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Abstract—Food waste, particularly in the prepared food 

industry, presents a serious worldwide concern with serious 

ethical, environmental and socioeconomic implications. In 

restaurants and catering contexts, traditional inventory and waste 

management systems frequently lack the versatility and 

granularity to mitigate spoilage in real-time. The study proposes a 

sophisticated deep learning framework that predicts the 

remaining shelf-life of prepared food items using visual input, 

enabling timely interventions to reduce food waste. The proposed 

hybrid architecture integrates VGG-19 (Visual Geometry Group 

19-layer network) for fine-grained feature extraction with Vision 

Transformer (ViT) that models contextual degradation patterns 

and temporal cues. The model operates by analyzing food images 

at regular intervals and predicting the remaining time before 

spoilage, enabling proactive decision-making for consumption 

prioritization. Food images are categorized into four freshness 

states: Fresh, Fit for Consumption, About to Expire and Expired, 

enabling the model to monitor real-time conditions. An elaborate 

dataset with 34 distinct food categories was utilized in the study, 

achieving outstanding performance with 98% accuracy, 97.5% 

precision, 97.9% recall and an F1-score of 97.75% and yielded an 

estimated 84% reduction in food waste. The model stands out for 

its non-invasive, image-based decision-making and the potential 

scalability across various food service settings. By offering 

predictive insights into food degradation and by using only visual 

data, the study advances the integration of artificial intelligence 

into sustainable food management. 
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I. INTRODUCTION 

Food waste represents one of the most critical and 
paradoxical challenges of the modern world, with a gigantic 
volume of edible resources being discarded while millions 
continue to experience food insecurity and hunger [1]. It is 
estimated that around one-third of all food produced, amounting 
to over 1.3 billion tons annually, is wasted across the supply 
chain, from farms and distribution hubs to retail outlets and 
households [2]. Production and logistics inefficiencies, 
overstocking, unpredictable consumer behavior, inadequate 
preservation technologies and poor inventory management are 
some of the many factors contributing to food waste generation 
[3], [4]. Food waste reduction is a vital social, environmental 
and ethical necessity that goes beyond efficiency. It is becoming 
more and more critical to reduce waste through more intelligent, 
flexible solutions, as the world’s population continues to expand 

and the effects of climate change put more strain on food 
systems [5]. Procedural and policy-based strategies like 
enhanced inventory checks, manual expiration date monitoring, 
redistributive networks and consumer awareness campaigns 
were traditionally adopted to curb food waste generation [6]. 
These methods mostly depend on human judgement and 
intervention, making them vulnerable to frequent errors and 
overlooks. The product-level data and real-time environmental 
variables are generally ignored, relying singularly on human 
visual inspection to judge freshness, which is inappropriate and 
inefficient for a vast amount of food. Similarly, demand 
estimates in the catering and hospitality sectors are frequently 
based on historical patterns and managerial judgement that often 
results in overproduction and associated food wastage [7]. The 
absence of traceability and consistent monitoring in retail and 
agricultural supply chains leads to spoilage that could have been 
avoided. Despite being fundamental, these conventional 
approaches are ineffective at handling the complexity of 
contemporary food systems as they are reactive rather than 
proactive. 

A revolutionary change in handling food waste was 
promised by the rise of data-driven technologies. Predictive 
analytics, real-time monitoring and intelligent inventory control 
were made possible by blockchain, artificial intelligence (AI), 
computer vision and Internet of Things (IoT) sensors [8]. 
Convolutional neural networks (CNNs), YOLO object detection 
and recurrent neural networks (RNNs) are examples of machine 
learning (ML) models that have shown great promise in 
detecting food products, forecasting demand and identifying 
spoilage [9]. Automated supply chain optimizers, dynamic 
pricing systems and smart refrigeration systems have all been 
tested in business and industrial settings. Despite the initial 
potential, high implementation costs, reliance on data, lack of 
interoperability and restricted adaptability in rural or low-
resource environments hamper their adaptability, 
generalizability and scalability. The systemic efficiency is 
undermined by the siloed nature of most of the current solutions, 
which concentrate on discrete supply chain components. 

The central research question addressed in this study is 
whether a hybrid deep learning framework that integrates 
convolutional neural networks and transformer-based self-
attention mechanisms using only visual inputs can reliably 
predict the remaining shelf life of prepared food items, enable 
timely interventions and significantly reduce food waste in real-
world service settings. This study proposes a novel hybrid 
architecture for remaining shelf-life prediction, combining the 
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strengths of deep learning (DL) with advanced image 
segmentation and self-attention mechanisms. By using visual 
cues from food items to infer freshness levels, the study enables 
more precise and automated decisions on redistribution, 
consumption prioritization and dynamic pricing. The primary 
objectives of the study are as follows: 

 Develop a CNN-Transformer hybrid DL architecture for 
accurate classification of food items into different 
freshness categories based on visual cues extracted from 
prepared food images. 

 Evaluate the model performance and compare it with 
conventional methods, demonstrating its practical 
impact through a measurable reduction in food waste by 
enabling timely consumption or disposal based on 
predicted freshness. 

The further sections of the study are structured as follows: 
Section II offers a detailed analysis of the latest advances in food 
waste reduction research and highlights the current research 
constraints. Section III delineates the proposed methodology. 
Section IV presents the experimental findings accompanied by 
a comprehensive analysis of the model performance in Section 
V. Finally, Section VI concludes the study by encapsulating the 
principal findings and emphasizing prospective areas for further 
research. 

II. RELATED WORKS 

Chun et al. [10] suggested deep learning techniques in food 
image classification in Korean cuisine. The study employed a 
Korean food image dataset that contained diverse categories of 
dishes that were pre-processed and augmented to enhance model 
generalization. Several convolutional neural network 
architectures were tested through transfer learning, among 
which InceptionResNetV2 achieved the highest classification 
accuracy of 81.91%, though it required an extensive training 
time of 436,182 seconds due to its complex inception–residual 
structure. NasNetLarge and MobileNetV2 followed with 
accuracies of 77.91% and 75.36%, respectively. Traditional 
ResNet variants, including ResNet-101V2, ResNet-152V2, and 
ResNet-50V2, showed lower accuracies ranging from 73.7% to 
68.27%. The computational intensity was a major limitation of 
the study. 

