
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

586 | P a g e

www.ijacsa.thesai.org

Securing Image Messages Using Secure Hash

Algorithm 3, Chaos Scheme, and DNA Encoding

Amer Sharif*, Dian Rachmawati, Wilbert

Dept. of Computer Science, Faculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Medan, Indonesia

Abstract—Security is an essential aspect to consider during

data transmission, especially images. Threats that may occur

during image transmission include images being stolen by third

parties. One way to secure images is through encryption-

decryption processes using cryptographic algorithms. One of the

algorithms developed for image security involves combining a

chaos scheme, DNA encoding, and hashing. Chaos scheme refers

to a system sensitive to initial conditions, resulting in behavior

that is difficult to predict or appears random. DNA encoding is

the process of converting bits into a DNA sequence. Hashing is a

mathematical function which takes variable inputs and converts

them into a binary sequence with fixed length. In this research,

security enhancement is achieved by replacing the hashing

algorithm with Secure Hash Algorithm (SHA) 3 Keccak. This

study successfully implemented cryptographic algorithms into a

website that can simulate image encryption-decryption processes

in about 15 seconds per process. The effectiveness of the

algorithm used has also been tested in abstracting images

through Mean Squared Error (MSE) and Peak-Signal-to-Noise-

Ratio (PSNR) evaluations. Obtained MSE values of 0 and PSNR

values of infinity indicated that the original images and

decrypted images are identical.

Keywords—Image encryption; image decryption; chaos

scheme; DNA encoding; secure hash algorithm 3 Keccak

I. INTRODUCTION

The advancement of digital technology has led to an
increased demand for data, especially images. Despite being a
routine activity, the transmission of images between parties
involves significant security risks, such as data theft by third
parties. Therefore, it is crucial to develop methods for
securing images during transmission.

Image encryption is an effective method for securing
images. Encryption involves converting plaintext into
ciphertext, making the data unreadable without a decryption
key. This process ensures that only the intended recipient, who
possesses the key, can convert the ciphertext back into
readable plaintext, thus securing the image data during
transmission.

This research explores the use of symmetric key
cryptography, combining a chaos scheme and DNA encoding,
alongside the Secure Hash Algorithm (SHA) 3 hashing
algorithm, specifically Keccak. Commonly used hashing
algorithms like SHA-1 and SHA-2 have known
vulnerabilities, prompting the National Institute of Standards
and Technology (NIST) to seek a more secure alternative,

resulting in the adoption of the Keccak algorithm as the SHA-
3 standard.

The chaos scheme generates semi-random numbers
without repeating periods and is highly sensitive to initial
parameter changes. This sensitivity ensures significant
differences in output with minor changes in input, enhancing
encryption robustness. Despite producing semi-random
values, the chaos system is deterministic, meaning it can
reproduce the same values with the same initial parameters,
which is crucial for reliable encryption and decryption
processes.

DNA encoding utilizes the properties of DNA sequences,
where the bases A (Adenine) pair with T (Thymine) and C
(Cytosine) pair with G (Guanine). By representing these DNA
bases in a binary format, plaintext can be encoded into a
secure format. This method, combined with the chaos scheme,
has shown promise in previous studies, such as those by
Belazi et al. [1], Wang and Su [15], and Zhong et al. [16].

Previous research indicates that the SHA-3 algorithm
offers enhanced security compared to SHA-2 [10]. By
integrating the chaos scheme, DNA encoding, and the SHA-3
algorithm, this study aims to develop a more secure image
encryption method, potentially achieving higher security
levels than existing techniques. The system developed may
later be considered as an alternative means of image security
in communication applications.

This study is organized next by enlisting previous studies
in image encryption utilizing chaos and DNA algorithms and
studies involving hash functions, followed by a literature
review of the principal theoretical concepts. Following that is
the problem analysis and system design, continued with
implementation and system testing. Discussion and final
conclusion with some considerations for future work are
provided in the end.

II. PREVIOUS STUDIES

Several studies related to this approach have been
conducted. Belazi et al. [1] obtained a cryptographic algorithm
which met security criteria such as a large key space,
resistance to statistical attacks, and a linear run time, enabling
efficient execution. Alrubiae et al. [2] leveraged double-
dynamic DNA sequence encryption and a chaotic 2D logistic
map to produce a novel image encryption algorithm which
resisted common attacks. Hussain et al. [4] developed
substitution boxes by the use of chaotic logistic maps in linear
fractional transformation. Arif et al. [5] used S-boxes, a hash

