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Abstract—Predicting Sea level rise accurately is crucial in the 

formulation of effective adaptation plans to counteract the effects 

of climate change in vulnerable coastal areas, infrastructure, and 

people. The conventional forecasting models tend to fail in 

capturing the intricate spatiotemporal relationships affecting sea 

level variations. In order to overcome the above-mentioned 

challenges, this research introduces a hybrid predictive model 

combining a Temporal Graph Convolutional Network (T-GCN) 

with attention and game theory-based optimization strategy. T-

GCN structure is specially tailored to capture spatial dependencies 

as well as temporal dynamics in sea level change, providing even 

deeper understanding of the changing dynamics of sea levels. The 

attention mechanism strengthens the model by dynamically 

weighing important variables, whereas the game-theoretic 

optimization efficiently optimizes multiple objectives, e.g., 

prediction accuracy and robustness. Experimental results, 

measured in terms of common performance indicators, show the 

better effectiveness of the proposed model with a correlation 

coefficient of 0.996512 and an overall error of 0.032154. Through 

the inclusion of both climatic and socio-economic variables, this 

methodology provides accurate, data-based insights to inform 

climate policy and adaptive planning. The results highlight the 

capabilities of state-of-the-art machine learning methods for 

solving actual sea level rise challenges. 

Keywords—Temporal graph convolutional networks; attention 

mechanisms; game theory optimization; sea level rise prediction; 

climate change adaptation 

I. INTRODUCTION 

Melting of ice possesses a creeping threat of global 
significance with potential impacts and effects on any coastal 
area, population, structures, and ecosystems [1], [2]. Since the 
late 80s, the climate of the earth has been changing because of 
various anthropogenic factors for instance emission of 

greenhouse gases and deforestation and as expected the polar ice 
caps and the glaciers are melting [3], [4]. This phenomenon is 
now becoming a severe danger to millions of the lowland 
people, especially those in developing and overpopulated 
coastal zones. These several impacts of sea level rise are diverse: 
there are storms and their consequences such as frequent and 
severe floods, more powerful storm surges and also rapidly 
progressing coastal erosion [5]. While such changes in physical 
environment can result in loss of people’s homes, loss of animal 
and plant habitats, destruction of valuable ecosystems like 
mangrove forests and corals that offer protection against storms 
[6]. In addition, sectors that depend on the coasts and sea, for 
instance, fishery, tourism, and shipping business experiences 
difficulties and higher expense charges. Most of the designed 
infrastructure of roads and bridges, sewage systems without 
which no urban development is complete, require heavier 
investment and modifications to withstand the prevailing and 
projected climate change [7]. 

However, when it comes to predicting sea level increase 
something that is so important and mandatory in the 
contemporary world, the traditional models fail to address the 
issue in a proper way. Sea level fluctuation depends on the 
number of factors which are interrelated and interconnected: 
pressure at sea level, currents at sea level, and tectonic activity 
[8]. These interactions produce a very complex environment that 
appears as being programmed and organized in which shifting 
one factor can influence other related factors in a rather 
unpredictable manner [9]. For instance, changes in pressure may 
affect currents and the circulation of the ocean, and movements 
in the earth’s crust may change sea level through vertical 
movements of the land mass [10]. Issues concerning flexibility, 
capacity utilization, uncertainties and seasonality are some of 
the complexities that the conventional methods cannot capture 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

575 | P a g e  

www.ijacsa.thesai.org 

easily since they depend mostly on the past data trends, which 
have a linear relationship. Thus, they give predictions that are 
rather too simplistic and can be quite off base, underestimating 
or even overestimating dangers that might come with the rise in 
sea level. Mainstream statistical and physical approaches fail to 
adequately capture a relationship between these factors because 
the typical applied parameters are not specific enough to capture 
the differences of coastal areas [11]. Coastal sea level 
management entails the physical alterations, proposed 
structures, and noticed events to reflect the response of the 
interested groups, such as the residents, business holders, 
ecological nature lovers, and policy makers. Both of these are 
crucial in comprehending the socioeconomic and cultural effects 
of sea level changes as well as in creating effective and fair 
response measures towards these changes. However, 
conventional models are mostly often distributed in terms of 
physical and environmentally related information devoid of 
more human factor aspects of the sea level [12]. 

1) Research motivation: CNN are specifically preferred for 

spatial pattern recognition, but in the event of a temporal 

sequence, their efficiency is greatly diminished with a result of 

creating likely errors in the forecasted values [13]. Originally, 

the T-GCN to analyse sea level rise are very efficient, where 

the data are described based on the graphs that nodes are used 

for spatial features while the edges focus on time features [14]. 

T-GCNs are less inclined towards computational efficiency, 

and sometimes it can cause scalability issues whenever dealing 

with big data sets. They also need to be fine-tuned due to the 

trade-off they create between the spatial and temporal 

dimensions, which can be difficult in some cases. In the other 

hand, it is useful to learn which features should be paid more 

attention, improve the model’s temporal and spatial 

consideration. However, when the attention mechanism is 

applied separately, the overfitting occurs as it pays much more 

attention to the certain features while there might be other 

relevant features in some other context also equally important 

[15]. Moreover, attention mechanisms might not have the 

considerations of the spatial relation of the data which is 

important for sea level analysis. Such limitations call for the 

blended approach that use the strong characteristics of these 

methods while avoiding their related drawbacks. By connecting 

T-GCNs, attention mechanisms, the model developed in this 

article assumes to offer a more precise and complete solution 

for forecasting sea level rises. 

