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Abstract—This study investigates the implementation of an 

RGB-D Simultaneous Localization and Mapping (SLAM) 

algorithm on an unmanned aerial vehicle (UAV) equipped with an 

Intel RealSense D435i camera. The study focuses on Real-Time 

Appearance-Based Mapping (RTAB-Map), a well-established 

RGB-D SLAM method capable of building 3D maps while 

simultaneously localizing a robot within its environment. Despite 

its advanced capabilities, deploying RTAB-Map on UAVs 

introduces specific challenges due to the dynamics of aerial 

navigation. This research evaluates the performance of RTAB-

Map in terms of robustness, precision, and accuracy to optimize 

its application in UAV-based RGB-D SLAM. The findings reveal 

that the sequential frame-matching approach, combined with a 

minimum inliers threshold of 10, provides the most robust 

performance. In contrast, the global matching approach with a 

minimum inliers threshold of 20 offers better precision and 

accuracy. The results show that this implementation, utilizing an 

off-the-shelf hardware and software setup, has significant 

potential for advanced applications such as monitoring and 

surveillance in environments, where dense 3D mapping is critical. 

Keywords—Unmanned aerial vehicle; UAV; simultaneous 

localization and mapping; SLAM; RGB-D; real-time appearance 
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I. INTRODUCTION 

Autonomous robotics has been a key area in the field of 
robotics. The necessity of determining a robot's position on a 
map in unknown environments, while simultaneously building 
the map representation itself, has led to the development of 
Simultaneous Localization and Mapping (SLAM) algorithms 
over the past three decades [1]-[4]. The demand for SLAM 
algorithms has grown significantly, as they are widely used for 
various applications in both ground-based and aerial robots. 
Computer vision technology has advanced over recent years, 
and the usage of vehicles with teleoperation capabilities is seen 
as a big potential to be commercialized. By integrating the 
SLAM algorithm with these vehicles, a technological milestone 
could be achieved. This study focused on the issue of SLAM 
with Unmanned Aerial Vehicle (UAV) which addresses a 
specific SLAM problem, involves the challenge of mapping the 
environment that has been explored by UAV in a 3D map 
representation, while determining its position within the 
gradually constructed 3D map [5]. 

Despite intensive research, implementing SLAM on UAV 
platforms remains challenging. One of the primary issues is that 
UAVs operate at higher speeds, which can reduce the accuracy 
of SLAM algorithms. Moreover, when applying SLAM in large 
or complex environments, UAVs may encounter difficulties 
such as rapid viewpoint changes, inconsistent loop closures, and 
accumulated drift errors [6]-[8]. A drawback often occurs when 
the UAV revisits previously mapped regions, where newly 
estimated landmark locations may not align with earlier ones. A 
robust and efficient algorithm is therefore required to achieve 
reliable SLAM performance for UAVs, especially given the 
trade-off between real-time operation and mapping accuracy. 
While robust methods exist for static and structured 
environments, mapping unstructured, dynamic, or large-scale 
settings continues to be an open research problem [2] [4]. 

Among existing RGB-D SLAM algorithms, RTAB-Map has 
proven effective as a graph-based approach in various robotic 
applications. However, its performance when applied to UAVs 
is inconsistent. UAV platforms introduce unique challenges 
such as high-speed motion, rapid viewpoint changes, and 
dynamic environments, which can significantly degrade SLAM 
accuracy and robustness. In particular, the performance of 
RTAB-Map depends heavily on parameter configurations (e.g., 
camera resolution, frame rate, odometry strategy, and loop 
closure thresholds) [9]-[12]. Yet, there is limited research 
systematically examining how these parameters influence UAV-
based SLAM performance. Without such insights, it is difficult 
to identify optimal configurations that balance accuracy, 
robustness, and real-time feasibility for UAV operations. 

Given this problem, this research study tries to address the 
following questions: 

 How do state-of-the-art RGB-D SLAM algorithms such 
as RTAB-Map perform when applied to UAV platforms 
in terms of accuracy, robustness, and efficiency? 