*Corresponding Author, Email: - amer.sharif@usu.ac.id

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

587 | P a g e

www.ijacsa.thesai.org

function, and chaos scheme to produce a secure cryptographic
algorithm for images. Suryadi et al. [8] utilized a transposition
scheme based on a chaos function, namely Arnold’s cat map
function, as a form of transposition resulting in a large key
space with very low sensitivity. Munir [11] developed a
simple image encryption system using a pseudo-one-time pad
built upon a chaos function. Wang and Su [15] utilized the
Piecewise Linear Chaotic Map (PWLCM) and Logistic Map
to generate all parameters the encryption algorithm needed,
combined with DNA encoding. Zhong et al. [16] combined
chaos theory and a 2D Chebyshev-Sine map to achieve image
encryption resistant to differential and selective plaintext
attacks. Pittalia [10] compared the effectiveness of hash
functions in cryptography, while Patil and Karule [7]
specifically discussed the design and implementation of the
Keccak hash function for cryptography.

III. LITERATURE REVIEW

A. Cryptography

Cryptography is a method for securing data using code
algorithms, hashes, and signatures. It can protect data at rest,
in transit, or in use. For example, cryptography can secure
data stored on a hard drive, data being transferred between
parties through electronic communication, or data being
processed during calculations [12].

Cryptography has four main objectives: confidentiality,
ensuring that information is accessible only to authorized
parties; integrity, ensuring that information is not manipulated;
authentication, confirming the authenticity of information and
the identity of users; and non-repudiation, preventing users
from denying their previous actions [14].

Cryptography generally is divided into two categories:
symmetric cryptography, which utilize the same key for
encryption, i.e. converting the readable plaintext/image into
unreadable ciphertext/image, and decryption, i.e. converting
the unreadable ciphertext/image back into the readable
plaintext/image. On the other hand, asymmetric cryptography
utilizes a set of different keys (called public and private keys)
for encryption and decryption [14]. This research employs
symmetric cryptography.

B. Secure Hash Algorithm

Secure Hash Algorithm (SHA) or often known as one-way
functions, are mathematical functions which accept variable-
length input and convert it into a binary string with a fixed
length of 128 upto 512 bits. SHA are employed to ensure data
integrity and authenticity [6] [14].

There are two criteria which serve as a standard for the
security of an SHA algorithm:

1) Preimage resistance: Preimage resistance means for an

arbitrary hash value, it is very difficult to obtain the input

which produced that particular hash value.

2) Collision resistance: Collision resistance means it is

very difficult to obtain two inputs which will produce an

identical hash value.

Keccak is a cryptographic hash function and the basis for
the SHA-3 (Secure Hash Algorithm 3) standard, which was

selected by the National Institute of Standards and Technology
(NIST) in 2012. Unlike its predecessors, SHA-1 and SHA-2,
Keccak employs a unique structure and process, enhancing its
security and efficiency [7] [10].

Keccak operates through a series of absorbing and
squeezing phases, as indicated in Fig. 1 from [7], where the
input data is absorbed into a state array and then permuted.
This process involves transforming blocks of 1152, 1088, 832,
or 576 bits to generate hash values of 224, 256, 384, and 512
bits. These permutations ensure that even the slightest change
in the input data results in a significantly different hash output,
making Keccak highly resistant to collisions and attacks [10].

Fig. 1. Absorbing and squeezing phases in Keccak from [7].

C. Chaotic Scheme

Chaos in many contexts often refers to phenomena in
which the systems are highly sensitive to initial conditions,
resulting in difficult-to-predict behaviour or seemingly
random behaviour [11].

In cryptography, a map refers to mathematical functions
which link each element from a set to another corresponding
element in another set. Maps are utilized to convert data from
one form to another.

Chaotic maps are maps which exhibit chaotic properties or
uncertainties by producing hard-to-predict numbers. Chaotic
maps serve to make cryptographic systems more resistant to
attacks due to the difficulty in describing or predicting the
chaotic behavioral pattern [5].

D. Logistic-Chebyshev Map

The Logistic-Chebyshev map is a combination of two one-
dimensional chaotic maps: the logistic map and the Chebyshev
map. By merging these two maps, the Logistic-Chebyshev
map is expected to produce more complex and varied results
compared to a single chaotic map [3]. This enhanced
complexity can be beneficial in various applications, such as
in the development of security systems or data scrambling,
where chaotic properties are leveraged to generate random
number sequences with the desired level of complexity. The
following is the Logistic-Chebyshev equation from [3]:

𝑋𝑛+1 = (𝛼𝑋𝑛(1 − 𝑋𝑛) +
(4−𝛼)

4
𝑐𝑜𝑠(𝑏 × 𝑐𝑜𝑠−1(𝑋𝑛))) 𝑚𝑜𝑑 1

(1)