2) Research significance: With the deficiency of 

conventional sea level rise prediction models, this paper 

suggests a new scheme that adopts game theory-based 

optimization, a self-attention mechanism, and T-GCN. T-GCNs 

are powerful in extracting intricate spatiotemporal information, 

and the self-attention mechanism allows the model to 

dynamically focus on the most relevant features. By adopting 

elements of game theory—mimicking strategic choice making 

and reconciling conflicting factors—the forecasting ability of 

the model is greatly improved. The combination of these 

methods leads to more robust, accurate, and actionable 

forecasts, providing valuable inputs to enable effective coastal 

adaptation planning. 

3) Research contribution: The following are the 

contributions of this research; 

a) This paper introduces a new hybrid model that 

integrates T-GCN, attention mechanisms, and game theory-

based optimization to enhance the precision of sea level rise 

predictions. 

b) The suggested framework efficiently describes spatial 

dependencies and temporal patterns from multivariate sea level 

datasets in a better manner than the traditional isolated deep 

learning techniques. 

c) Attention mechanisms are used to dynamically 

emphasize and prioritize important spatial and temporal 

features, increasing interpretability of the model and 

concentrating attention on the most influential variables. 

d) Game-theoretic approaches are employed to maximize 

trade-offs between two or more conflicting objectives—e.g., 

prediction performance and model resilience—and thus reduce 

overfitting and enhance generalizability overall. 

The rest of the paper is organized as follows: Section II 
overviews related work. Section III presents the background to 
the study and formulation of the problem statement. Section IV 
outlines the method that has been proposed. In the Section V of 
the paper we present the experimental results and then compare 
them. Section VI provides the last and final conclusion of the 
paper and points out for the future work. 

II. RELATED WORK 

According to Memarian Sorkhabi, Shadmanfar, and Al-
Amidi [16] climate change was a global phenomenon and 
particularly the increase in sea level and frequency of floods had 
been recognized as one of the critical challenges for coastal 
cities. This study examined the temporal fluctuations of the sea-
level which involves data like the SST originated from MODIS, 
wind speed and precipitation rates, and the change in the sea-
level acquired through satellite altimetry. A weighted 
combination of values created a context vector that impacts the 
end output.  T-GCNs model intricate spatial-temporal patterns, 
and attention boosted significance in features for accurate, area-
based predictions in climate adaptation.lts and various forms of 
forecasting, which might not have taken into perspective all 
potential factors influencing the future environment. They could 
have been affected by the nature and resolution of the inputs 
used in making the prediction and there could be unknown 
climatic and socio-economic factors that could affected the sea 
level rise and floods on the resilience of cities on the coastline. 

Accarino et al. [17] analyzed the effectiveness of LSTM 
neural network for short-term sea-level forecasting for the SANI 
region of the Mediterranean Sea. The work was described by 
multiple of models that used LSTM networks aimed at the three-
day mean sea level forecast for a set of coastal regions. 
Concerning the evaluation of the projections, the latter were 
compared to observation data stemming from tide-gauge 
instruments and to the outputs from another model called 
SANIFS that had been designed at the Euro-Mediterranean 
Center on Climate Change. The incorporation of the LSTM-
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based forecasting models into the Ophidia HPDA system, would 
open up a vast potential of adding capabilities of carrying large 
scale Time Series data and functioned in realization through 
application of HPC and Data science capabilities. The 
enhancement of these reasons could have resulted in greatly 
improved sea level prediction models in the future. 

Prediction performance analysis carried out by Altunkaynak 
and Kartal [18] involved applying and comparing the results of 
various ML models based on sea level time series data obtained 
under different conditions. This study used DWT to analyze 
three stations in the Bosphorus Strait, and using SVM, k-NN, 
and DT to transfer sea level signal among the stations for their 
regions. The models applied were compared according to their 
performance in as far as predicting sea levels up to 7day in 
advance by subjecting them to RMSE and NSE tests. The 
findings showed that the developed models had higher 
competence in transferring information from one station to the 
next when the station is in the proximity as opposed to when 
stations were periodically close. One of the studies’ drawbacks 
partly stemmed from its limited focus, which made it difficult to 
apply the findings to other areas or settings. 

Raj [19] employed the first China’s global ocean CDRs to 
evaluate and forecast changes in the Yellow Sea levels that 
significantly varied by season. With the help of the SSA method, 
it was suggested to analyze the characteristic and de-noise 
spatiotemporal and SLAs time series data in the Yellow Sea. The 
research then used SSA to build an SSA based model called 
SSA-LSTM for forecasting trends in sea level. 04 mm for the 
SLA time series prediction while the RMSE was found to be 19. 
68 mm for the one-year spatiotemporal SLA forecast. There 
were also certain limitations in this research: The data set used 
in this research is limited to China’s first global ocean CDRs and 
it only examined the Yellow Sea so the application of SSA-
LSTM combined model would have been slightly different 
when studied on other areas with different ocean and 
climatology processes. Furthermore, the study does not explore 
any interference from other external factors, including the 
climatic fluctuations that always occur in the world, which may 
in one way or the other influence the sea levels, and this 
therefore undermined the strength and applicability of the 
forecast made in other or different setting. 