Louro et al. [11] suggested convolutional neural network 
(CNN)-based approaches for food waste reduction through food 
recognition technology and promote sustainable eating 
practices. The study utilized Food-101 dataset, together with the 
ResNet-50 initially and later adopted transfer learning with 
ImageNet weights to avoid overfitting. The convolutional layers 
processed food images hierarchically, progressively learning 
low-level features such as edges and textures before combining 
them into higher-level representations of ingredients and dishes 
and achieved a 90% classification accuracy. However, the 
model was limited by its computational cost and training time, 
that hindered scalability and real-time deployment in resource-
constrained environments. 

Dey et al. [12] proposed SmartNoshWaste, a blockchain-
based multi-layered system to reduce food waste within the 

Farm-to-Fork supply chain. Data System Architecture 
comprising blockchain technology, QR codes and cloud 
computing to digitize and store food-related data and the ML 
module employing Q-learning-based reinforcement learning to 
optimize decisions formed the two basic blocks of the 
framework. Production, processing, distribution, retailing and 
consumption were the five main supply chain phases that were 
functionally tracked and examined. Real-world potato waste 
data from the nosh app was used for experimental evaluations, 
and a 9.46% decrease in food waste compared to the baseline 
data was observed. The dependence on a single food item and 
context-specific evaluation limited the generalizability and 
scalability to larger agricultural or urban food systems. 

Nascimento et al. [13] developed an AI-driven model for 
reducing food waste through improved production planning of 
own-branded products in grocery stores in Brazil. Using 
historical daily sales data for a year, the study compared five ML 
algorithms: logistic regression (LR), multilayer perceptron 
(MLP), DT (J48), PART and random forest (RF). The 
algorithms forecasted revenue levels, convertible into product 
demand and rule-based models and RF outperformed others 
with 90.17% accuracy. A considerable reduction in total food 
waste across 312 days was observed: from 6,169 kg under 
aggressive strategies and 653 kg under balanced strategies to just 
117.64 kg, representing an 82% reduction. The insights were 
limited, as the focus was on a single grocery store, restricting the 
applicability to broader retail settings or more complex supply 
chains. 

Rasyidi et al. [14] aimed to create an elderly-friendly food 
recording application in Indonesia by overcoming the 
shortcomings of existing datasets and models that failed to 
capture the complexity of local cuisine. The study introduced a 
new food dataset of 24,427 images covering 160 Indonesian 
food categories and evaluated 67 models built on 16 state-of-
the-art deep learning architectures. EfficientNet V2L achieved 
the best performance with an accuracy of 85.44% and a top-5 
accuracy of 97.84%, outperforming models like ConvNeXt 
Large and Swin-S. The study was, however, limited by 
difficulties with single-label classification, variations in food 
presentation, and complex image compositions that hampered 
generalization across real-world food recognition scenarios. 

Jacob et al. [15] utilized AI-driven optimization for food 
waste reduction in the cassava processing supply chain to 
transform farm-to-table operations for Garri production. The 
study utilized data collected from 4,200 respondents across 
seven states and 42 local government areas, with demand 
forecasting and inventory optimization performed by the AI 
framework incorporating regression analysis and DT 
algorithms, while natural language processing (NLP) analyzed 
qualitative interview data to extract stakeholder insights. The 
framework utilized data mining in detecting inefficiencies and 
waste points across the supply chain, enabling targeted 
interventions. A 40% reduction in food waste, 30% decrease in 
processing time and a 25% cut in transportation costs were 
observed due to optimized logistics and production scheduling. 
Scalability was a concern as implementation phase was hindered 
by poor data quality and inadequate infrastructure affecting the 
consistency of the AI deployment across the supply chain. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

606 | P a g e  

www.ijacsa.thesai.org 

Hübner et al. [16] conducted a life cycle assessment (LCA) 
of “Foodforecast”, a cloud-based ML service reducing bakery 
food waste comprising sales forecasting, cloud computing 
infrastructure and hardware resources. Historical sales data was 
utilized to generate optimized forecasts via ML algorithms to 
minimise overproduction and quantifying environmental 
impacts through life cycle modelling. The study evaluated four 
environmental impact categories: global warming, abiotic 
resource depletion, cumulative energy demand and freshwater 
eutrophication and achieved an average 30% reduction in bakery 
returns, equating to a total decrease of 2000 tons of waste on 
evaluation in real-world data from 175 bakeries. However, the 
methodological uncertainties and inadequate data constrained 
the generalizability of the study. 

Sigala et al. [17] suggested a fully automated AI-based food 
waste tracking system deployed across various HORECA (Hotel 
+ Restaurant + Cafe/Catering) establishments in Europe. The 
study integrated a hardware unit comprising a scale and an IoT-
enabled camera device, positioned beneath and above food 
waste bins, respectively. The system detected each waste event 
by recording the weight of discarded food and simultaneously 
captured images, which were transmitted to a cloud-based 
system. The advanced image recognition and DL algorithms 
detected and segregated food waste into groups, specific items 
and categories of avoidability and source, enabling tailored 
operational changes, including portion control, menu redesign 
and improved food storage, achieving a 23 to 51% reduction in 
food waste across most sites. The absence of a detailed cost 
analysis hampered the study. 

To improve inventory oversight and minimize food wastage 
in supermarkets, Li et al. [18] proposed a real-time inventory 
tracking framework leveraging computer vision techniques. 
YOLOv5 object detection algorithm formed the core of the 
method, that utilizes CNN to autonomously detect and 
enumerate items in shelf images submitted by users. These 
images are analyzed to extract item data, which is then 
synchronized with a Firebase database, while the front-end is 
dynamically updated using a Flutter-based application. The 
system achieved an image processing time of approximately 
0.79 seconds, with a precision of around 50% and a recall rate 
of 80%. The accuracy declined in scenarios involving densely 
packed or multi-layered shelf views, suboptimal image angles, 
and a limited recognition vocabulary led to frequent miscounts 
and missed detections. 