𝑋𝑛 ∈ (0, 1)

𝛼 ∈ (0, 4]

𝑏 ∈ ℕ

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

588 | P a g e

www.ijacsa.thesai.org

E. Sine-Chebyshev Map

The Sine-Chebyshev map is a one-dimensional chaotic
system that combines the sine map and the Chebyshev map.
The sine map, with its simple mathematical structure, and the
Chebyshev map, a polynomial map, both exhibit chaotic
behavior and high sensitivity to initial conditions. By
integrating these two maps, the Sine-Chebyshev map enhances
the unpredictability and complexity of the generated
sequences, making it particularly useful for applications in
cryptography, random number generation, and other fields
requiring high levels of complexity and sensitivity. This
synergy creates a more robust and versatile chaotic system.
The following is the Sine-Chebyshev equation from [16]:

𝑋𝑛+1 = (𝛼 sin(𝜋𝑋𝑛) +
(4−𝛼)

4
cos(𝑏 × cos−1(𝑋𝑛))) 𝑚𝑜𝑑 1

(2)

𝑋𝑛 ∈ (0, 1)

𝛼 ∈ (0, 4]

𝑏 ∈ ℕ

F. DNA Encoding

Deoxyribonucleic Acid (DNA) carries the genetic
information of all living organisms, characterized by its four
constituent bases: A (Adenine), C (Cytosine), G (Guanine), and
T (Thymine). These bases pair uniquely within DNA
sequences, where A always pairs with T and C always pairs
with G. These pairings form the fundamental structure of
DNA, essential for encoding genetic instructions in living cells.
In computational applications, these bases can be represented
in binary form according to specific encoding rules, facilitating
the transformation of plaintext data into a binary format known
as DNA encoding. This process is crucial in fields such as
cryptography and data security, where the inherent properties

of DNA bases can be leveraged to encode information securely
and efficiently [13].

DNA decoding, conversely, involves reversing the
encoding process to retrieve the original plaintext from its
binary representation using the DNA base pairs. This decoding
mechanism ensures that the encoded information can be
accurately reconstructed into its original form, preserving data
integrity and facilitating its practical application in various
scientific and technological domains. Overall, DNA encoding
and decoding techniques offer a promising approach for secure
data transmission and storage, harnessing the natural properties
of DNA for innovative computational solutions in information
security. Table I indicates sample DNA encoding for two-bit
pairs.

TABLE I DNA ENCODING

 Rule

Code
1 2 3 4 5 6 7 8

A 00 00 11 11 10 01 10 01

T 11 11 00 00 01 10 01 10

C 10 01 10 01 00 00 11 11

G 01 10 01 10 11 11 00 00

G. S-box

S-box, or Substitution Box, is a component in symmetric
cryptography which substitutes values from input data blocks
with corresponding outputs based on a certain rule or
substitution table. The main purpose of the S-box is to
increase the algorithm’s security level by complicating
statistical analysis and cryptoanalysis attacks.

This research uses S-boxes from the research [4], namely
S-box 3, S-box 4, S-box 5, dan S-box 6. S-box 3 is given in
Table II below as an example.

TABLE II S-BOX 3

105 197 63 16 136 75 70 74 220 96 100 125 167 98 108 148

242 5 254 93 13 78 253 45 144 12 35 196 226 179 230 44

123 204 15 41 176 0 165 64 11 217 163 59 56 62 134 140

235 250 49 77 131 252 239 157 244 214 129 248 177 113 10 152

103 231 51 130 139 32 73 7 219 33 200 156 146 192 232 191

233 202 187 23 241 246 216 158 31 161 17 94 53 9 206 117

249 89 127 24 195 46 43 162 80 6 48 209 54 119 149 65

92 102 212 135 36 203 28 126 27 132 210 172 85 145 22 224

34 188 50 25 67 225 88 182 84 81 69 240 228 104 143 72

8 86 60 3 171 205 238 55 61 245 79 83 222 58 147 142

121 37 124 4 87 183 1 199 243 166 180 118 114 91 29 184

169 189 110 101 47 170 251 40 186 18 97 229 155 174 236 153

247 150 106 237 168 193 66 2 112 215 14 120 201 21 213 38

95 52 198 57 109 208 178 255 218 211 30 227 190 76 90 82

173 99 42 39 185 194 159 111 138 137 116 181 141 154 160 175

115 68 26 122 20 221 164 71 107 207 234 128 133 151 223 19

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

589 | P a g e

www.ijacsa.thesai.org

H. Mean Squared Error (MSE)

Mean Squared Error is a parameter used to compare the
level of pixel difference between two images. A high MSE
value indicates that the level of pixel difference between the
images is relatively large, meaning the difference between the
two images is quite significant. MSE may be obtained from
the following equation from [9]:

𝑀𝑆𝐸 =
1

𝑋𝑌
∑ ∑ (𝑂(𝑚, 𝑛) − 𝑅(𝑚, 𝑛))2𝑛=𝑌

𝑛=1
𝑚=𝑋
𝑚=1 (3)

I. Peak Signal-to-Noise Ration (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a parameter used to
compare two images. The PSNR value ranges from [0, ∞).
The higher the PSNR value, the more similar the compared
images are. Conversely, the lower the PSNR value, the more
different the compared images are [9]. PSNR is calculated
using the following equation from [9]:

𝑃𝑆𝑁𝑅 = 10 × log10
(2𝑛−1)2

𝑀𝑆𝐸
 (4)

 n = bit in the image

 MSE = Mean Squared Error value

IV. ANALYSIS AND DESIGN

A. Problem Analysis

The primary issue to be addressed in this research is the
development of a system which may secure images by means
of symmetric cryptography leveraging the Keccak hash
function, chaos scheme and DNA encoding.

Functional requirements analysis:

1) System will secure image using the methods mentioned

2) System will secure image with the maximum

dimension of 512x512 pixels

3) System will accept input from local file and database

4) System will accept input of secret key to encrypt and

decrypt the image

5) System will perform registration and authentication of

users

6) System will be able to send encrypted images to the

receiver

Non-functional requirements analysis:

1) System will provide a user-interface which is easy to

understand for novice users

2) System will validate every user input during encrytion

and decryption and provide error message for invalid input.

B. Flowchart

The flowcharts for the activities in this research are
described in the following figures.

Fig. 2 describes the proposed algorithm implementation,
indicating the important stages in the encryption process
starting with the plain image and the secret key: key
generation, image decomposition and block permutation,
substitution, DNA encoding, complementing, DNA decoding,
bitwise operation.

Fig. 2. Encryption process.

Fig. 3 describes the proposed algorithm for the decryption
process, which essentially has the same stages as the
encryption process but only in reverse order.

Fig. 3. Decryption process.

C. Proposed Algorithm

1) Key generation

a) Calculate the hash value of plain image h.

b) Divide h into 32 bytes.

c) Calculate the following, from [4]:

𝑋′
0 =

1

3
(𝑋0 + 2 ×

1

256
× 𝑏𝑖𝑛2𝑑𝑒𝑐(ℎ9 ⊕ … ⊕ ℎ16))(5)

𝛼′
0 =

1

3
(𝛼0 + 2 ×

1

64
× 𝑏𝑖𝑛2𝑑𝑒𝑐(ℎ1 ⊕ … ⊕ ℎ8))(6)

𝑋′
1 =

1

3
(𝑋1 + 2 ×

1

256
× 𝑏𝑖𝑛2𝑑𝑒𝑐(ℎ1 ⊕ … ⊕ ℎ32))(7)

𝛼′
1 =

1

3
(𝛼1 + 2 ×

1

64
(∑ ℎ1(𝑖) 𝑚𝑜𝑑 25632

𝑖=1))(8)

d) Calculate Logistic-Chebyshev Map by iteration > 500

times to hide the transient effect. Then, calculate it Mx4N

times and put it in matrix. M and N is the image dimension.

e) Map the matrix with 1 if the value > 0.5 and 0 if the

value ≤ 0.5.

f) Calculate Sine-Chebyshev Map by iteration > 500

times to hide the transient effect. Then, calculate it MxN times

and put it in matrix.

g) Replace each matrix element by calculating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

590 | P a g e

www.ijacsa.thesai.org

𝑍1(𝑖, 𝑗) = (𝑌 × 1015) 𝑚𝑜𝑑 256 (9)

2) Image processing and decomposition

a) Divide image into 64 blocks.

b) Permute these blocks by the following calculation

using prime p and h = 1..64

𝑏𝑖 = (𝑝 × ℎ) 𝑚𝑜𝑑 64 (10)

c) Reconstruct image based on the calculation.

3) Substitution

a) Get S-box-3, S-box-4, S-box-5, S-box-6 from [4]

b) Divide the image into 4 parts, substitute each part

with each S-box, respectively.

4) DNA encoding

a) Select a DNA rule from the DNA RULE in Table III

below.

b) Encode the image using the selected DNA rule, and

the image size will be Mx4N.

5) Complement
Using the Logistic Chebyshev matrix, replace the image

pixel with the complement if the logistic Chebyshev matrix in
the corresponding index is 1.