Zhao, Cai, and Sun [20] discussed the contemporary issue of 
SLR that still posed a threat to small island states such as the 
Kiribati and Tuvalu among others; this attested to the need to 
enhance the reliability of data provided in advance of policy 
measure. The model was benchmarked against three other AI 
models: Some of the boosting technique out of which are 
adaboost, and multilinear regression. It was mentioned at the 
two places measures that it presents the least error rates. 
Applying, for instance, the trend analysis applied to gradual 
change, based on the linear regression, the GNSS‐VLM‐
corrected long‐term mean sea level increase is at 2. The rate of 
absolute sea level rises according to the estimated for Kiribati 
was 1mm/year while that of Tuvalu is 3mm/year. 

Raj et al. [21] explained a novel technique for estimating sea 
level rise in the future that was based on tide gauge stations in 
Darwin and Milner Bay in Australia's Northern Territory. For 
this study, the investigated data included mean sea level data on 

BOM associated with the time period between 1990 and 2022. 
The study modeled data using four artificial intelligence 
techniques: SVR, AdaBoost, MLP, and CNN-BiGRU were the 
best performing algorithms in descending order. The MSL 
interpretation revealed that the same was 6 on an upward trend 
showing that the increase in materialism was influencing the 
consumers. 1 ± 1. It was considered that one of the weaknesses 
of this research was the fact that there were limited numbers of 
tide gauge locations in the Northern territory and therefore 
results and predictive models might not have been applicable in 
other climatic regions with have different oceanographic 
features. 

Existing studies on sea level rise (SLR) prediction 
incorporate a combination of hybrid and machine learning 
algorithms with different strengths and weaknesses.  The sea 
surface temperature and sea level height are increasing, as per a 
study on Gothenburg; however, its limitation lies in its reliance 
on historic data, which may cause underestimation in the future. 
While accuracy is impaired by the lack of high-frequency data 
and key parameters, LSTM models have proven to be more 
accurate.  SVM and KNN performed better than traditional 
models in the Bosphorus Strait, but only within a limited 
geographic area.  The SSA-LSTM models of the Yellow Sea are 
very accurate, but they are not generalizable beyond the region 
in question. Similarly, local environmental considerations are 
highlighted in BiLSTM applications for small island nations. 
Though constrained by sparse tidal gauge data, a new model in 
northern Australia that applied data decomposition and AI 
methods gave promising results. For more accurate and scalable 
predictions of SLR, these papers as a group point to the need for 
bigger, regionally adaptive models considering a range of 
environmental variables. 

III. PROBLEM STATEMENT 

Accurate forecasting of sea level rise is vital for effective 
coastal management; however, traditional approaches often rely 
heavily on historical data [22], overlooking future uncertainties 
and critical climatic or socio-economic factors [23]. To 
overcome these constraints, this research proposes a new 
method that incorporates T-GCN, attention mechanisms, and 
game theory-based optimization. T-GCNs are well suited to 
capture the intricate spatiotemporal dependencies inherent in sea 
level observations, while the attention mechanism chooses 
important time periods and spatial coordinates. Game theory 
optimization further improves model performance by imitating 
strategic interactions among important variables, tuning 
predictive results. This combined framework significantly 
enhances prediction accuracy, providing a robust and reliable 
instrument for backing long-term coastal resilience and 
adaptation planning. 

IV. METHODOLOGY FOR SEA LEVEL RISE PREDICTION 

USING HYBRID METHODS 

The interaction of sea levels with other parameters can be 
effectively predicted through the proposed methodology, which 
combines T-GCN, attention mechanisms, and game theory 
optimization. The process starts with the data where data from 
Kaggle of sea level change is then pre-processed by cleaning, 
normalizing from it and then subdividing it. Temporal and 
spatial features are reconstructed using a T-GCN model to 
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analyse the given data. To improve the prediction the attention 
mechanisms are used to increase the model’s focus on the 
significant features. In federated learning approach, multiple 
clients participate and perform updates on the global model 
without accessing raw data. Game theory optimization extends 

the model by incorporating multiple objectives such as error 
frequencies and model overfitting. The above steps are then 
repeated several times till pre-specified convergence criteria are 
met and the final optimized model for predicting sea level rise is 
arrived.  The proposed methodology is illustrated in Fig. 1.

 
Fig. 1. Proposed methodology for sea level rise prediction.

A. Data Collection 

The "Sea Level Change" Kaggle dataset [29], containing 
complete observations of sea level across a variety of geographic 
locations and historical time frames, is utilized in this study.  
Dates of measurement, sea level elevation, geolocation 
coordinates (latitude and longitude), and other climatic 
parameters such as temperature and precipitation are all present 
in the dataset. Sea level change has a huge coverage in terms of 
time, and thus is easier to understand long term trends and 
patterns in it. This research is seeking to improve the quality of 
predictions of sea level change with the data provided by 
attention and T-GCNs. 

B. Data Pre-processing 

The pre-processing ensure the data quality and useability in 
order to predict sea level rise using either mean or KNN 
imputation for missing values and outlier detection processes 
including the Z-score method to remove outliers. The next stage 
is normalizing the values of features using either a Min-Max 
Scale or Z-Score Normalization. Finally, temporal and 
geographical adjustments are used to synchronize data between 
uniform time intervals and uniform spatial resolution. These 
techniques are a part of the pre-processing procedure to ensure 
that the dataset is conducted properly for features to be 
extracted, and for predictive modeling. 

1) Handling missing values: Handling missing values is an 

important step in data preprocessing to guarantee data 

trustworthiness. KNN addresses this problem by estimating the 

missing values with a weighted average of k nearest instances, 

based mainly on Euclidean distance.  Weights are inversely 

proportional to distances, assuming that nearby data points have 

similar values.  This method preserves size of data and natural 

data rhythms for providing quality assured data for an future 

analysis and model, as shown in Eq. (1) [24]. 