 Can modifications, parameter tuning, or integration 
strategies improve their performance for UAV-based 
applications? 

To address the research questions outline the following 
objectives are outlined: 
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 To evaluate the impact of key parameters such as RGB 
and depth camera resolution, frame rate (fps), visual 
odometry strategies, and loop closure inlier thresholds on 
the performance of RTAB-Map for UAV-based SLAM. 

 To investigate the optimum parameter configuration that 
maximizes accuracy, efficiency, and robustness of 
RTAB-Map in UAV navigation and mapping tasks. 

This research is significant as it reduces the gap between 
conventional SLAM implementations and the unique 
requirements of UAV navigation. By evaluating and comparing 
RGB-D SLAM algorithms in UAV contexts, this study is 
expected to provide researchers and practitioners with some 
insights into algorithmic strengths and weaknesses, as well as 
practical guidance for deploying UAV-based SLAM in real-
world environments. It is hoped that the outcomes can support 
the development of more reliable and efficient autonomous 
UAV systems for applications in surveillance, mapping, disaster 
response, and environmental monitoring. 

The remainder of this study is structured as follows: Section 
II presents the literature review of the SLAM algorithm, 
focusing on two prominent RGB-D SLAM algorithms: ORB-
SLAM2 and RTAB-Map. Section III outlines the research 
methodology applied in this study, while Section IV discusses 
the results and findings of the experiments conducted. Finally, 
Section V provides the conclusion of the study. 

II. LITERATURE REVIEW 

A. Visual Simultaneous Localization and Mapping (VSLAM) 

In the Simultaneous Localization and Mapping (SLAM) 
algorithm, mapping is for obtaining a model of the robot 
environment, and localization is to estimate the position of the 
robot in the obtained map. Despite significant progress in this 
area, it still poses great challenges [2]-[4]. The accuracy of 
environment mapping depends highly on the effective 
parameters which need to be studied. The important parameters 
that affect SLAM performance include sensor uncertainty, 
correspondence issue, loop closing, time complexity and 
dynamic environment [1]. 

Visual sensor implementation of SLAM or also known as 
visual SLAM (VSLAM) systems, can be classified into 
monocular SLAM, binocular SLAM and RGB-D SLAM [9]. 
The input sensor for classic visual SLAM systems is a 
monocular or stereo camera. Using these two vision sensors to 
reconstruct a 3D map, sophisticated map initialization and map 
point triangulation operations are required, which are 
computationally challenging and can result in noisy 
observations. The introduction of RGB-D cameras, which 
deliver RGB images along with depth information, addresses the 
issue that comes with monocular and stereo cameras. Due to the 
fact that RGB-D cameras can provide both colored and depth 
images simultaneously, they are increasingly utilized for indoor 
scene reconstruction and can effectively address limitations such 
as reconstruction of low-textured areas [12]. Low-textured areas 
are surfaces with few distinguishing features. These areas are 
difficult to reconstruct because they lack sufficient feature points 
for effective tracking and mapping [10], [11]. 

B. ORB-SLAM2 and RTAB-Map 

In this study, the RGB-D SLAM algorithms of interest that 
are to be researched are RTAB-Map and ORB-SLAM2. RTAB-
Map was first developed in 2009 and released as an open source 
library in 2013. Since then, it has evolved into a complete graph-
based SLAM approach that can be used in a variety of setups 
and applications [13]. RTAB-Map is a graph-based SLAM 
approach based on an incremental appearance-based loop 
closure detector. To determine whether a new image is likely to 
come from a prior or new place, the loop closure detector 
employs a bag-of-words approach. When a loop closure 
hypothesis is accepted, a new constraint is added to the map's 
graph, and the map's mistakes are minimised using a graph 
optimizer. To ensure that real-time limitations on large-scale 
environments are always maintained, a memory management 
strategy is employed to limit the number of locations used for 
loop closure detection and graph optimization. Visual odometry 
strategies play a crucial role in RTAB-Map’s operation. Frame-
to-frame odometry compares each image to the previous one, 
offering speed and efficiency but suffering from drift over time. 
In contrast, frame-to-map odometry compares each image to a 
gradually built map, improving accuracy but increasing 
computational demands [11], [14]. 