6) DNA decoding

a) Select a DNA rule from the DNA RULE below.

b) Decode the image using the DNA RULE, restoring the

image size back to MxN.

7) Bitwise operation
Using the Sine Chebyshev matrix, XOR the image with the

matrix.

8) Calculate MSE and PSNR

a) The MSE parameter is used to determine if the image

was successfully encrypted.

b) The PSNR parameter is used to determine if the

image was successfully decrypted.

TABLE III DNA RULE

Rule

Base 1 2 3 4 5 6 7 8

A 00 00 01 01 10 10 11 11

T 11 11 10 10 01 01 00 00

C 01 10 00 11 00 11 01 10

G 10 01 11 00 11 00 10 01

V. IMPLEMENTATION AND TESTING

A. Implementation

In this research, the application was built as a website
using Python and Laravel PHP Framework. User data and
image data were stored in a MySQL database. The software
used for development is Visual Studio Code. This application
has five pages: Login, Register, Home, Encryption,
Decryption. These pages are indicated in Fig. 4 to Fig. 8.
Encrypted images may be stored into the database for access
by another user, as indicated in Fig. 7.

Fig. 4. Registration page.

Fig. 5. Login page.

Fig. 6. Home page.

Fig. 7. Encryption page with a sample image.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

591 | P a g e

www.ijacsa.thesai.org

Fig. 8. Decryption page with a sample image.

B. System Testing

Testing consisted of the following steps:

1) Encrypt 5 test images of various sizes with .png

extension and different secret keys.

2) Measure the MSE between the original/plain image and

the obtained scrambled/cipher image.

3) Decrypt the cipher image back to plain image.

4) Measure the PSNR between the restored image to the

original image

Testing was carried out on a laptop with the following
specification:

 AMD Ryzen 5 5600H CPU

 GeForce RTX 3050 4GB graphics card

 16 GB RAM

Required for encryption are the secret keys, which include
two prime numbers for image decomposition and block
permutation, two random integers between 1 to 8 for DNA
encoding and decoding, two random fractions and two random
real numbers between 0 and 4 for the chaotic maps. The
number of iteration (> 500) for the Logistic-Chebyshev and
Sine-Chebyshev mappings are also required. All these values
are input manually into the system. The hash value of the
selected plain image is calculated initially by the system as
well as the dimensions of the image. Parameter for the first
test image are indicated in Table IV.

TABLE IV SECRET KEYS FOR FIRST TEST IMAGE

Secret keys Value Remarks
Secret

keys
Value Remarks

P1 17 prime X1 0.7 real (0, 1)

P2 23 prime A1 3.4 real (0, 4]

K1 8 int 1 – 8 a 765 > 500

K2 2 int 1 – 8 b 594 > 500

X0 0.5 real (0, 1) Width 400 pixels

A0 2.5 real (0, 4] Height 400 pixels

Hash

10011001010010111011011101101011010111110011

11100111010001101001101000011011000110101110

10100000010000001110110101110111110100110010
11100001011000101000110010010011000001001001

01111111100011110100101110011001110100011010

100001111001101110001111100110000001

Plain image, encrypted image and decrypted image for the
first test image are shown in Table V. Visual inspection
showed that the encrypted image is totally different from the
plain image, while the decrypted image is virtually the same
as the plain image.

TABLE V FIRST TEST IMAGE

Plain image Encrypted Image Decrypted Image

Processing time for the encryption and decryption
processes is indicated in Table VI, which averaged around 15
seconds.

TABLE VI PROCESSING TIME OF FIRST TEST IMAGE

Encryption (seconds) Decryption (seconds)

15.332939624786377 15.12040400505066

The MSE and PSNR values of the first test image are
indicated in Table VII and these values supported the visual
inspection of Table V. MSE between plain image and
encrypted image is relatively high (105.85) with a low PSNR
(27 dB) indicating a high difference between the two images.
MSE of 0 and PSNR of infinity between decrypted image and
plain image indicates the two images are the same.

TABLE VII MSE AND PSNR OF FIRST TEST IMAGE

Plain image and

cipher image

Plain image and

decrypted image

MSE 105.85469563802083 0

PSNR

(dB)
27.883702330949063 ∞

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

592 | P a g e

www.ijacsa.thesai.org

Plain image, encrypted image and decrypted image for the
second test image are shown in Table VIII. As the case with
the first test image, visual inspection showed that the
encrypted image is totally different from the plain image,
while the decrypted image is virtually the same as the plain
image.