𝑥𝑖 =
1

𝑘
∑ 𝑥𝑗

𝑘
𝑗=1    (1) 

Where 𝑥𝑖 are the values of k-nearest neighbors. 

2) Data normalization: Min-Max normalization is a 

common transformation of calculations that make data range 

into a defined interval, most commonly [0,1]. This technique 

normalizes features so that the values lie between 0 and 1, while 

maintaining the relative position of the features data to each 

other and maximizing the importance of all features as they 

relate to the model characteristics. The normalization process is 

conducted by Eq. (2), [25] 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                              (2) 

where the 𝑋 is the value, 𝑋𝑚𝑖𝑛 is the minimum value of a 
feature, whereas 𝑋𝑚𝑎𝑥is the maximum value of the feature. This 
transformation is most helpful in scenarios where the scale of 
features should be made consistent to enhance models’ 
convergence as well as the performance of algorithms in the case 
of machine learning. This normalization becomes more 
important in a situation where the features have different units 
of measurement because this brings all of them to the same level 
so that the distance calculations and the training of the model 
will be favoured by all of the features. This can enhance the 
stability of the model and also increase its general performance 
by mitigating effects that come with the presence of features that 
are big and small in magnitude. 

3) Temporal and spatial alignment: Synchronization: Data 

points are more reliable when they are obtained in harmonized 
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time intervals and spatial resolutions to avoid difference in 

results. This entails extrapolation of data, whereby the data is 

either interpolated or aggregated to correspond with the 

required frequency and location. For temporal alignment, 

interpolation which can be employed to approximate values in 

missing time points can be used. This is demonstrated by the 

following empirical Eq. (3), [26] 

𝑋𝑡 = 𝑋𝑡−1 + 
𝑋𝑡+1−𝑋𝑡−1

2
                             (3) 

Where 𝑋𝑡  represents the interpolated value at time t, 𝑋𝑡−1 is 
the value at the previous time point, 𝑋𝑡+1 and is the value at the 
subsequent time point. 

C. T-GCN and Attention Mechanism for Feature Extraction 

and Classification 

Sea level rise predictions need models capable of spatial 
dependencies between the coastal tracking stations and time 
series dynamics of the ocean processes. The current methods 
have certain limitations: (CNNs) are good in detecting spatial-
based features but they lack the capability to incorporate 
sequential patterns, whereas (LSTMs) can capture temporal 
dependence patterns but not background spatial features. 
(GCNs) are strong at representational modeling of spatial 
structures but do not provide temporal modeling of evolving 
relationships and standalone attention mechanisms tend to over-
fit due to disproportionate weighting of features. Such 
weaknesses make the traditional methods inadequate in 
capturing the highly nonlinear, and highly coupled nature of 
prediction of sea level rise. To overcome these shortcomings, 
the hybrid framework proposed has temporal GCN to learn 
spatiotemporal representations, attention mechanism to 
prioritize different features adaptively, and a game theory-based 
optimization strategy to balance tradeoffs between different 
objectives, hence enhancing robustness, accuracy, and 
generalizability in the coastal regions presented by different 
coastal environments. 

The method of predicting sea level rise involves using 
dataset which contains sea surface temperature, wind speed, 
precipitation rates, and height. Then this data is pre-processed, 
where all the data is cleaned, normalized, and divided into train, 
validation and test sets. T-GCNs are then used to learn the spatial 
temporal structure and important features are then obtained. 
These features are then further brought through the use of 
attention mechanisms that aim to attend to important temporal 
and spatial details. Finally, the applicability of the hybrid model 
is evaluated in terms of RMSE, MAE and NSE with different 
level cross validation. The outcome that is expected from this 
approach is accuracy, completeness and flexibility of the 
numerical forecast of sea level increases. 

1) T-GCN Model: In this section, the general structure of 

the algorithm is described as well as specifics of the actual 

algorithm utilized. For the purpose of modelling both spatial 

and temporal dependencies the model is used. The proposed 

model fuses the GRU and GCN. To model complicated 

geographical dependence, GCN is employed to capture the 

dependence of radar networks’ topological structure and 

temporal dependence GRU is used to learn the dynamic 

evolution of radar networks. The multi-radar network's 

objective in this study is to forecast the radar feature at a given 

time utilizing network detection data. Any of the following can 

be the radar characteristic in this method: beam shaping, 

bandwidth, amplitude, centre frequency, or sampling rate. 

a) Input layer: The input layer receives multi-different 

time chain data collected from the network of geographically 

distributed C-level monitoring stations. Each data example 

includes several parameters, such as sea level height, sea 

surface temperature, atmospheric pressure, wind speed and 

rainfall. These comments are structured in a temporary 

sequence and are locally connected, which means that each 

station is considered a node in a graph. The edges between the 

nodes represent spatial relationships – either geographical 

proximity or statistically learnt correlation (e.g., Pearson 

correlation or mutual information). This graph structure allows 

the model to understand how the sea level in one place can 

change or affect the neighbouring areas. The time series aspect 

ensures that the temporary development of these characteristics 

is preserved and can be effectively modelled by downstream 

components such as GCN and GRU layers. 

b) GCN block: The graph is responsible for learning 

spatial dependence between sea level monitoring stations by 

taking advantage of the graph structure of block data. GCN 

block models spatial dependence between sea level monitoring 

stations. It is operated by collecting information about the 

facility from neighbours of each node based on the adjacent 

matrix 𝐴. Layer is defined as a graph conversion operation on 

𝑙+1:[27] 