Min et al. [19] proposed a Stacked Global-Local Attention 
Network (SGLANet) for food recognition by capturing both 
global and local discriminative features of food images. The 
study employed the ISIA Food-500 dataset, comprising 399,726 
images across 500 diverse categories. The architecture consisted 
of two complementary subnetworks: one applied hybrid spatial-
channel attention to learn global-level characteristics such as 
texture and shape, while the other leveraged cascaded spatial 
transformers to identify ingredient-relevant local regions and 
aggregate regional information. By fusing these global and local 
representations, SGLANet produced a more comprehensive 
feature space for classification. The model achieved strong 
performance, recording a validation accuracy of 90.92%. 
However, the computational complexity and training time, made 

the model less practical for real-time deployment in lightweight 
environments such as mobile devices. 

To curtail food waste within agricultural supply chains, 
Wang [20] introduced an AI-enhanced Decision Support System 
(DSS) for intelligent inventory management and optimized 
resource allocation. The system architecture consisted of three 
integral layers: real-time data acquisition, an AI-driven 
decision-making core and adaptive learning through continuous 
feedback loops. To forecast demand, NNs and support vector 
machines (SVM) were employed, achieving predictive 
accuracies of 90% and 85%, respectively. Inventory distribution 
across the supply chain was optimized using heuristic 
algorithms, including genetic algorithms (GA) and particle 
swarm optimization (PSO), which reduced spoilage by 20% and 
22%, respectively. High dependency on uninterrupted, high-
quality data streams presented challenges for deployment in 
rural or low-resource agricultural environments. 

Rodrigues et al. [21] compared four ML models in 
forecasting demand within food catering services to minimize 
food waste arising from overproduction or underestimation. The 
study employed RF, LightGBM, Long Short-Term Memory 
(LSTM) networks and Transformer-based models. Two baseline 
approaches, a naïve model and a moving average method, were 
developed to simulate conventional forecasting practices and 
served as benchmarks across three distinct food service settings. 
The RF algorithm delivered the most accurate predictions in two 
of the cases, whereas the LSTM model demonstrated superior 
performance in the third, collectively contributing to food waste 
reductions ranging from 14% to 52%, and lowering unmet 
demand by up to 16% relative to the baselines. The study’s 
practical scope was constrained as the focus was on a single dish, 
restricting applicability in more varied or complex menu 
environments. 

Goh & Yann [22] suggested an Inception-V3 model with 
transfer learning for food image classification using the Food-
101 dataset. The model leveraged convolutional layers for 
extracting deep spatial features, while transfer learning from 
ImageNet enhanced its recognition capability. The architecture 
operated by factorizing convolutions into smaller kernels and 
incorporating auxiliary classifiers, while retaining depth for 
complex feature extraction. The transfer learning setup adapted 
pre-trained ImageNet weights to food-specific features, enabling 
faster convergence and more accurate recognition. The study 
achieved an accuracy of 90%, but was limited by the intra-class 
variability and noise within the dataset, that reduced 
classification stability. 

Faezirad et al. [23] proposed a ML-based forecasting 
approach to reduce food waste in an Iranian university dining 
systems by predicting student attendance using both reservation 
and behavioral data and identified fluctuating student presence 
as the key contributor in food surplus. The two-stage prediction 
framework employed an artificial neural network (ANN) to 
model both deterministic and stochastic aspects of demand. In 
the first stage, the ANN generated a point estimate for student 
turnout and the system optimized the total operational cost, 
balancing the trade-off between food wastage and shortage 
penalties in the second stage. The model achieved accuracy rates 
between 73% and 75%, resulting in a reported 79.66% reduction 
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in food waste over a one-year period. The dependence on 
historical behavioral data from a single institution limited the 
model’s adaptability to other educational environments. 

Malefors et al. [24] proposed ML-based forecasting models 
to anticipate guest attendance in public catering facilities, for 
optimizing meal preparation and minimizing food waste under 
COVID-19 pandemic conditions. Attendance data from 18 
primary schools and 16 preschool kitchens across Sweden, both 
pre- and during-pandemic periods, was collected and evaluated 
using several AI techniques, including ANN, Poisson 
autoregressive models and RF algorithms. RF model 
demonstrated superior accuracy with a conditional mean 
absolute error below 0.15 for training data and between 0.448 
and 0.487 for kitchen-level forecasts. The implementation of 
forecasting yielded financial savings estimated between €921 
and €1,298 compared to operations without predictive support. 
The models exhibited limited reliability during the initial phase 
of the pandemic and were challenged by abrupt surpluses, 
indicating reduced robustness under extreme uncertainty. 

A. Research Gap 

Despite the progress made in food image recognition and 
subsequent food waste recognition using deep learning 
architectures such as ResNet, InceptionResNetV2, 
MobileNetV2, EfficientNet and SGLANet on large-scale image 
datasets, these studies have primarily addressed the challenge of 
food categorization rather than the more critical issue of food 
waste reduction [11] [19] [22]. In parallel, approaches based on 
predictive analytics, regression models, neural networks, 
decision trees, reinforcement learning and optimization 
techniques, including genetic algorithms, random forests, 
LSTM networks, and Transformer-based forecasting have been 
widely applied for inventory management, demand forecasting 
and supply chain optimization [13] [15] [21]. These models have 
demonstrated measurable reductions in waste but are 
fundamentally dependent on structured transactional or sensor-
based data streams, overlooking the immediate and non-invasive 
potential of image-based monitoring. This divergence highlights 
a critical research gap: existing studies either focus on food 
recognition without waste-oriented outcomes or address waste 
reduction without leveraging visual cues. Thus, there is a 
pressing need for an integrated framework with freshness-
annotated image data to deliver accurate shelf-life prediction and 
provide actionable strategies for minimizing food waste in real-
world service operations. 

III. MATERIALS AND METHODS  

The proposed hybrid model utilizes image data to precisely 
estimate the remaining shelf-life of prepared foods by 
combining convolutional and transformer-based architectures. 
The study makes use of Food Image Classification dataset that 
has undergone rigorous preprocessing and augmentation and an 
average shelf-life table is employed for reference in the training 
stage. Rich spatial characteristics are extracted from input 
images by the feature extractor, VGG-19, and then used by the 
Vision Transformer (ViT) to represent temporal and contextual 
dependencies for accurate shelf-life prediction. Fig. 1 illustrates 
the basic architecture of proposed model. 