ORB-SLAM2 is a comprehensive SLAM system with map 
reuse, loop closing, and re-localization capabilities. Proposed in 
2016 by Raul Mur-Artal et al., ORB-SLAM2 provides support 
for stereo cameras and RGB-D cameras as an improvement from 
its predecessor, ORB-SLAM. The algorithm is able to operate 
swiftly in real-time [9]. ORB-SLAM2 selects ORB as the 2D 
features for all SLAM operations, including tracking, mapping, 
relocalization, and loop closing, in order to maintain speed and 
rotation invariance [10]. If tracking was successful in the 
previous frame, ORB-SLAM2 use a constant velocity motion 
model to project the camera pose and conduct a guided search 
of the map points encountered in the previous frame. If 
inadequate matches were discovered (i.e., due to an inadequate 
motion model), ORB-SLAM2 does a broader search of the map 
points surrounding the subject's position in the previous frame. 
The pose is then enhanced using bundle adjustment (BA) 
through the discovered 2D correspondences [10]. 

Although ORB-SLAM2 has significantly improved in both 
efficiency and precision, certain issues remain unresolved. One 
major challenge is system tracking failure in dynamic 
environments, which arises from the feature point extraction 
process being insufficiently robust in conditions such as sudden 
lighting changes, excessively strong or weak light intensity, or 
environments with minimal texture information [9]. Solving 
motion blur becomes a key focus in visual SLAM since common 
cameras frequently produce image blur when moving rapidly. 

N. Ragot et al. (2019) conducted research on the benchmark 
of the two reviewed SLAM algorithms; ORB-SLAM2 and 
RTAB-Map [15]. The research utilized an Intel RealSense D435 
camera mounted on a robotics-powered electric wheelchair to 
test and evaluate the performance of these algorithms across 
various configurations, such as straight-line motion, straight-
line motion with a return path, and circular paths with loop 
closure. All experiments were performed in a controlled indoor 
environment. 
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The study highlighted that both RTAB-Map and ORB-
SLAM2 have unique strengths in specific aspects. RTAB-Map, 
a graph-based SLAM system, integrates two key algorithms: 
loop closure detection and graph optimization. According to N. 
Ragot et al., RTAB-Map demonstrated more accurate trajectory 
estimation, better performance in translational movements, and 
more effective utilization of RGB data. However, it produced 
less accurate results during rotational movements. On the other 
hand, ORB-SLAM2 relies on consecutive image frames to 
construct a map and localize itself within it. It showed superior 
performance in distance measurement and odometry estimation 
compared to RTAB-Map. Nonetheless, its performance with 
RGB cameras was less effective than stereo cameras, 
particularly in outdoor scenarios [9]. 

While these benchmarking studies provide valuable insights, 
most evaluations of RTAB-Map have concentrated on ground 
robots or controlled indoor environments with fixed parameter 
settings. Consequently, there remains a limited understanding of 
how RTAB-Map behaves in UAV contexts, where challenges 
such as higher flight speeds, rapid viewpoint changes, and real-
time processing demands are more critical. This gap shows the 
need for investigations into how key parameters such as camera 
resolution, frame rate (FPS), odometry strategy, and loop 
closure thresholds affect RTAB-Map’s performance when 
deployed on UAVs. Addressing this gap is important for 
adapting RTAB-Map to aerial robotics and ensuring robust 
autonomous navigation in real-world scenarios. 

Hence, this study focuses exclusively on RTAB-Map and 
conducts a parameter sensitivity analysis to investigate the 
optimum configuration for UAV-based SLAM. 