𝐻(𝑙+1) = 𝜎(𝐷̃−1/2𝐴̃𝐷̃−1/2𝐻(𝑙)𝑊(𝑙))  (4) 

In Eq. (4), the adjacency matrix with added self-loops were 

denoted as 𝐴̃ = 𝐴 + 1. The degree of matrix of 𝐴̃ is denoted as 

𝐷̃. The input feature matrix at layer l is denoted as 𝐻(𝑙) and the 

trainable weighted matrix is denoted as 𝑊(𝑙)  and finally the 
activation function is denoted as 𝜎. Using an adjacency matrix, 
which defines the relationship between spatial nodes (stations), 
GCN collects information from immediate neighbours of each 
node. Through the resolution operation conducted on the graph, 
this block learns spatial representations by smoothing or mixing 
information in the nodes nearby, which is important to 
understand the regional dependence. For example, an increase 
in sea level at a station may indicate or affect the same pattern 
in nearby areas. By encoding this relevant spatial information, 
the GCN converts the feature vector of each node into a rich 
representation that captures how the local sea level behaviour is 
shaped by its spatial reference. 

c) GRU block: The GRU block captures the temporary 

dependence of data by processing the sequence of spatial 

characteristics produced by GCN over time. GRUs are a type 

of RNN that are designed to handle long-term dependence in 

sequential data without suffering from missing gradients. They 

work using two gates: the update gate (𝑧𝑡 ) determines how 

much previous information is retained, and the reset gate (𝑟𝑡) 

controls how much time of the past is forgotten at each step. 

Update Gate [28] 
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𝑧𝑡 = 𝜎(𝑊𝑧𝑋𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)     (5) 

Reset Gate 

𝑟𝑡 = 𝜎(𝑊𝑟𝑋𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)    (6) 

These help the gate models to maintain a balance between 
remembering important historical trends and adapting to recent 
changes in data. By recurring through the stages of time, GRU 
learns sudden changes in temporary diversity, trends and sea 
level patterns. This can recall the model that simply models the 
model with a temporary awareness to predict future sea level 
values. 

d) Hidden output: The final output of the GRU block is 

Hidden State, which enforces both spatial and temporary 

information learnt from data. This hidden position acts as a 

compact representation of a multi-compact time chain, briefly 

presenting the pattern seen in space (via GCN) and time 

(through GRU). This includes the required future features, such 

as the impact of neighbouring stations, historical sea level 

trends and the importance of different time intervals. The 

hidden state can be passed in later layers – such as a mediation 

mechanism, which refines further convenience, or directly 

predicts an increase in future sea levels for a prediction head 

(e.g., a dense layer or MLP). Its compact yet expressive nature 

ensures efficient modelling while maintaining all the necessary 

information for accurate and strong prediction. 

Fig. 2 illustrates the T-GCN, which captures spatial-
temporal relationships in graph-structured time series data by 
integrating GRU and GCN.  GRUs employ hidden states ht, 
regulated by reset Rt and update Zt gates, to learn temporal 
patterns, whereas GCNs utilize spatial information from input 
nodes (X1–X4) to generate outputs (Z1–Z4). Due to its capacity 
to process dynamic spatial-temporal information, T-GCN is 
perfectly suited for sea level rise prediction with enhanced 
accuracy of forecasts. 

 

Fig. 2. Architecture of T-GCN.

2) Integration of hybrid temporal graph convolutional 

networks and attention mechanism: The proposed architecture 

enhances sea level rise prediction by integrating T-GCN with 

an attention mechanism.  By representing geographic locations 

as graph nodes and employing graph convolutions to learn 

patterns over time, T-GCNs effectively simulate spatiotemporal 

dependencies. An attention mechanism that employs query, 

key, and value computations to assign higher weights to the 

most relevant spatial and temporal features is then applied to 

fine-tune the retrieved features.  To emphasize critical 

information while suppressing less informative parts, attention 

scores are scaled by a SoftMax algorithm. As the final 

prediction layer runs over the improved features, the risk 

analysis for coastal planning is made more robust and accurate. 

The hybrid architecture is given in Fig. 3.
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Fig. 3. Architecture of hybrid attention based T-GCN. 

Fig. 3 depicts a hybrid model integrating T-GCN with 
attention for precise time-series prediction. Sequential input 
sequences from 𝑋𝑡−𝑛 𝑡𝑜 𝑋𝑡 are fed into T-GCN modules to learn 
spatial and temporal relationships, producing hidden 
representations. These are fed into a multilayer perceptron and 
an attention mechanism that places dynamic weights on every 
time step. A context vector is calculated by summing attention-
weighted hidden states, focusing on pertinent temporal features. 
This context vector is utilized for prediction, allowing the model 
to provide solid and interpretable predictions for intricate 
spatiotemporal phenomena such as sea level rise. 

