the validation set. The minimum 

performance gap between the training set and the validation 

set strongly demonstrates its excellent generalization 

performance and ability to handle imbalanced datasets. 

2) The recognition accuracy rate of the Transformer2 

(Class Balance) model is 93.97%, which is superior to 93.30% 

of LSTM, approximately 92.4%-92.5% of vanilla RNN and 

standard Transformer, and 90.83% of Random Forest. 

3) The recognition accuracy of high-support categories is 

very high, but low-support categories remain challenging. Our 

model achieves extremely high recognition accuracy for 

highly supported categories (categories 1-6, with over 400 

samples in each category). However, for the low-support 

categories (7-12 categories, with less than 50 samples for each 

category), the performance of the model fluctuates greatly. 

4) The class balance strategy effectively enhances the 

robustness of the Transformer model. Although this numerical 

improvement seems small, it indicates that the model is more 

robust when dealing with minority classes, significantly 

reduces overfitting caused by data imbalance, and improves 

the overall generalization performance. 

5) This model has a fast convergence speed and stable 

verification accuracy in the early stage of training. This 

indicates that the model has efficient learning ability and good 

stability, and can achieve a high-performance level within a 

relatively short training time. 

The proposed method remains dependent on data 
augmentation or supplementary samples to improve 
recognition performance for minority classes, without 
fundamentally resolving the underlying data scarcity challenge. 
Although the class-balancing strategy enhances model 
robustness when handling minority categories, the limited 
magnitude of overall performance improvement indicates that 
the current approach still exhibits insufficient efficacy in 
addressing severe class imbalance scenarios, suggesting 
significant potential for further refinement. Future research will 
focus on further improving the model's recognition 
performance for low-support activity categories. Explore more 
advanced data augmentation technologies to expand the sample 
of ethnic minorities. The meta-learning or Few-Shot learning 
methods are studied to enable effective learning even under 
sparse data. Additionally, we will consider extending this 
framework to more complex body activity pattern recognition 
and exploring its potential applications in long-term health 
monitoring and personalized health intervention. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the support from the 
2022 Liaoning Provincial Natural Science Foundation Program 
Key Science and Technology Innovation Base Joint Open 
Fund(2022-KF-18-04), Shanghai Municipal Commission of 
Education (C2024090) and Scientific research project of 
Shanghai Vocational College of Agriculture and Forestry 
(KY(6)2-0000-23-13). 

REFERENCES 

[1] S. Majumder, and M. Deen, “Smartphone sensors for health monitoring 
and diagnosis”, Sensors, vol. 19, pp. 216, 2019. DOI: 
10.3390/s19092164 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

573 | P a g e  

www.ijacsa.thesai.org 

[2] H. Sarmadi, A. Entezami, K. V. Yuen, and B. Behkamal, “Review on 
smartphone sensing technology for structural health monitoring”. 
Measurement, vol. 223, pp. 113716, 2023. DOI: 
10.1016/j.measurement.2023.113716 

[3] Y. G. Lee, W. S. Jeong, and G. Yoon, “Smartphone-based mobile health 
monitoring”, Telemedicine and e-Health, vol. 18, pp. 585-590, 2012. 
DOI: 10.1089/tmj.2011.0245 

[4] H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-Garadi, “Data 
fusion and multiple classifier systems for human activity detection and 
health monitoring: Review and open research directions”, Information 
Fusion, vol. 46, pp. 147-170, 2019. DOI: 10.1016/j.inffus.2018.06.002 

[5] J. Yin, Q. Yang, and J. J. Pan, “Sensor-based abnormal human-activity 
detection”, IEEE Transactions on Kowledge and Data Engineering, vol. 
20, pp. 1082-1090, 2018. DOI: 10.1109/TKDE.2007.190662 

[6] A. Saeed, T. Ozcelebi, and J. Lukkien, “Multi-task self-supervised 
learning for human activity detection”. ACM on Interactive, Mobile, 
Wearable and Ubiquitous Technologies, vol. 61, p. 1-30, 2019. DOI: 
10.1145/3328932 

[7] M. Janidarmian, F. A. Roshan, K. Radecka, and Z. Zilic, “A 
comprehensive analysis on wearable acceleration sensors in human 
activity recognition”, Sensors, vol. 17, pp. 529, 2017. DOI: 
10.3390/s17030529 

[8] S. Iloga, A. Bordat, J. Kernec, and O. Romain, “Human activity 
recognition based on acceleration data from smartphones using HMMs”, 
IEEE Access, vol. 9, pp. 139336-139351, 2021. DOI: 
10.1109/ACCESS.2021.3118472 

[9] M. B. Del Rosario, S. J. Redmond, and N. H. Lovell, “Tracking the 
evolution of smartphone sensing for monitoring human movement”, 
Sensors, vol. 15, pp. 18901-18933, 2015. DOI: 10.3390/s150818901 

[10] I. A. Faisal, T. W. Purboyo, and A. S. R. Ansori, “A review of 
accelerometer sensor and gyroscope sensor in IMU sensors on motion 
capture”. ARPN Journal of Engineering and Applied Science, vol. 15, 
pp. 826-829, 2019. DOI: 10.36478/jeasci.2020.826.829 