A. Dataset Description 

The dataset utilised in this study is the Food Image 
Classification Dataset [25], from a publicly accessible Kaggle 
repository, comprising around 24,000 high-resolution images 
spanning 34 diverse food categories, covering a wide range of 
both Indian and Western cuisines, representing a realistic mix of 
freshly prepared and commonly consumed dishes. The images 
were collected from various sources and curated to ensure 
diversity in lighting conditions, presentation styles and angles, 
with each food image labelled according to its class. In 
restaurant and catering inventory analysis, where food items are 
prepared in bulk and require regular monitoring, the dataset 
serves as an essential analytical tool. The construction of 
sophisticated structures, expiration trends and utilisation 
strategy optimisation are made possible by the visual diversity 
and class annotations. This makes the dataset perfect for food 
service operations’ waste minimisation and real-time shelf-life 
estimate algorithms. Fig. 2 represents the sample images in the 
dataset over different food categories. 

 

Fig. 1. Basic architecture of the proposed model. 

 
Fig. 2. Sample images in the food image classification dataset. 
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B. Exploratory Data Analysis 

In order to find patterns, anomalies and underlying structures 
in the dataset, exploratory data analysis or EDA, is an essential 
step. EDA enables to assess the quality and variability of the 
images, identify class imbalances and evaluate the distribution 
of classes in image classification tasks. Additionally, it offers 
information on possible redundancy, noise or labelling 
irregularities that have the potential to impair model 
performance. EDA guarantees well-informed judgments being 
taken prior to preprocessing and model building by visualizing 
and encapsulating the data. Fig. 3 illustrates the distribution of 
images across the 34 food categories in the dataset. Certain 
subgroups, such as Baked Potato, Hot Dog, Donut and Crispy 
Chicken, are well-represented, while others, such as Paani puri, 
Samosa and Kulfi, have relatively fewer samples. Addressing 
the imbalance is of vital importance as it may bring about in 
biased learning when the model is being trained. By using EDA 
to identify this distribution, balanced data augmentation and 
sampling techniques can be developed to enhance model 
generalization. 

 

Fig. 3. Image dataset subfolder distribution. 

C. Data Preprocessing and Augmentation 

A structured data preprocessing and augmentation pipeline 
is designed for the Food Image Classification dataset to ensure 
clear and standardized input for the subsequent hybrid 
architecture. The stage ensures uniformity in image dimensions, 
address class imbalance and enrich the training set with diverse 
transformations to reduce overfitting and a compatible data 
input for the proposed models is generated. 

The images are first resized to a fixed dimension of 224×224 
pixels, as shown in Eq. (1), conforming to the input requirements 
of the VGG-19 architecture. 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , (𝐻,𝑊))            (1) 

where, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the raw image and 𝐻,𝑊 = 224 , the 

target height and width. Image normalization is further applied 
to scale pixel intensity values to a standard range, to stabilize the 
training process and accelerate convergence. The pixel values 
are normalized to the range [0, 1], as shown in Eq. (2): 

𝐼𝑛𝑜𝑟𝑚 =
𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑

255
                 (2) 

As the pretrained weights are leveraged, mean subtraction 
and division by standard deviation were performed as per 
Eq. (3): 

𝐼𝑛𝑜𝑟𝑚 =
𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑−𝜇

𝜎
                (3) 

where, 𝜇  and 𝜎  are the channel-wise mean and standard 
deviation, respectively. This standardization ensures that each 
input image contributes uniformly during gradient updates, 
reducing internal covariate shift. To enable supervised 
classification, the images are labelled not only by food category 
but also by freshness state, using a four-class scheme: Fresh, Fit 
for Consumption, About to Expire and Expired. To numerically 
represent these classes, label encoding was applied, assigning 
each category a unique integer value to ensure compatibility 
with the proposed hybrid model. 

Let 𝐶 = {𝐶0, 𝐶1, 𝐶2, 𝐶3} be the set of freshness categories, 
where 𝐶0, 𝐶1, 𝐶2, 𝐶3  represent Fresh, Fit for Consumption, 
About to Expire and Expired, respectively. Each image is tagged 
based on its freshness level determined by the food’s time since 
preparation 𝑡 and its standard shelf-life 𝑥, as shown in Eq. (4): 

𝑦𝑖 =

{
 

 
0 ; 𝑖𝑓 𝑡 < 0.2𝑥 (𝑓𝑟𝑒𝑠ℎ)                       

1 ;  𝑖𝑓 0.2𝑥 ≤ 𝑡 ≤ 0.8𝑥 (𝐹𝑖𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)

2 ;  𝐼𝑓 0.8𝑥 < 𝑡 < 𝑥 (𝐴𝑏𝑜𝑢𝑡 𝑡𝑜 𝑒𝑥𝑝𝑖𝑟𝑒)        

3 ;  𝐼𝑓 𝑡 ≥ 𝑥 (𝐸𝑥𝑝𝑖𝑟𝑒𝑑)                           

   (4) 

The encoded label 𝑦𝑖 ∈ {0,1,2,3} allows the model to learn 
the visual differences associated with freshness states, thereby 
supporting classification tasks aligned with expiration 
forecasting. Table I illustrates the average shelf-life of various 
food items. 

TABLE I.  AVERAGE SHELF LIFE OF VARIOUS FOOD ITEMS 

Food Item 
Room Temp 

(hours) 

Refrigerated 

(days) 
Frozen (months) 

Hot Dog 2 7 1-2 

Baked Potato 2 3-5 Not Recommended 

Crispy Chicken 2 3-4 4 

Donut 24-48 5-7 2-3 

Fries 2 2-3 1 

Sandwich 3 3 1-2 

Taco 2 2-3 1-2 

Taquito 2 3-4 2 

Apple pie 48 4-5 6-8 

Cheese cake 2 5-7 2 

Chicken curry 6 3-4 2-3 

Ice cream N/A 30-60 2-4 

Omelet 2 2-3 Not Recommended 

Sushi 2 1 Not Recommended 

Chole bhature 2 2-3 1 

Fried rice 6 3-4 1 

Tea (Chai) 1 1-2 Not Recommended 

Kadai paneer 2 3-4 2 

Burger 2 2-3 1 

Chapati 24 3- 1 

Momos 2 2-3 1-2 
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Butter naan 24 3-4 1 