Algorithm 1: Algorithm for Sea Level Rise Prediction 

Using T-GCN, Attention Mechanisms, and Game Theory 

Optimization 
Begin 

   Input: Dataset D, adjacency matrix A, time steps T, iterations K 

   For each missing value in D 

       Apply KNN imputation 

   End 

   For each feature in D 

       Compute Z-score 

       If |Z-score| > threshold Then 

           Remove outlier 

       End 

   End 

   Normalize features and align data temporally and spatially 

   Define nodes V and construct adjacency matrix A 

   For each time step t in T 

       Build temporal graph Gt 

       Apply GCN and GRU to extract spatiotemporal features 

   End 

   For each extracted feature 

       Compute attention score 

       If score > threshold Then 

           Assign higher weight 

       Else 

           Assign lower weight 

       End 

   End 

   Initialize k = 1 

   While k ≤ K 

       Define objectives and update parameters 

       Balance trade-offs using game theory 

       Increment k 

   End 

   Repeat 

       Extract features, apply attention, optimize 

   Until stopping criteria satisfied 

   Return predicted sea level values 

End 

   Output: Predicted sea level values 

V. RESULTS AND DISCUSSION 

The research proves the effectiveness of the proposed T-
GCN augmented with attention mechanisms and optimized 
using game theory approaches, leading to enhanced 
performance for sea level rise prediction compared to current 
models. The predicted values exhibit excellent correspondence 
to the actual measured values, which indicates the ability of the 
model to successfully extract prior spatial and temporal 
influences from the data. Moreover, the model reached a very 
low MAE for values, surpassing equivalent low prediction 
uncertainty. This serves to further demonstrate the advantage of 
combining temporal graph-based features with attention 
mechanisms to effectively incorporate complex spatiotemporal 
dependencies often inherent in sea level data sets. 

A. Historical Trend of Global Average Sea Level Change 

Over Time 

Fig. 4 shows the global, temporal evidence of sea level 
elevation, represented in millimeters (y-axis) over a time series 
(x-axis). The figure demonstrates a remarkable upward 
progression that indicates that sea levels continue to rise, at an 
ever-increasing rate. For the measured time frame, the sea level 
has risen by about 200 millimeters (about 8 inches), which 
points toward serious environmental issues. This increase has 
dire implications for coastal regions, such as saltwater intrusion 
into freshwater systems, higher frequency of flooding, more 
rapid coastal erosion, and population displacement near 
shorelines. 

 
Fig. 4. Historical trend of global average sea level change over time. 

T-GCN

  ...

T-GCN

Multi-

layer

Perceptio

n

Context 

vector
Prediction  ..

Xt

Attention 

Score

× 

× 

=

=

Xt-n ht-n

 .

ht-n

× =at-n
ht-n Ct-n

 .  .  .

at
ht

Ct



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

581 | P a g e  

www.ijacsa.thesai.org 

B. Rolling Mean and Rolling Deviation of Sea Level Change 

Over Time 

Fig. 5 presents a time series plot of the rolling mean and 
deviation, illustrating the overall trend and fluctuations in sea 
level change. The rolling mean shows an initial sea level decline 
from -200, gradually rising, crossing the x-axis at time 0, and 
reaching 200—indicating a clear upward trend over the period. 
Thus, while the mean shows a steady upward trend over the 
period, the rolling deviation remains relatively stable, indicating 
consistent variability around the trend. Sea level rise occurs as a 
continuous process, but the fluctuations around its rate remain 
relatively stable over time, indicating no consistent pattern of 
acceleration or deceleration in the short term. 

C. Training and Testing Accuracy 

Fig. 6 shows the accuracy curves for only the training and 
the testing phase of the improved Temporal Graph. 
Convolutional Network known as T-GCN over 100 epochs. 
Here the solid blue line stands for the training accuracy and the 
orange dotted line stands for the testing accuracy. At first, both 
increase significantly; training one rises above 100 % while 
testing one increases to nearly 90 % by about the 10th iteration. 
This means that the model gains a relatively fast adjustment to 
the patterns and relationships of the data. After this point, both 
the accuracies decrease a little and then become almost stagnant 
with the training accuracy being slightly higher than testing 
accuracy. Both accuracies for train and validate data are quite 
impressive and gradually rises until the 100th epoch, and are 
very close to the 100% and show model’s capability of 
generalizing well though unseen data after number of epochs. 

 

Fig. 5. Rolling mean and rolling deviation of sea level change over time. 

 
Fig. 6. Training and testing accuracy. 

D. Training and Testing Loss 

Fig. 7 shows the training and testing loss curves of T-GCN 
model with attention mechanisms on 60 epochs. The blue curve 
represents the training loss whereas, the orange line indicates the 
testing loss. First, both losses are high; the training loss is more 
than two for all the epochs except epoch 15. 5 and the testing 
loss is slightly less than 2. 5, which means great discrepancies in 

the predictions during the initial phases of the model training 
process. However, as the training process goes further both 
losses rapidly decrease, the training loss reaches even the 
negative values below 0. 5 in the 10 th epoch and the testing loss 
which also trended downward in the same way. As for epoch 30, 
both the training and testing losses reduce continuously and 
smoothly which almost reached the testing value equal to zero 
after 60 epochs. The training and testing loss curves of T-GCN 
model with attention mechanisms on 60 epochs. 
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Fig. 7. Training and testing loss. 

E. Performance Evaluation 

 Correlation coefficient, Willmott's Index of Agreement, 
Nash-Sutcliffe Coefficient, Legates and McCabe's Index, and 
Nash-Sutcliffe Coefficient are among the performance 
assessment metrics used to assess the models' dependability in 
terms of predicted accuracy. In order to determine the extent of 
the model's inaccuracy and to compare the outcomes, other error 
statistics such as Root Mean Squared inaccuracy, Mean 
Absolute Error, Relative Root Mean Squared Error, and Mean 
Absolute Percentage Error are also utilized. 