III. METHODOLOGY 

A. System Interface 

In this study, a UAV modelled NXP KIT-HGDRONEK66 
was used, where the devices for communication and flight 
control using PX4 [16] flight management unit were on board.  
Fig. 1 shows the front and top views of the assembled UAV. All 
devices are mounted on the UAV bar, and the camera is attached 
underneath the UAV at its centre of gravity to ensure the UAV’s 
stability. The overall system interface is illustrated in Fig. 2. 

On board the UAV, a Raspberry Pi 4B was mounted to 
transmit data from the Intel RealSense D435i RGB-D camera 
[17] to the remote PC. Both the Raspberry Pi 4 and the remote 
PC run Ubuntu and Robot Operating System (ROS) as the 
system employs a ROS-based communication architecture. The 
remote PC is configured as the ROS master. The remote PC also 
runs SLAM using RTAB-Map. The Raspberry Pi on the UAV 
operates as a ROS node, publishing data from the RealSense 
camera to the RTAB-Map node on the remote PC. 

In addition to data transmission, telemetry communication 
between the UAV and the remote PC is established using the 
Holybro SiK Telemetry Radio V3 device. This communication 
link enables real-time monitoring of flight parameters and the 
ability to issue control commands through the QGroundControl 
software on the remote PC. 

 
Fig. 1. Front view (left) and top view (right) of the assembled UAV. 

 

Fig. 2. Overall system interface of the RGB-D SLAM system. 

B. Effective Parameters Tuning 

The goal of this parameter study is to identify the optimum 
configuration of parameters that yield better performance of the 
RTAB-Map SLAM algorithm for UAVs. The parameters that 
were studied and tuned are as follows: 

 RGB and depth camera resolution, 

 RGB and depth camera number of fps, 

 visual odometry strategy, and  

 The minimum inliers threshold for loop closure detection 

The resolution of RGB and depth cameras are parameters 
that study the correlation between the quality of images with 
transmission rate performance. A higher camera resolution 
yields a sharper image and gives more visual features in the 
surroundings.  However, a higher quality image requires more 
processing and hence has an impact on the transmission rate or 
speed of the data sent to the ROS topics. 

As for the RGB and depth camera fps, they are important 
parameters as they affect the frequency of data being published 
to the ROS topics. If there are more frames per second captured 
by both RGB and depth cameras, the data needs to be published 
to the RGB and depth topics more often. Hence, requires a 
higher transmission frequency. 
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In RTAB-Map, the RGB and depth topics are used to 
estimate the trajectory of the RGB-D sensor and to build a 3D 
map. Fig. 3 shows a redrawn rqt graph from ROS, considering 
only the relevant nodes and topics involved in this process. For 
better distinction, only the nodes are colored. The rqt graph 
shows that the /camera/realsense2_camera_manager node 
publishes all sensor data, including RGB, depth, and IMU 
information. This data is then processed by other nodes. The 
/rtabmap/rgbd_odometry node subscribes to the color and depth 
topics to perform visual odometry, estimating the localization of 

the RealSense camera. This localization is considered the UAV's 
position and is published to the /rtabmap/odom topic. The 
/rtabmap/rtabmap node subscribes to /rtabmap/odom, color, 
depth, and IMU data to build a 3D map and localize the UAV 
within the global map. It should be noted that the 
/rtabmap/rgbd_odometry node computes local odometry 
incrementally, the /rtabmap/rtabmap node performs global pose 
graph optimization and also loop closure detection. The 
mapping results, including the optimized trajectory and 3D map, 
are published on the /rtabmap/mapData topic. 

 
Fig. 3. A part of rqt graph when executing RTAB-Map. 

The trajectory of the UAV is estimated using the visual 
odometry strategy implemented [14]. Visual odometry is the 
process of determining odometry information using sequential 
camera images to estimate the distance travelled by the RGB-D 
sensor on board, hence the UAV. The accuracy of visual 
odometry affects the overall performance of RTAB-Map. In this 
study, the visual odometry strategy was studied to determine its 
significance of impact. Visual odometry strategy that were 
tested includes frame-to-frame and frame-to-map. 