TABLE VIII SECOND TEST IMAGE

Plain image Encrypted Image Decrypted Image

Secret keys used for the encryption and decryption
processes are indicated in Table IX. Just as the first test image,
secret keys are two prime numbers for image decomposition
and block permutation, two integers between 1 and 8 for DNA
encoding and decoding, two random fractions and two random
real numbers between 0 and 4 for the chaotic maps. The
number of iteration (> 500) for the Logistic-Chebyshev and
Sine-Chebyshev mappings are also required.

TABLE IX SECRET KEYS FOR SECOND TEST IMAGE

Secret keys Value Remarks
Secret

keys
Value Remarks

P1 17 prime X1 0.12 real (0, 1)

P2 23 prime A1 2.24 real (0, 4]

K1 2 int 1 – 8 a 599 > 500

K2 8 int 1 – 8 b 652 > 500

X0 0.55 real (0, 1) Width 383 pixels

A0 3.572 real (0, 4] Height 512 pixels

Hash

10101100110111100011001011100010011011001001
01101010001011000001011110011111110111011010

00001100110000100010011001110000101101110110

01010010011010111110010111010110100111111110
11101111011100101011101101011011000100110100

100100011010011011010100111010000111

MSE and PSNR values of the second test image are
indicated in Table X. Here the high MSE value of 150.35 and
low PSNR value of 27.90 dB between the plain image and
encrypted image showed high difference between the two,
while low MSE of 0 and high PSNR value of infinity between
the decrypted image and plain image, indicated that both
images are similar, which again supported the visual
inspection result in Table VII.

Processing times for the second test image are indicated in
Table XI. Here the processing times are slightly below 15
seconds (14.88 seconds for encryption and 14.97 for
decryption).

Table XII shows the result of the third test image. As the
case with the second test image, visual inspection showed that
the encrypted image is totally different from the plain image,
while the decrypted image is virtually the same as the plain
image.

Secret keys used for the encryption and decryption of third
test image are indicated in Table XIII. Just as the second test
image, secret keys consisted of two prime numbers for image
decomposition and block permutation, two integers between 1
and 8 for DNA encoding and decoding, two random fractions
and two random real numbers between 0 and 4 for the chaotic
maps. The number of iteration (> 500) for the Logistic-
Chebyshev and Sine-Chebyshev mappings are also required.

TABLE X MSE AND PSNR OF SECOND TEST IMAGE

Plain image and

cipher image

Plain image and

decrypted image

MSE 105.35418192545573 0

PSNR
(dB)

27.904285817106654 ∞

TABLE XI PROCESSING TIME OF SECOND TEST IMAGE

Encryption (seconds) Decryption (seconds)

14.887351989746094 14.975344181060791

TABLE XII THIRD TEST IMAGE

Plain image Encrypted Image Decrypted Image

TABLE XIII SECRET KEYS FOR THIRD TEST IMAGE

Secret keys Value Remarks
Secret
keys

Value Remarks

P1 97 prime X1 0.758 real (0, 1)

P2 11 prime A1 1.657 real (0, 4]

K1 5 int 1 – 8 a 1124 > 500

K2 7 int 1 – 8 b 752 > 500

X0 0.5 real (0, 1) Width 512 pixels

A0 3.21 real (0, 4] Height 342 pixels

Hash

11101001111000011001110110111101001110011000
10101111111000101000010000010000001000011011

01001000110100101000000000001100010000100011

01000010001011111111110111001011110101110001
00101010101011011101110110110011100100011011

110010011000000111011001011110111110

MSE and PSNR values of the third test image are indicated
in Table XIV. Here the high MSE value of 150.53 and low
PSNR value of 27.89 dB between the plain image and
encrypted image showed the high difference between the two,
while low MSE of 0 and high PSNR value of infinity between
decrypted image and plain image, indicated that both images
are similar, which again supported the visual inspection result
in Table XII.

Processing times for the third test image are indicated in
Table XV. Here the encryption processing time was 14.83
seconds, and decryption was 15.19 seconds.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

593 | P a g e

www.ijacsa.thesai.org

Table XVI shows the result of the fourth test image. As the
case with the previous test images, Table XVII contains the
secret keys, while Table XVIII shows the MSE and PSNR
values between the plain image and cipher image, and the plain
image and the decrypted image. Table XIX indicate the
processing times for encryption and decryption.

Table XX shows the result of the fifth test image. As the
case with the previous test images, Table XXI contains the
secret keys, while Table XXII shows the MSE and PSNR
values between the plain image and cipher image, and the
plain image and the decrypted image. Table XXIII indicate the
processing times for encryption and decryption.