1) Correlation Coefficient (r): Coefficient of determination 

reflects the reliability of the regression equation and the 

correlation coefficient 𝑟 quantifies the linearity of the observed 

and simulated data. It varies between -1 and + 1 where a value 

closer to - 1 represents a perfect negative correlation and a value 

closer to + 1 perfect positive correlation, no linear relationship 

is given by Eq. (7) as follows, [29]. 

𝑟 =
∑ 𝐷𝑂𝑖−𝑀𝐷𝑂𝐷𝑆𝑖−𝑀𝐷𝑆𝑛

𝑖=1

∑ 𝐷𝑂𝑖−𝑀𝐷𝑂2 ∑ 𝐷𝑆𝑖−𝑀𝐷𝑆2𝑛
𝑖=1

𝑛
𝑖=1

                    (7) 

2) Willmott’s index of agreement: Willmott's Index of 

Agreement (d) is a widely used measure of prediction accuracy 

against a group of consensus observed data. The expected range 

of values is from 0 to 1, with 0 indicating no agreement at all, 

and 1 indicating perfect agreement between predicted and 

observed values. The index differs from basic correlation 

measures in that it emphasizes errors by their magnitude, 

providing a more sensitive measure of prediction accuracy. 

𝑑 = 1 −
∑ 𝐷𝑂𝑖−𝐷𝑆𝑖

2𝑛
𝑖=1

∑ 𝐷𝑆𝑖−𝑀𝐷𝑂+𝐷𝑂𝑖−𝑀𝐷𝑆2𝑛
𝑖=1

                        (8) 

3) Nash-sutcliffe coefficient: Consequently, to check the 

potential accuracy of fitted models, the Nash-Sutcliffe 

Coefficient NS is used. It also shows that an NS value of 1 

reflects perfect model performance while an NSNSNS of 0 

reflects the model performance in terms of observed means. 

This is given by Eq. (9), 

𝑁𝑆 = 1 −
∑ 𝐷𝑂𝑖−𝐷𝑆𝑖

2𝑛
𝑖=1

∑ 𝐷𝑂𝑖−𝑀𝐷𝑂2𝑛
𝑖=1

, −∞ ≤ 𝑁𝑆 ≤ 1        (9) 

4) Legates and McCabe’s index: LM is the other measure 

that is used to evaluate the performance of given models. It 

highlights the gross dissimilarities of observed and simulated 

data, which is downplayed for outlying values. LM is a value 

between 0 and 1 with the higher value representing better 

results of the model. This is provided by Eq. (10) 

𝐿𝑀 = 1 −
∑ |𝐷𝑆𝑖−𝐷𝑂𝑖|𝑛

𝑖=1

∑ |𝐷𝑂𝑖−𝑛
𝑖=1 𝐷𝑂̅̅ ̅̅ |

                   (10) 

5) Root mean square error: RMSE is a measure of the 

ordinary used in the assessment of the differences between the 

estimations and the observations. It imposes more penalty for 

larger errors than for small ones, owing to the fact that, the 

residuals are squared before averaging. This corresponds to the 

value expressed by the Eq. (11), 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝐷𝑆𝑖 − 𝐷𝑂𝑖

2𝑛
𝑖=1                         (11) 

6) Mean Absolute Error: MAE is computed from the 

average of the absolute differences between the predicted and 

the actual values, without a regard to the sign of the differences. 

Basically, it is easy to understand and easy to interpret. This is 

as given by the Eq. (12). 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝐷𝑆𝑖 − 𝐷𝑂𝑖

2𝑛
𝑖=1                          (12) 

7) Relative Root Mean Square Error: RRMSE gives an 

RMSE percentile value which is the RMSE of a normalized set 

of values, expressed as a percentage. It scales the RMSE to the 

range of the observed data thus being suitable when comparing 

models on different ranges of data. This is given by Eq. (13). 

𝑅𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ 𝐷𝑆𝑖−𝐷𝑂𝑖

2𝑛
𝑖=1

√
1

𝑛
∑ 𝐷𝑂𝑖

𝑛
𝑖=1

× 100                (13) 

8) Mean Absolute Percentage Error: MAPE expresses the 

average prediction error as a percentage of the observed values. 

It’s useful for understanding the relative size of errors. This is 

given by Eq. (14), 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

583 | P a g e  

www.ijacsa.thesai.org 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

𝐷𝑆𝑖−𝐷𝑂𝑖

𝐷𝑂𝑖

𝑖=1
𝑛 × 100                                     (14) 

Where  𝐷𝑂𝑖 _i is the observed data, 𝐷𝑆𝑖   is the simulated 
data, MDO is the mean of observed data, and MDS is the mean 
of simulated data. 

Table I and Fig. 8 offer a summary of the performance of the 
T-GCN + Attention model.  The model is good at prediction and 
has close correspondence between predicted and observed 
values as indicated by the Nash-Sutcliffe Efficiency of 0.9925, 
Willmott's Index of Agreement of 0.9958, and Correlation 
Coefficient of 0.9965. The MAE and RMSE, which reflect small 
prediction errors, are low at 0.0322 and 0.0412, respectively, yet 
the Legates and McCabe Index is comparatively high at 
0.9321.Though the model is still very reliable across evaluation 
metrics, relatively high Mean Absolute Percentage Error 
(1.95%) and Relative RMSE (2.38%) values reflect high 
unpredictability. 

TABLE I.  PERFORMANCE AND ERROR METRICS 

Metric T-GCN + Attention 

Nash-Sutcliffe Coefficient 0.992452 

Willmott’s Index of Agreement 0.995804 

Correlation Coefficient 0.996512 

Legates and McCabe Index 0.932145 

RMSE 0.041203 

MAE 0.032154 

RRMSE 2.381204 

MAPE 1.953214 

 

 
Fig. 8. Performance and error metrics comparison. 