In frame-to-frame odometry, the algorithm compares each 
image frame (or camera view) directly to the previous frame to 
estimate the trajectory. This is computed in the 
/rtabmap/rgbd_odometry node. Although this approach is 
efficient, as only a few consecutive images are compared, 
however, it is more prone to error accumulation over time. This 
strategy is suitable for real-time applications where some drift is 
acceptable. In frame-to-map odometry, the algorithm compares 
the current frame to an existing global map, which has been built 
gradually from past frames. This is computed in 
/rtabmap/rtabmap node. It is a more accurate approach as it 
references the entire map, but it can be slower and more 
computationally intensive. This approach is suitable for long-
term mapping. 

The last parameter studied is, minimum inliers threshold. It 
encapsulates how well the algorithm accepts input data as loop 
closure. Theoretically, a higher value allows the algorithm to 
only accept frames with more features to perform loop closure. 

This will result in lesser loop closures being detected as more 
matching visual features are required. 

C. Performance Analysis 

This section highlights the corresponding metrics that were 
observed and measured for performance evaluation purposes. 
The performance of the RGB-D SLAM algorithm was evaluated 
through a series of different categories, which are computational 
efficiency, robustness, precision and accuracy. Computational 
efficiency measures the amount of time required to process and 
transmit data. Metrics that were observed for this criterion are 
the publishing time of topics and the rate of data transmission. 
The ability of the algorithm to handle noise, outliers and other 
sources of errors defines the robustness criterion, where it is 
represented by the percentage of successful runs. A successful 
run is defined by a situation where a loop closure is successfully 
detected during a mapping sequence, and there are no odometry 
loss occurrences. The precision criterion measures the resolution 
and detail of the map produced by the algorithm. Keypoint 
detection per millisecond is observed to determine the precision 
of the algorithm. Last but not least, total distance travelled and 
distance between landmarks are the metrics measured to 
determine the accuracy of the algorithm, where the distance 
computed by the algorithm is compared with the ground truth. 

IV. RESULTS AND DISCUSSION 

This section encapsulates the results obtained from 
experiments conducted based on the methodology mentioned in 
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previous section. The results were split based on different 
environments to observe the performance of the algorithm. 
Analysis on the findings of the experiments were discussed in 
this section. The effects of parameter tuning can be 
demonstrated through the analysis conducted. 

A. Camera Parameter Optimization 

Through research and experiments, it is noted that the 
publishing rate of topics is dependent on the Wi-fi signal, 
resolution and fps of the RGB and depth camera. The initial 
configuration is shown in the middle column of Table I. In the 
initial configuration, no data was published to the camera topics, 
preventing the algorithm from running. After further 
investigation, these parameters need to be tuned in order to yield 
better performance in terms of topics’ publishing rate. The Wi-
fi signal band of 2.4 GHz is better for long-range applications 
but has a slower speed, while 5 GHz gives significant 
improvement in speed but is lacking in terms of range coverage. 

The fps of the camera, on the other hand, affects the 
transmission performance. This is because higher fps results in 
the camera capturing more frames that need to be processed 
every second. This may lead to a bottleneck, where the rate of 
frames being processed to be published as ROS topics exceeds 
the system's computational capacity, causing frames to be 
dropped and not transmitted. Overloading of the processing 
performance causes frames to be dropped and not transmitted. 
After switching to the 5 GHz band and reducing the fps of both 
the RGB and depth camera to 15 fps, the publishing rate of the 
topics was improved to an average of 7 Hz. 

Further tuning of the parameter was conducted to obtain the 
best publishing rate performance. By using a lower setting of 
resolution for both RGB and depth camera, an experiment was 
conducted to observe the publishing rate. The new configuration 
that was tested can be observed in the rightmost column of 
Table I. As a result, the publishing rate of both the RGB and 
depth topics was further improved to around 15 Hz, which could 
be observed in Fig. 4 and Fig. 5. It can be concluded that 
transmission performance is directly affected by the resolution 
of RGB and depth cameras. This shows that the RGB and depth 
topics require minimal delay or bottleneck when processing the 
topic to be able to publish at an acceptable and consistent rate. 