Pav bhaji 2 2-3 1-2 

Idli 24 3-4 1 

Dal makhani 4 4-5 2-3 

Jalebi 48-72 7 2 

Kaathi rolls 24 2-3 1 

Pizza 2 3-4 1-2 

Masala dosa 2 2-3 Not Recommended 

Pakode 2 2-3 1 

Dhokla 24 3-4 1-2 

Samosa 8 4-5 1 

Kulfi N/A 7-14 2-3 

Paani puri 2 1-2 Not Recommended 

The dataset is now partitioned into training and testing 
subsets using an 80:20 split in a randomized fashion. This 
stratification ensures that the model learns from a broad 
spectrum of data, while being evaluated on unseen instances. 
Overall class distribution is maintained to avoid sampling bias 
and class imbalance. As dataset exhibited class imbalance 
identified through EDA, the potential of this disparity to create 
bias during training hampering generalization is considered. 
Class weights are calculated and added to the loss function to 
counteract this, allowing the model to penalize minority class 
misclassification more severely. The weight 𝑤𝑐  assigned to 
class c is determined as in Eq. (5): 

𝑤𝑐 =
𝑁

𝑛𝑐×𝐶
                         (5) 

where, 𝑁 is the total number of samples and 𝑛𝑐, the number 
of samples in class 𝑐 and 𝐶 is the total number of classes, the 
four freshness classes. These weights are passed to the training 
loop so that the model learns more effectively from all classes 
regardless of frequency. 

Data augmentation is applied to the training images to 
simulate real-world variability in food images, such as 
differences in angle, lighting and scale, enabling the model to 
learn invariant features. It includes a number of operations, 
including random horizontal and vertical flipping, slight 
rotation, width and height shifts, zooming and brightness 
variation and the augmented image 𝐼′  is obtained from the 
original image I, as shown in Eq. (6): 

𝐼′ = 𝑇(𝐼) = 𝑅(𝜃) ∘ 𝑍(𝑠) ∘ 𝑆(𝑥, 𝑦) ∘ 𝐹(𝐼)         (6) 

where, 𝑅(𝜃) , 𝑍(𝑠)  and 𝐹  denote rotation by angle 𝜃 , 
zooming by scale factor 𝑠  and flipping transformations, 
respectively, and 𝑆(𝑥, 𝑦) represents a shift in width and height. 
The augmentation steps are applied only to the training dataset 
to avoid data leakage into test sets. After augmentation, the 
training dataset increased from 19,200 images to approximately 
38,400 images, resulting in a total dataset size of about 43,200 
images. By synthetically expanding the dataset, the model is 
better equipped to handle diverse food presentations and 
mitigate overfitting. 

The images are further converted into tensor format to be 
efficiently processed by the hybrid model and also to support 
GPU acceleration. For optimal speed and generalization, the 
dataset is further segmented into smaller batches, enabling the 
model to handle multiple samples at once. Prefetching lowers 
data loading latency and offers more seamless training cycles by 
preparing the subsequent batch while the current one is being 
processed. 

D. Model Development 

1) VGG-19 (Visual Geometry Group-19): VGG-19 is a 

deep CNN developed to perform robust image classification 

tasks by learning hierarchical representations of visual data 

[26]. The VGG-19 network model depicted in Fig. 4, showcases 

a deep CNN architecture consisting of 19 weight layers. The 

input image with dimensions 224×224×3 is initially passed 

through multiple stacked convolutional layers employing small 

3×3 kernels with a stride of 1 and padding, followed by ReLU 

activation functions to introduce non-linearity. 

 
Fig. 4. VGG-19 network model architecture. 

As the data progresses through the network, the number of 
feature maps increases from 64 to 512, while spatial dimensions 
reduce due to the interleaved max pooling layers which halve 
the resolution using 2×2 windows. Following the last 
convolutional block, the flattened feature maps are fed into three 
fully connected layers, two of which are 4096 in size and one 
final layer, which is 1000 in size. All of these layers are triggered 
by ReLU, with the exception of the last one, which outputs class 
probabilities using Softmax. This particular layer is excluded in 
the proposed hybrid model. By repeating tiny filters, this design 
highlights depth and aids in capturing hierarchical 
representations and fine-grained information. Each convolution 
layer performs feature extraction, as shown in Eq. (7): 

𝑋𝑙 = 𝜎(𝑊𝑙 ∗ 𝑋𝑙−1 + 𝑏𝑙)                        (7) 

where, 𝑋𝑙−1 is the input feature map to layer 𝑙 and 𝑊𝑙, 𝑏𝑙 are 
trainable weights and biases of 𝑙 . 𝜎  and ∗ denotes the ReLU 
activation function and convolution operation, respectively. The 
change in feature map size after convolution can be expressed 
as in Eq. (8) and Eq. (9): 

   𝐻𝑜𝑢𝑡 = ⌊
𝐻𝑖𝑛−𝐾+2𝑃

𝑆
⌋ + 1                           (8) 

   𝑊𝑜𝑢𝑡 = ⌊
𝑊𝑖𝑛−𝐾+2𝑃

𝑆
⌋ + 1                          (9) 

where, 𝐻𝑖𝑛  and 𝑊𝑖𝑛  are the input height and width, 
respectively. 𝐾, 𝑃 and 𝑆 represent the kernel size, padding and 
stride, respectively. The max-pooling operation reduces spatial 
dimensions while preserving critical information and is defined 
as in Eq. (10): 

𝑋𝑝𝑜𝑜𝑙𝑒𝑑(𝑖, 𝑗) =
max

(𝑚, 𝑛) ∈ Ω𝑋(𝑖 + 𝑚, 𝑗 + 𝑛)            (10) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

610 | P a g e  

www.ijacsa.thesai.org 

where, 𝛺 represents the pooling window, (𝑖, 𝑗) are the top-
left coordinates of the pooling window and 𝑚, 𝑛 are the indices 
over the local region. The fully connected operation that follows 
convolution and pooling is defined as in Eq. (11): 

𝑧 = 𝑊𝑓𝑐 ∙ 𝑥 + 𝑏𝑓𝑐                               (11) 

where, 𝑥  is the flattened input feature vector and z is the 
linear transformation output. For the proposed hybrid model, the 
final classification layer is removed, and the intermediate feature 
representation is fed into downstream models for task-specific 
inference. The final feature maps are flattened and passed 
through fully connected layers, producing a high-level 
embedding. 