 
Fig. 9. Performance comparison with existing methods. 
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Fig. 9 and Table II illustrate a comparative study of five 
models—AdaBoost, MLR, SVR, BiLSTM, and T-GCN with 
Attention—based on four performance metrics: Correlation 
Coefficient (r), Willmott's Index of Agreement (d), Nash–
Sutcliffe Efficiency (NS), and the Legates and McCabe Index 
(LM). The Correlation Coefficient (r) varies between 0.759946 
for MLR and 0.996502 for the T-GCN + Attention model, which 
shows that the latter has the highest linear correlation between 
predicted and observed values. The Nash–Sutcliffe Efficiency 

(NS), which is one of the most important indicators of predictive 
performance, varies from 0.368981 for MLR to 0.993021 for T-
GCN + Attention, which indicates greater forecast capacity for 
the proposed hybrid model. Also, the Legates and McCabe 
Index (LM), the measure of reliability of model predictions, 
varies from 0.217703 for MLR to 0.925741 for T-GCN + 
Attention. Overall, the results clearly show that the proposed T-
GCN + Attention model outperforms the other methods on all 
evaluation metrics, and it confirms there are overall strong, 
accurate, and effective in predicting sea level rise.

TABLE II.  PERFORMANCE COMPARISON WITH EXISTING METHODS 

Model Correlation Coefficient Willmott’s Index of Agreement Nash–Sutcliffe Coefficient 
Legates and McCabe 

Index 

CNN-BiGRU [30] 0.988909 0.987155 0.974866 0.952321 

BiLSTM [31] 0.974207 0.964079 0.988219 0.939868 

SVMD-BiLSTM [32] 0.954311 0.987647 0.983809 0.913546 

CEEMDAN-CNN[33] 0.968946 0.982739 0.988981 0.927703 

Proposed T-GCN + Attention 0.996502 0.996312 0.993021 0.985741 

a) Paired t-test on MAE between Proposed Model and 

BiLSTM 

TABLE III.  PAIRED TWO-TAILED T-TEST 

Fold T-GCN + Attention (Proposed) BiLSTM 

1 0.031 0.043 

2 0.032 0.046 

3 0.033 0.042 

4 0.030 0.045 

5 0.031 0.044 

Table III paired two-tailed T-test was held in five cross-
validation folds to statistically evaluate the performance 
difference in the meaning of the T-GCN + meditation model and 
the Bi-LSTM baseline in the proposed T-GCN + MAE. The 
results detected a low MAE for the proposed model in all folds, 
and the calculated T-statistic was much higher than the 
significant value, indicating sufficient difference in 
performance. With a particularly low p-value (p < 0.01), the 
improvement obtained by the proposed hybrid model is 
statistically important. This confirms that the T-GCN + attention 
model not only provides a better future accuracy, but 
continuously does so, offering a strong and reliable solution to 
increase sea level compared to traditional deep learning 
approaches. 

 
Fig. 10. T-test outcome. 

To validate the performance of the T-GCN + attention model 
proposed on baseline methods, a coupled two-wheel T-test on 

MAE values obtained from 5-fold cross-fold was organised as 
mentioned in Fig. 10. Results (T = 13.4, P < 0.01) indicate a 
statistically significant decrease in predicted error compared to 
BILSTM; it confirms that the proposed model provides a 
consistent and average improvement. 

F. Discussion 

Precise forecast of sea level rise is essential for climate 
mitigation and adaptation planning. A new hybrid model that 
combines T-GCN, attention mechanisms, and game theory 
optimization is introduced in this research to overcome the 
limitations of classical models to address highly complex 
spatiotemporal patterns. The T-GCN models temporal 
dependencies and spatial correlations, and the attention 
mechanism emphasizes prominent features such as glacier melt 
and ocean thermal expansion. Game theory reinforces model 
strength by encoding feature interactions as a multi-objective 
strategy, enhancing generalizability and mitigating overfitting. 
Results of evaluation indicate high predictive efficacy and 
minimal error rates. The framework is a solid instrument for 
scientists and policymakers that facilitates data-driven, fine-
grained planning for coastal resilience to climate change. 

VI. CONCLUSION AND FUTURE WORK 

The study introduced a novel Hybrid Forecasting 
Framework that integrates T-GCN, attention mechanisms and 
game theory-based adaptations to increase the accuracy of sea 
level rise prediction. Mixing GCN's spatial modelling abilities 
with the GRU's temporary learning strength, the proposed T-
GCN structure effectively captures the complex spatiotemporal 
dependence contained in sea level figures. The meditation 
mechanism further enhances performance by emphasising 
important characteristics in both dimensions, while the game 
theory refines the model by reducing optimisation over fitting 
and ensuring balanced performance in different environmental 
conditions. As displayed through a high correlation coefficient 
and low error rates, the model displays strong future-stating 
capacity, making it a valuable. 
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Further, the model can be increased by incorporating 
additional data sources such as demographic profiles, population 
density, regional melted water rates and extreme weather 
indicators. These enrichers will not only improve future 
accuracy but will also enable field-specific risk assessment. 
Real-time data acquisition and integrating adaptive local 
calibration will make the system more dynamic and responsible 
for on-ground changes. Ultimately, deployment of this model 
within the decision-support structure can assist policy makers 
and planners in crafting data-operated responses for climate-
inspired sea level changes, promoting permanent and flexible 
coastal growth. 
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