TABLE XIV MSE AND PSNR OF THIRD TEST IMAGE

Plain image and

cipher image

Plain image and

decrypted image

MSE 105.53628412882487 0

PSNR

(dB)
27.89678562013698 ∞

TABLE XV PROCESSING TIME OF THIRD TEST IMAGE

Encryption (seconds) Decryption (seconds)

14.82814908027649 15.187212944030762

TABLE XVI FOURTH TEST IMAGE

Plain image Encrypted Image Decrypted Image

TABLE XVII SECRET KEYS FOR FOURTH TEST IMAGE

Secret keys Value Remarks
Secret

keys
Value Remarks

P1 17 prime X1 0.01 real (0, 1)

P2 37 prime A1 2.2 real (0, 4]

K1 2 int 1 – 8 a 582 > 500

K2 1 int 1 – 8 b 725 > 500

X0 0.99 real (0, 1) Width 512 pixels

A0 4 real (0, 4] Height 394 pixels

Hash

11011000011101100010001110011111010110111100

00100010011110110110111111011100100010101000
00010010010000111110101110100100111011110110

01100011100111010110000110000000011010010110

00110000010000010110000110011001001001110110
000000111111010000001101110110011010

TABLE XVIII MSE AND PSNR OF FOURTH TEST IMAGE

Plain image and

cipher image

Plain image and

decrypted image

MSE 105.44661966959636 0

PSNR

(dB)
27.900476988632636 ∞

TABLE XIX PROCESSING TIME OF FOURTH TEST IMAGE

Encryption (seconds) Decryption (seconds)

15.099057912826538 15.182414054870605

TABLE XX FIFTH TEST IMAGE

Plain image Encrypted Image Decrypted Image

TABLE XXI SECRET KEYS FOR FIFTH TEST IMAGE

Secret keys Value Remarks
Secret

keys
Value Remarks

P1 11 prime X1 0.01 real (0, 1)

P2 37 prime A1 4 real (0, 4]

K1 1 int 1 – 8 a 501 > 500

K2 8 int 1 – 8 b 501 > 500

X0 0.99 real (0, 1) Width 235 pixels

A0 4 real (0, 4] Height 305 pixels

Hash

000000100100000011001101000010011111100100101
001010000000101010110011011010001101001101100

100100101111011000011001100001101011000010110

111101001010100110000010010110010100011000000
000000100101011111001110111011011010010110100

0000010011011111001011110010000

TABLE XXII MSE AND PSNR OF FIFTH TEST IMAGE

Plain image and

cipher image

Plain image and

decrypted image

MSE 105.21969985961914 0

PSNR
(dB)

27.90983302234912 ∞

TABLE XXIII PROCESSING TIME OF FIFTH TEST IMAGE

Encryption (seconds) Decryption (seconds)

14.929418087005615 17.71390175819397

VI. DISCUSSION

Several additional observations maybe obtained from the
implementation of the cryptosystem, as follows:

 User and image data were stored in the system using a
MySQL Database

 All input images sizes were padded to achieve a
dimension of 512x512 pixel.

 High MSE values (around 150) and low PSNR values
(around 27 dB) between the plain images and the
encrypted images indicated the plain images were
successfully converted into abstract images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 8, 2025

594 | P a g e

www.ijacsa.thesai.org

 MSE values of 0 and high PSNR values (infinity)
between the plain images and the decrypted images
indicated that the encrypted images were successfully
restored to images identical to the original plain images.

 Processing times for encryption and decryption were
around 15 seconds on the testing laptop.

VI. CONCLUSION

Based on the results obtained from the above system
testing, it may be concluded that:

1) The algorithms used were capable of performing image

encryption and decryption effectively, building on previous

studies mentioned at the beginning of this study. This system

has successfully integrated the SHA-3 Keccak hash algorithm,

Chaos Scheme, and DNA Encoding.

2) The system was implemented into a website using

Python, PHP, and a MySQL database.

3) The evaluation of MSE and PSNR values showed that

the algorithm successfully abstracted the images and restored

them to their original form.

4) The processing time required for each encryption and

decryption operation is still quite high for the specified laptop

used in system testing.

5) This study has contributed to the field of cryptography

an alternate approach to image security using the

aforementioned algorithms.

VII. FUTURE WORK

Limitations of the present implementation include a
symmetric cryptographic approach (which may introduce a
key distribution problem), while also limiting images to be
encrypted having a maximum dimension of 512x512 pixels.
This system is also run on a stand-alone PC-based platform.
Secret keys required for the encryption and decryption were
input manually, resulting in a not very large key space.
Several approaches for future work maybe suggested: firstly,
secret keys maybe generated by the system on-demand,
therefore ascertaining better randomness and larger key space;
secondly, to address key distribution problem faced by
symmetric cryptosystem by combining the present algorithms
with a public key algorithm such as Extended RSA to achieve
a more secure hybrid cryptosystem; thirdly, improving so that
images to be encrypted are not limited to a dimension of
512x512 pixels; fourth, to port the cyptosystem to a mobile
platform such as Android or iOS, and lastly integrating the
present system into a communication system such as an e-mail
or instant messaging application.