B. Indoor Environment Mapping Experiment 

The RTAB-Map algorithm was first run on a Raspberry Pi 
without integration to the UAV. The Intel RealSense D435i 
camera was connected to the Raspberry Pi 4B, and handheld 
mapping was conducted inside our research laboratory in the 
faculty. This experiment was conducted to analyze the effect of 
parameter tuning in an indoor environment in terms of precision 
and accuracy, as well as to identify the most robust parameter 
configuration. The experiment was successfully conducted, 
where a 3D map and an occupancy grid map of the laboratory 
were obtained. Occupancy grid map is a map representation that 
is commonly used by the SLAM algorithm that generate precise 
metric maps which are close to the detailed environmental 
representations [7]. Fig. 6 and Fig. 7 show both maps, 
respectively. 

TABLE I.  INITIAL AND UPDATED  CONFIGURATION 

Parameter Initial Value Updated Value 

Wi-fi band 2.4 GHz 5 GHz 

RGB camera fps 30 15 

Depth camera fps 30 15 

Resolution of RGB camera 640 x 480 424 x 240 

Resolution of depth camera 640 x 480 480 x 270 

 

Fig. 4. Graph of publish rate of RGB topic vs. time. 

 
Fig. 5. Graph of publish rate of depth topic vs. time. 

 
Fig. 6. 3D map of handheld mapping. 
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Fig. 7. Occupancy grid map of handheld mapping. 

The experiment was conducted through a series of different 
parameter configurations. The parameters that are tuned were 
the visual odometry strategy and the minimum inliers threshold. 
As mentioned in Section III B, there are two visual odometry 
strategies, which are frame-to-map and frame-to-frame. On the 
other hand, the values used for the minimum inliers threshold 
were 10 and 20. Firstly, the robustness of the algorithm with 
these different parameter configurations was observed. In a total 
of 11 trials for each parameter configuration, the percentage of 
successful runs was computed. It was identified that the frame-
to-frame odometry strategy with a minimum inliers threshold 
value of 10 showed the best performance in terms of robustness 
of the algorithm, with a 90.91% rate of successful runs. 

We can observe that by changing the visual odometry 
strategy from frame-to-map to frame-to-frame, for each 
minimum inliers threshold, the value increases the robustness 
performance by at least 9.09%, as depicted in the bar chart in 
Fig. 8. The advantage of using a frame-to-frame setting over a 
frame-to-map is that the tracked features don't dip below a ratio 
of the previous frame the robot had seen. Hence, if the robot is 
not moving, the key frame would remain static and would 
remember the features in that frame. In this indoor environment 
experiment, the frame-to-frame odometry strategy provided 
better odometry compared to the frame-to-map odometry 
strategy, which indirectly increases the loop closure detection of 
the algorithm. 

 

Fig. 8. Percentage of successful runs in the indoor environment. 

Next, we can also observe from the bar chart in Fig. 8 that, 
by lowering the minimum inliers threshold from 20 to 10 for 
each visual odometry strategy boosts the robustness by at least 
18.18%. A lower minimum inliers threshold results in frames 
with less features to be accepted as keyframe, which are then 
used for computation of localization and mapping by RTAB-
Map algorithm. When the keyframe acceptance is more lenient, 
then the running performance of the RTAB-Map algorithm 
could be increased, as shown in the indoor environment 
mapping experiment. 