2) Vision Transformer (ViT): ViT adapts the self-attention-

based architecture of transformers from NLP to computer 

vision tasks by processing images as sequences of patches 

instead of relying on convolutional filters [27]. It segments an 

image into fixed-size patches, embeds positional information in 

these patches and uses self-attention mechanisms to model 

global contextual relationships throughout the visual field. ViT 

achieves better performance in applications requiring holistic 

image processing by capturing long-range relationships 

through stacked transformer layers, in contrast to convolutional 

networks that rely on local receptive fields. Fig. 5 illustrates the 

architecture of ViT. 

 

Fig. 5. Basic architecture of ViT. 

The process begins with patch embedding, where the input 

image 𝑋 ∈ ℝ𝐻×𝑊×𝐶  is divided into 𝑁 =
𝐻𝑊

𝑃2
  non-overlapping 

patches of size 𝑃 × 𝑃. Each patch is then flattened and projected 
into a latent vector using a trainable linear projection, as shown 
in Eq. (12): 

    𝑧0
𝑖 = 𝑥𝑖 ∙ 𝐸 ; 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁                        (12) 

where, 𝑥𝑖 ∈ ℝ𝑃
2∙𝐶  is the 𝑖-th patch and 𝐸 ∈ ℝ(𝑃

2∙𝐶)×𝐷 is the 
embedding matrix. Spatial information lost in flattening is 

retained by adding positional embeddings 𝐸𝑝𝑜𝑠 ∈ ℝ
(𝑁+1)×𝐷  to 

the patch embeddings, including a special learnable CLS token 
used for classification, as shown in Eq. (13): 

 𝑧0 = [𝑥𝑐𝑙𝑠; 𝑥
1𝐸; 𝑥2𝐸;… ; 𝑥𝑁𝐸] + 𝐸𝑝𝑜𝑠                    (13) 

The embedded sequence is then passed through 𝐿 identical 
transformer encoder blocks, each comprising a Multi-Head Self-
Attention (MSA) layer and a Multi-Layer Perceptron (MLP) 
block, both followed by Layer Norm and residual connections, 
as shown in Eq. (14) and Eq. (15): 

𝑧𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1                         (14) 

𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙
′)) + 𝑧𝑙

′                          (15) 

where, 𝑙 = 1,2, . . . , 𝐿 and 𝐿𝑁 denotes Layer Normalization. 
The core of ViT lies in self-attention, that models dependencies 
across all patches. For each attention head, the attention scores 
are computed, as shown in Eq. (16): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉               (16) 

where, 𝑄 = 𝑧𝑊𝑄 , 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦, 𝐾 = 𝑧𝑊𝐾 , the key and 𝑉 =
𝑧𝑊𝑉, the value projection. 𝑑𝑘 represents the dimension of the 
key vectors. The output corresponding to the CLS token after 
the final transformer block is passed through an MLP head to 
produce the final class probabilities, as shown in Eq. (17): 

 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊ℎ𝑒𝑎𝑑 ⋅ 𝑧𝐿
(𝑐𝑙𝑠)

)                        (17) 

3) Proposed VGG 19-ViT hybrid model: The proposed 

hybrid model integrates the robust spatial feature extraction 

capabilities of VGG-19 with the temporal reasoning and 

attention mechanisms of ViT to effectively classify food items 

based on their visual freshness condition. The VGG-19 network 

processes the input image by passing it through a deep 

convolutional stack, extracting hierarchical spatial features 

from local edges to complex textures. These learned features, 

represented as a dense feature map, are then flattened and 

embedded into a sequential patch representation suitable for 

transformer architecture input. 

Once patch embeddings are generated, they are forwarded to 
the ViT module, which applies a series of transformer encoder 
blocks to model inter-patch dependencies and positional 
relationships. Through multi-head self-attention and feed-
forward networks, ViT generates a high-dimensional latent 
representation that captures both the visual condition and aging 
indicators of the food item. The model is trained to classify each 
food image into one of four predefined freshness classes: Fresh, 
Fit for Consumption, About to Expire and Expired. This 
prediction assists in intelligent inventory decisions such as 
prioritizing consumption or removal, without the need for an 
explicit expiration timestamp. By leveraging both spatial 
precision and temporal reasoning, the hybrid VGG-19–ViT 
model shows strong potential in real-time food quality 
monitoring, dynamic freshness tracking and minimizing food 
waste in high-throughput environments like restaurants, 
canteens or retail kitchens. 

E. Simulation Setup 

The proposed hybrid VGG-19-ViT model was implemented 
in a high-performance computing environment configured with 
an Intel Core i7 processor, 32 GB RAM and an NVIDIA Tesla 
T4 GPU to ensure robust training and inference performance. 
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The model was developed using the TensorFlow framework 
with the Keras API, leveraging its modularity and advanced 
capabilities for implementing custom DL architectures. Model 
training, evaluation and prototyping were executed on Google 
Colaboratory Pro, which provided accelerated GPU support and 
cloud infrastructure optimizing both training time and memory 
efficiency. To ensure optimal learning, convergence speed and 
generalization capability, key hyperparameters were carefully 
selected through empirical tuning and preliminary 
examinations. Table II shows the hyperparameter specifications 
utilized in the proposed model. 