REFERENCES

[1] A. Belazi, M. Talha, S. Kharbech and W. Xiang, "Novel Medical Image
Encryption Scheme Based on Chaos and DNA Encoding," in IEEE
Access, vol. 7, pp. 36667-36681, 2019, doi:
10.1109/ACCESS.2019.2906292.

[2] Alrubaie, A.H., Khodher, M.A.A. & Abdulameer, A.T. “Image
encryption based on 2DNA encoding and chaotic 2D logistic map”. J.
Eng. Appl. Sci. 70, 60 (2023). https://doi.org/10.1186/s44147-023-
00228-2.

[3] B. Abd-El-Atty, M. Amin, A. Abd-El-Latif, H. Ugail and I. Mehmood,
"An Efficient Cryptosystem based on the Logistic-Chebyshev Map,"
2019 13th International Conference on Software, Knowledge,
Information Management and Applications (SKIMA), Island of
Ulkulhas, Maldives, 2019, pp. 1-6, doi:
10.1109/SKIMA47702.2019.8982535.

[4] I. Hussain, T. Shah, M. A. Gonda et al, “An efficient approach for the
construction of LFT S-boxes using chaotic logistic map”, Nonlinear
Dyn 71, 133–140 (2013). https://doi.org/10.1007/s11071-012-0646-1.

[5] J. Arif et al., "A Novel Chaotic Permutation-Substitution Image
Encryption Scheme Based on Logistic Map and Random Substitution,"
in IEEE Access, vol. 10, pp. 12966-12982, 2022, doi:
10.1109/ACCESS.2022.3146792.

[6] J. -Philippe Aumasson, Serious Cryptography, San Francisco: No Starch
Press, Inc., 2018.

[7] M. A. Patil and P. T. Karule, "Design and implementation of keccak
hash function for cryptography," 2015 International Conference on
Communications and Signal Processing (ICCSP), Melmaruvathur, India,
2015, pp. 0875-0878, doi: 10.1109/ICCSP.2015.7322620.

[8] M. T. Suryadi, Z. Rustam, W. Widhianto, “Implementasi Algoritma
Enkripsi Citra Digital Menggunakan Skema Transposisi Berbasis Fungsi
Chaos”, Prosiding Seminar Ilmiah Nasional Komputer dan Sistem
Intelijen (KOMMIT), vol. 8, pp. 376-380, Depok, 2014.

[9] N. Mahendiran, C. Deepa, “A Comprehensive Analysis on Image
Encryption and Compression Techniques with the Assessment of
Performance Evaluation Metrics”, SN COMPUT. SCI. 2, 29 (2021).
https://doi.org/10.1007/s42979-020-00397-4.

[10] P. P. Pittalia, “A Comparative Study of Hash Algorithms in
Cryptography”. International Journal of Computer Science and
Information Technology, Vol. 8, Issue. 6, pp.147-152, 2019.

[11] R. Munir, “Algoritma Enkripsi Citra dengan Pseudo One-Time Pad yang
Menggunakan Sistem Chaos”, Konferensi Nasional Informatika (KNIF),
pp. 12-16, 2011.

[12] S. Kromodimoeljo, Teori dan Aplikasi Kriptografi, SPK IT Consulting,
2009.

[13] T. A. S. Yusri and D. Rudhistiar, “Enkripsi Citra Digital Berbasis
Kombinasi Arnold Cat Map Termodifikasi dan DNA
Encoding”, Mnemonic, vol. 5, no. 2, pp. 173-177, Aug. 2022.

[14] W. Stallings, Cryptography and Network Security: Principles and
Practice, 7th Edition, Pearson, 2016.

[15] X. Wang, Y.Su, “Image encryption based on compressed sensing and
DNA encoding”, in Signal Processing: Image Communication, Volume
95, 2021, 116246, ISSN 0923-5965, https://doi.org/10.1016/
j.image.2021.116246.

[16] Y. Zhong, H. Liu, R. Lan, T. Wang, X. Sun and X. Luo, "2D
Chebyshev-Sine Map for Image Encryption," 2018 7th International
Conference on Digital Home (ICDH), Guilin, China, 2018, pp. 1-8, doi:
10.1109/ICDH.2018.000.