[11] I. M. Pires, N. M. Garcia, E. Zdravevski, and P. Lameski, “Daily 
motionless activities: a dataset with accelerometer, magnetometer, 
gyroscope, environment, and GPS data”, Scientific Data, vol. 9, pp. 105, 
2022. DOI: 10.1038/s41597-022-01213-9 

[12] S. Hernandez Sanchez, R. Fernandez Pozo, and L. A. Hernandez 
Gomez, “Estimating vehicle movement direction from smartphone 
accelerometers using deep neural networks”, Sensors, vol. 18, pp. 2624, 
2018. DOI: 10.3390/s18082624 

[13] X. Huang, Y. Xue, S. Ren, and F. Wang, “Sensor-based wearable 
systems for monitoring human motion and posture: A review”, Sensors, 
vol. 23, pp. 9047, 2023. DOI: 10.3390/s23229047 

[14] O. D. Lara, A. J. Pérez, M. A. Labrador, and J. D. Posada, “Centinela: A 
human activity recognition system based on acceleration and vital sign 
data. Pervasive and Mobile Computing”, vol. 8, pp. 717-729, 2012. DOI: 
10.1016/j.pmcj.2012.06.004 

[15] D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: A dataset for 
human activity recognition using acceleration data from smartphones”, 
Applied Sciences, vol. 7, pp. 1101, 2017. DOI: 10.3390/app7101101 

[16] M. O. Mario, “Human activity recognition based on single sensor square 
HV acceleration images and convolutional neural networks”. IEEE 
Sensors Journal, vol. 19, pp. 1487-1498, 2018. DOI: 
10.1109/JSEN.2018.2882943 

[17] W. Niu, J. Long, D. Han, and Y. Wang, “Human activity detection and 
recognition for video surveillance”, In 2004 IEEE International 
Conference on Multimedia and Expo (ICME)(IEEE Cat. No. 
04TH8763), Taipei, pp. 719-722, 2014. DOI: 
10.1109/ICME.2004.1394293 

[18] J. Sung, C, Ponce, B. Selman, and A. Saxena, “Unstructured human 
activity detection from rgbd images”, In 2012 IEEE International 
Conference on Robotics and Automation, Saint Paul, p. 842-849, 2012. 
DOI: 10.1109/ICRA.2012.6224591 

[19] B. Ni, Y. Pei, P. Moulin, and S. Yan, “Multilevel depth and image 
fusion for human activity detection”, IEEE Transactions on Cybernetics, 
vol. 43, pp. 1383-1394, 2013. DOI: 10.1109/TCYB.2013.2276433 

[20] H. Koppula, and A. Saxena, “Learning spatio-temporal structure from 
rgb-d videos for human activity detection and anticipation”, In 
Proceedings of the 30th International Conference on Machine Learning, 
Atlanta, pp. 792-800, 2013. 
https://proceedings.mlr.press/v28/koppula13.html 

[21] M. Albanese, R. Chellappa, V. Moscato, A. Picariello, V. S. 
Subrahmanian, P. Turaga, and O. Udrea, “A constrained probabilistic 
petri net framework for human activity detection in video”, IEEE 
Transactions on Multimedia, vol. 10, pp. 1429-1443, 2008. DOI: 
10.1109/TMM.2008.2010417 

[22] R. Rodrigues, N. Bhargava, R. Velmurugan, and S. Chaudhuri, “Multi-
timescale trajectory prediction for abnormal human activity detection”, 
In Proceedings of the IEEE/CVF Winter Conference on Applications of 
Computer Vision, Snowmass, pp. 2626-2634, 2022. DOI: 
10.1109/WACV45572.2020.9093633 

[23] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A 
comprehensive overview and comparative analysis on deep learning 
models”, Journal on Artificial Intelligence, vol. 6, pp. 301-360, 2024. 
DOI: 10.32604/jai.2024.054314 

[24] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of 
deep learning”, Neurocomputing, vol. 452, pp. 48-62, 2021. DOI: 
10.1016/j.neucom.2021.03.091 

[25] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in 
transformer”, Advances in Neural Information Processing Systems, vol. 
34, pp. 15908-15919, 2021. https://arxiv.org/abs/2103.00112. 

[26] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A 
public domain dataset for human activity recognition using 
smartphones”, In ESANN 2013 proceedings, European Symposium on 
Artificial Neural Networks, Computational Intelligence and Machine 
Learning, Belgium, pp. 437-442, 2013.  

[27] S. Reshmi, & E. Ramanujam, “An ensemble maximal feature subset 
selection for smartphone based human activity recognition”, Journal of 
Network and Computer Applications, vol. 226, pp. 103875, 2024. DOI: 
10.1016/j.jnca.2024.103875 

[28] O. Pavliuk, M. Mishchuk, and C. Strauss, “Transfer learning approach 
for human activity recognition based on continuous wavelet transform”, 
Algorithms, vol. 16, no.2, pp. 77, 2023. DOI: 10.3390/a16020077 

 

https://arxiv.org/abs/2103.00112