The experiment was also conducted to evaluate the 
performance in terms of precision. For the frame-to-map visual 
odometry strategy, the keypoint detection per ms was observed 
and tabulated in the first two rows of Table II. The subsequent 
rows show the keypoint detection per ms for the frame-to-frame 
visual odometry strategy. For both strategies, a minimum inliers 
threshold value of 20 shows a higher keypoint detection per ms 
value compared to using a threshold value of 10. The observed 
results show that when the minimum inliers threshold is set to a 
higher value, the keypoint detection per ms will be higher. This 
is because a higher number of features need to be recognized 
within a frame for it to be accepted as a keyframe before 
proceeding to evaluate the next frame. Consequently, these 
selected frames can be considered of higher quality as they show 
to have more keypoints (refer to Table II). It can be concluded 
that applying a stricter threshold ensures the extraction of more 
keypoints, resulting in a more precise computation of the 
surrounding environment. 

TABLE II.  KEYPOINT DETECTION PER MS 

Visual odometry Min inliers threshold Keypoint/ms 

Frame-to-map 
20 5.83 

10 5.20 

Frame-to-frame 
20 5.80 

10 4.86 

Evaluation of performance in terms of accuracy was also 
conducted, where total distance travelled and the distance 
between two landmarks: Landmark 1 and Landmark 2, in 
meters, were observed and compared relative to the ground 
truth. Table III shows the estimated distance of the RTAB-Map 
algorithm. This shows that using RTAB-Map, similar to other 
common SLAM algorithms, the error is accumulated over the 
distance travelled. In this experiment, the error in the estimated 
trajectory is approximately 9.1 meters, which corresponds to 
about 26.6% error relative to the actual distance of 34.23 meters. 
In contrast, for a single measurement between Landmark 1 and 
2, the error is only 0.15 meters, or approximately 7.5%, 
indicating that initial measurements are typically more accurate 
than long trajectory estimation. 

TABLE III.  DISTANCE ERROR FOR INDOOR ENVIRONMENT 

Experiment Actual (m) RTAB-Map (m) Error 

Distance travelled 34.23 43.33 0.266 

Landmark 1 and 

Landmark 2 
2.00 2.15 0.075 
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Overall, it can be concluded that parameter configuration 
with the frame-to-frame visual odometry strategy and a 
minimum inliers threshold of 10 yields the most robust 
performance. This is due to the fact that it has higher trajectory 
accuracy and more lenient keyframe acceptance. However, there 
is a trade-off in terms of precision and accuracy where the 
generated 3D map is less dense and has fewer keypoints 
compared to the frame-to-map odometry strategy with a 
minimum inliers threshold of 20 parameter configuration. 

C. Outdoor Environment Mapping Experiment 

Before outdoor environment mapping is conducted using a 
UAV, an experiment with handheld mapping was first 
conducted to analyze the performance of the algorithm with a 
different layout. The purpose of this is to get the basis of the 
performance of the RTAB-Map algorithm in an outdoor 
environment. Since the nature of UAVs’ flight is high-speed 
movement and maneuverable, a robust algorithm is desired to 
ensure a sustainable mapping process. Hence, the parameter 
configuration with the highest success rate was chosen, which 
was the frame-to-frame and minimum inliers threshold of 10. 
The experiments were executed at two different outdoor 
scenarios around the faculty: outdoor scenario 1 and outdoor 
scenario 2. As a result of the experiment, the 3D maps were 
successfully obtained for both of the outdoor scenarios, as 
depicted in Fig. 9 and Fig. 10. 

 

Fig. 9. 3D Map for outdoor 1. 

 

Fig. 10. 3D Map for outdoor 2. 

Scenario of outdoor 1 and outdoor 2 yields different 
performance in terms of robustness and accuracy. The mapping 
sequence showed a 50% success rate for outdoor 1, while 
outdoor 2 demonstrates an 83.33% success rate out of a total of 
6 trial runs, as shown in Fig. 11. In terms of accuracy, the total 
distance travelled, in meters, was measured and compared with 
the ground truth, as shown in Table IV. Outdoor 1 showcase a 

higher error (0.8283) compared with outdoor 2 (0.5676). Both 
these errors are still high and show that the accuracy of the 
trajectory travelled using RTAB-Map is less accurate. The 
longer the total distance travelled, increases the inaccuracy of 
the generated map due to accumulated error. 