TABLE II.  HYPERPARAMETER SPECIFICATIONS 

Hyperparameters Values 

Optimizer ADAM 

Activation Function Softmax 

Loss Function Categorical Cross-entropy 

Batch Size 32 

Epochs 50 

Learning Rate 0.0001 

Dropout Rate 0.2 

Number of Transformer Layers 12 

Attention Heads (ViT) 12 

IV. RESULTS 

A set of standard evaluation metrics has been utilized for in 
depth performance evaluation of the proposed model, as shown 
in Eq. (18) to Eq. (22). True Positives (TP), False Positives (FP), 
True Negatives (TN) and False Negatives (FN) are 
mathematically computed using confusion matrix core 
elements. Different metrics offer unique insights of the model 
performance, overall correctness by accuracy, precision and 
recall highlight the ability of model to correctly predict food 
freshness stage without excessive misses or false alarms. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (18) 

A𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (19) 

   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (20) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (21) 

The % Food Waste Reduction calculates the percentage of 
food waste that is reduced as a result of the proposed model’s 
timely forecasts, especially when products are identified as 
“About to Expire”. It is calculated based on the weight of food 
consumed before expiration, via predictions by the proposed 
model, relative to the total food that would have been expired 
and wasted otherwise. The analysis considered standard portion 
sizes and average weight estimates for each food category, 
allowing a precise quantification of rescued food in kilograms. 
This indicator evaluates how the model helps food service 
settings manage waste and inventory in a sustainable way. 

 %𝐹𝑊𝑅 =
𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑊𝑚𝑜𝑑𝑒𝑙

𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100               (22) 

where, 𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  and 𝑊𝑚𝑜𝑑𝑒𝑙  are the total waste generated 
without and with the proposed model, respectively. A higher 
%𝐹𝑊𝑅  indicates greater effectiveness in reducing waste, 
showcasing the model’s practical utility in inventory decision-
making. 

The accuracy plot of the proposed model, illustrated in 
Fig. 6, reveals a consistently improving learning trajectory over 
50 epochs, underscoring the model’s effective optimization. 
Initially, both training and validation accuracy rise sharply 
during the first 10 epochs, indicating rapid feature learning. The 
training accuracy steadily improves and reaches near-saturation 
beyond epoch 20, surpassing 99%, while the validation accuracy 
stabilizes just below 98%, suggesting robust generalization on 
unseen data. The gap between the two curves remains minimal, 
indicating low overfitting and well-regularized model behavior. 
This convergence confirms the proposed model’s ability to learn 
meaningful representations across diverse food freshness 
categories and maintain high predictive reliability across both 
training and validation phases. 

 
Fig. 6. Accuracy plot of the proposed model. 

The loss plot of the proposed model, illustrated in Fig. 7, 
demonstrates the convergence behavior of the proposed model 
across 50 epochs. Both training and validation losses exhibit a 
sharp decline during the initial epochs, indicating effective 
learning and a rapid reduction in prediction error. The training 
loss continues to decrease steadily, approaching near-zero 
values by the final epochs, reflecting the model’s high 
confidence on seen data. Meanwhile, the validation loss also 
follows a decreasing trend and stabilizes around 0.08, 
suggesting good generalization without signs of significant 
overfitting. The small and consistent gap between the two curves 
affirms the robustness and stability of the training process. 
Overall, the minimized loss values validate the model’s 
capability to distinguish food freshness categories accurately 
and reliably. 

 
Fig. 7. Loss plot of the proposed model. 
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The classification report for the proposed model, illustrated 
in Table III, reflects strong overall performance across all food 
freshness categories. The model achieves excellent precision 
and recalls scores for the Fresh and Fit for Consumption classes 
(0.99/0.99 and 0.99/0.98, respectively), demonstrating excellent 
ability to consistently and accurately distinguish consumable 
items. The About to Expire class shows a precision of 0.97 and 
recall of 0.98, indicating reliable early identification of items 
nearing spoilage and the Expired class, often difficult to detect 
due to visual ambiguity, still attains solid performance with a 
precision of 0.94 and recall of 0.99, minimizing false negatives 
in disposal-critical cases. 

TABLE III.  CLASSIFICATION REPORT OF THE PROPOSED MODEL 

 Precision Recall F1-score 

Fresh 0.99 0.99 0.98 

Fit for Consumption 0.99 0.98 0.98 

About to expire 0.97 0.98 0.97 

Expired 0.94 0.99 0.96 

Accuracy 0.98 

macro avg 0.97 0.98 0.98 

weighted avg 0.98 0.98 0.98 

 
Fig. 8. Evaluation metrics of proposed model. 

The evaluation metrics illustrated in Fig. 8 shows a 98% 
overall accuracy rate confirming that the model can accurately 
identify most food categories in the test dataset. With a precision 
score of 97.5%, the model minimizes false positives and proves 
to be quite dependable, while the 97.9% recall indicates how 
well the model captures almost all real, pertinent events, crucial 
for promptly identifying perishable or expired goods. 
Furthermore, the F1-score of 97.75% verifies a balanced 
performance, guaranteeing that predictions are accurate and 
comprehensive. The proposed model significantly enhanced 
food sustainability by enabling real-time freshness detection and 
shelf-life prediction, achieving a remarkable 84% reduction in 
food waste. The proposed model’s real-time applicability in 
minimizing food loss across dynamic food service operations 
were demonstrated by its excellent capability to detect early 
signs of deterioration that allowed for timely consumption or 
redirection. 

The confusion matrix illustrated in Fig. 9 analyses the 
performance of the proposed model across four food freshness 

classes. The model shows strong predictive accuracy, with 
particularly high true positive counts for Fresh (1443), Fit (for 
consumption) (1880), About to Expire (930) and Expired (448) 
categories. Misclassifications are minimal across all classes, 
with most errors occurring between neighboring freshness 
stages, reflecting the natural difficulty in distinguishing 
borderline cases. The overall accuracy of 98% confirms the 
model’s robustness and high generalization capability in real-
world food freshness classification. 

 
Fig. 9. Confusion matrix of the proposed model. 

Fig. 10 represents the results of the proposed model, 
showcasing a variety of correctly predicted samples across all 
four freshness classes. Each image includes ground truth and 
predicted labels, demonstrating the model’s ability to generalize 
across different food types and states with high visual accuracy. 

 
Fig. 10. Results of the proposed model. 
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Table IV and Fig. 11 illustrate the comparative performance 
of different architectures applied to various food image datasets. 
InceptionResNetV2 trained on a Korean food image dataset 
achieved an accuracy of 81.91%, reflecting the challenges posed 
by diverse regional cuisine representations. ResNet-50 and 
Inception-V3, both evaluated on the Food-101 dataset, attained 
accuracies of 90%, but were constrained by dataset-level 
variability. EfficientNet V2L on the Indonesian food dataset 
recorded an accuracy of 85.44%, indicating limitations posed by 
complex food presentation styles. The SGLANet model applied 
to the ISIA Food-500 dataset demonstrated a validation 
accuracy of 90.92%. In contrast, the proposed VGG-19–ViT 
hybrid model applied to the Food Image Classification dataset 
achieved a substantially higher accuracy of 98%, clearly 
outperforming all other architectures. This result underscores 
the effectiveness of integrating convolutional feature extraction 
with transformer-based attention mechanisms and highlights the 
advantage of employing a freshness-annotated dataset tailored 
for food waste reduction. 