However, the computed error between landmarks remains 
relatively low for both outdoor 1 and outdoor 2, with values of 
0.0259 and 0.0268, respectively (see Table V). This 
demonstrates that RTAB-Map is more reliable for short-term 
mapping that does not involve long distances travelled, as it can 
tolerate small drifts and still maintain a consistent map. 

 
Fig. 11. Percentage of successful runs in outdoor environment. 

TABLE IV.  TRAVELLED DISTANCE ERROR FOR OUTDOOR ENVIRONMENT 

Experiment Actual (m) RTAB-Map (m) Error 

Outdoor 1 16.53 30.22 0.8283 

Outdoor 2 14.3 22.42 0.5676 

TABLE V.  DISTANCE BETWEEN LANDMARK ERROR FOR OUTDOOR 

ENVIRONMENT 

Experiment Actual (m) RTAB-Map (m) Error 

Outdoor 1 3.18 3.26 0.0259 

Outdoor 2 3.67 3.76 0.0268 

V. LIMITATION 

Although this study provides some insights into the effect of 
parameter configurations on RTAB-Map performance for 
UAV-based SLAM, several limitations remain. First, the 
experiments were conducted under controlled conditions with 
specific UAV hardware such as Intel RealSense D435i camera. 
The results may therefore not fully generalize to other UAV 
platforms, sensors, or outdoor environments subject to more 
dynamic conditions such as wind and lighting variations. 
Second, the evaluation was limited to a selected set of 
parameters; camera resolution, frame rate, visual odometry 
strategy, and loop closure inliers. While these parameters are 
critical, RTAB-Map contains additional configuration options 
(e.g., memory management strategies, feature extraction 
settings, and graph optimization techniques) that could further 
influence performance. Third, computational resources were 
constrained by the onboard UAV hardware, which may have 
affected the algorithm’s scalability in larger or more complex 
environments. 
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VI. CONCLUSION AND FUTURE WORKS 

RTAB-Map is an RGB-D SLAM algorithm with a loop 
closure detector that employs a bag-of-words approach to 
determine the possibility of a fresh image to be coming from a 
prior or new place. In this research, the loop closure detector of 
RTAB-Map utilizes both RGB and depth data from Intel 
RealSense D435i in making the decision whether to accept or 
deny loop closure hypotheses. 

This project generally studies the applicability and relevance 
of SLAM algorithm implementation with UAVs by collecting 
all the important data and conducting a thorough assessment. 
Effective parameters and their relative effects on the 
performance of the SLAM algorithm were evaluated 
accordingly. The effective parameters were identified as RGB 
and depth camera resolution, RGB and depth camera fps, visual 
odometry strategy and minimum inliers threshold. The effect of 
tuning the parameters was then investigated in different 
environments (indoor and outdoor) to better understand the 
significance of the impact. An analysis was conducted to 
determine the best configuration of parameters to be applied for 
outdoor environment mapping by the UAV. Frame-to-frame 
odometry strategy minimum inliers threshold value of 10, 
proved to be the most robust setting to be implemented for UAV. 
However, there will be repercussions faced by the algorithm, 
where the performance will suffer in terms of precision and 
accuracy. Although the optimal parameters were identified for 
maximum robust performance of RTAB-Map, it still was not 
enough to cope with the movement of the UAV, as sharp turns 
would cause the algorithm to halt due to odometry data being 
lost. 

Future research can extend this work in several directions. A 
broader exploration of RTAB-Map parameters and their 
interdependencies would provide deeper insights into 
optimizing UAV-based SLAM. Furthermore, integrating 
adaptive parameter tuning methods, such as machine learning-
based auto-configuration, could allow UAVs to dynamically 
adjust SLAM parameters in response to environmental changes. 
Finally, long-term autonomous flight experiments, including 
large-scale outdoor mapping and multi-UAV collaborative 
SLAM, represent promising directions for advancing the 
robustness and applicability of RTAB-Map in real-world UAV 
operations. 
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