TABLE IV.  ACCURACY COMPARISON OF THE PROPOSED MODEL WITH 

EXISTING METHODS 

Author [Ref] 
Food Image 

Dataset Used 
Method 

Accuracy 

(%) 

Chun et al. [10] 
Korean Food 

Image Dataset 

InceptionResN

etV2 
81.91 

Louro et al. [11] Food-101 ResNet-50 90 

Rasyidi et al. [14] 
Indonesian Food 
Dataset 

EfficientNet 
V2L 

85.44 

Min et al. [19] ISIA Food-500 SGLANet 90.92 

Goh & Yann [22] Food-101 Inception-V3 90 

Proposed model 
Food Image 

Classification 

VGG-19-ViT 

hybrid model 
98 

 
Fig. 11. Accuracy comparison of the proposed model with existing methods. 

Table V and Fig. 12 illustrate the comparative performance 
of different approaches to food waste reduction, evaluated solely 
on the basis of the percentage of waste reduction achieved, 
irrespective of whether the methods relied on traditional survey-
based strategies, machine learning forecasting, or real-time 
monitoring systems. Reported reductions vary widely, from 
9.46% with SmartNoshWaste to intermediate values of 22% 
with neural networks and heuristic optimization, 30% through 
cloud-based machine learning with life cycle assessment, and 
40% with AI-driven supply chain optimization. Higher 
reductions were observed in food service and institutional 
settings, with tracking systems in HORECA achieving 51% and 

forecasting models combining random forests and LSTM 
networks achieving 52%. Advanced predictive models showed 
further promise, with artificial neural networks reaching 79.66% 
and random forest–based planning attaining 82%. In 
comparison, the proposed VGG-19–ViT hybrid model delivered 
the highest performance with an 84% reduction in food waste, 
demonstrating the effectiveness of image-based freshness 
prediction in directly supporting sustainability goals. 

TABLE V.  % FWR COMPARISON OF THE PROPOSED MODEL WITH 

EXISTING METHODS 

Author [Ref] Model % FWR 

Dey et al. [12] SmartNoshWaste 9.46% 

Nascimento et al. [13] RF 82% 

Jacob et al. [15] AI-Driven Optimization 40% 

Hübner et al. [16] Cloud ML + LCA 30% 

Sigala et al. [17] Waste Tracking in HORECA 51% 

Wang [20] NN, SVM with GA & PSO 22% 

Rodrigues et al. [21] RF, LSTM 52% 

Faezirad et al. [23] ANN 79.66% 

Proposed model VGG-19-ViT hybrid model 84% 

 
Fig. 12. % FWR comparison of the proposed model with existing methods. 

V. DISCUSSION 

The results clearly demonstrate that the proposed model 
delivers strong and reliable performance in food freshness 
classification. The very high precision and recall scores in the 
Fresh and Fit for Consumption classes confirm the model’s 
ability to accurately identify items suitable for use, minimizing 
the risk of unnecessary disposal. The slightly lower precision 
observed in the Expired class, despite its excellent recall, 
indicates that the model tends to prioritize capturing all true 
expired items, which is advantageous for avoiding false 
negatives in disposal-critical cases. Similarly, the About to 
Expire class results reflect the model’s strength in early spoilage 
detection, a key factor in reducing waste through timely 
redirection or consumption. The overall accuracy of 98% and 
the balanced F1-score highlight the stability of the model across 
categories. Beyond numerical accuracy, the observed 84% 
reduction in food waste illustrates the real-world impact of 
integrating such a system into food service operations, where 
early and dependable freshness prediction can transform 
management practices and contribute to sustainability goals. 
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VI. CONCLUSION 

The study proposed a novel hybrid deep learning model 
integrating VGG-19 and Vision Transformer (ViT) architectures 
for intelligent monitoring of food freshness and predicting the 
remaining shelf-life of prepared food items. A meticulously 
selected food image dataset with 34 distinct food categories that 
represented actual restaurant and catering settings was employed 
in training the model. The framework successfully categorized 
food images into four freshness classes: Fresh, Fit for 
Consumption, About to Expire and Expired, by employing 
VGG-19 to extract deep visual characteristics and ViT to predict 
temporal degradation trends. In doing so, the study makes a 
theoretical contribution by demonstrating how convolution-
based fine-grained feature extraction can be effectively fused 
with transformer-based self-attention to capture both spatial and 
temporal degradation cues, offering a new direction for 
freshness prediction models in food technology. The 
classification greatly reduced food waste and enabled prompt 
consumption decisions. The proposed model achieved 98% 
accuracy, 97.5% precision, 97.9% recall, 97.75% F1-score, and 
an estimated 84% reduction in food waste, underscoring its 
strong potential for real-world deployment. The method remains 
scalable and lightweight by integrating freshness estimation 
without requiring a large amount of sensor data. Nevertheless, 
the study is not without limitations. The reliance on a single 
image modality may restrict generalization under varied lighting 
or presentation conditions, and the dataset, while diverse, is 
smaller in scale compared to global benchmarks. Additionally, 
external factors such as storage temperature or humidity were 
not integrated into the model. Despite these constraints, the 
study contributes to the domain by establishing that purely 
image-based hybrid architectures can reliably predict freshness 
levels and directly translate to measurable sustainability 
outcomes in food service operations. Future research could 
explore integration with real-time kitchen inventory systems, 
multi-modal learning using sensors, and deployment in edge 
devices for low-resource settings. Further studies may also 
validate the framework in larger-scale, multi-institutional 
datasets and investigate explainability mechanisms to improve 
model transparency for end-users. Such extensions would 
further enhance the impact and global applicability of the 
proposed model in minimizing food waste. 
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