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Abstract—In this paper, we carried out an in-depth 

comparative analysis of five major supervised classification 

algorithms: Naïve Bayes, Decision Tree, Random Forest, KNN 

and SVM. These models were evaluated through a rigorous 

literature review, based on 20 criteria grouped into five key 

dimensions: algorithm performance, computational efficiency, 

practicality and ease of use, data compatibility and practical 

applicability. The results show that each algorithm has specific 

strengths and limitations: SVM and Random Forest stand out for 

their robustness and accuracy in complex environments, while 

Naïve Bayes and Decision Tree are appreciated for their speed, 

simplicity and interpretability. KNN, despite its intuitive 

approach, suffers from high complexity in the prediction phase, 

limiting its effectiveness on large datasets. This study aims to 

provide a structured framework for researchers and 

practitioners in various fields, such as healthcare, finance, 

industry and education, where supervised classification 

algorithms play a central role in decision-making. In addition, 

the results highlight the importance of selecting algorithms 

according to specific needs, and open up promising prospects, 

including the development of hybrid models and improved real-

time data processing. 
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I. INTRODUCTION 

In today's era of megadata, supervised classification models 
play a central role in transforming raw data into actionable 
information in critical fields such as healthcare, finance and 
industry. The rise of artificial intelligence (AI) and the 
increasing availability of data have reinforced the importance 
of supervised classification as a pillar of machine learning 
systems. These models are used, for example, to improve 
medical diagnosis by identifying complex patterns in health 
data, to detect fraud in finance and to predict preventive 
maintenance in the manufacturing industry. However, in view 
of the growing diversity of available models and the varied 
requirements of practical applications, in-depth benchmarking 
is needed to guide informed choices and maximize the 
effectiveness of solutions. 

The massive increase in data volumes is accompanied by a 
proliferation of classification models, each with advantages 
and limitations depending on the application context. This 

diversity complicates the choice of the optimal model, 
requiring an assessment of technical performance, resource 
requirements and adaptability to specific data types, such as 
text, images and time series. For example, the prediction of 
academic success or predictive diagnostics in medicine require 
models capable of combining accuracy, robustness and speed. 
A thorough understanding of the trade-offs between these 
aspects is therefore essential to ensure that models meet 
performance targets. 

Our study responds to a pressing need for synthetic and 
comprehensive comparisons of supervised classification 
models. Existing research often focuses on specific criteria, 
such as accuracy or algorithmic complexity, without offering a 
clear overview that takes into account the impact on real 
applications. In addition, certain gaps persist, notably 
concerning the adaptability of models to multimodal or 
unbalanced data, and the management of trade-offs between 
accuracy and computational resources. By proposing a 
literature review focusing on these criteria, this study aims to 
provide a valuable tool for researchers and practitioners, 
enabling them to select algorithms suited to their specific 
needs. 

Faced with these challenges, the central problem of this 
study can be formulated as follows: What are the best-
performing supervised classification models in terms of 
accuracy, robustness, computational complexity and 
adaptability, and how does their performance vary according to 
data type and application context? To answer this question, an 
in-depth literature review appeared to be the most appropriate 
method. This approach makes it possible to pool and analyze a 
wide range of academic and empirical studies on supervised 
classification models, thus drawing out clear trends and 
identifying existing trade-offs. 

The methodology adopted is based on a rigorous 
bibliographical search covering publications from scientific 
journals, international conferences and recent empirical studies. 
The selected models are evaluated according to defined 
criteria, such as prediction accuracy, generalizability, 
robustness, computation time and adaptability to heterogeneous 
and missing data. These criteria were chosen for their relevance 
to the evaluation of practical performance, and for their ability 
to cover the actual requirements of the systems deployed. Strict 
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inclusion criteria were applied to guarantee the 
representativeness and quality of the studies selected. 

The results show that some models, such as Random Forest 
and SVM, stand out for their robustness and accuracy in 
complex contexts, while models like Naïve Bayes and Decision 
Tree are appreciated for their interpretability, ease of 
implementation and speed. Comparative analysis has identified 
notable trade-offs between accuracy and computational 
complexity, offering guidelines for optimal model selection 
according to system constraints. 

In conclusion, this study proposes a framework for the 
selection of supervised classification algorithms according to 
specific user needs. It also highlights promising avenues of 
research, such as the exploration of hybrid models combining 
the strengths of the algorithms compared in order to overcome 
their limitations. Prospects include the development of models 
better adapted to the challenges of big data and real-time 
processing requirements. 

The paper is structured into five main sections. Section I is 
dedicated to the introduction and presents the background, 
problem and objectives of the study. Section II provides a 
detailed theoretical framework on supervised classification and 
discusses the main models, while presenting their current 
limitations and challenges. This section is subdivided into 
several parts, including an overview of machine learning, a 
description of the types of supervised classification algorithms 
and a discussion of their limitations. Section III describes the 
methodology adopted, covering algorithm selection, evaluation 
criteria and data collection. Section IV presents the results of 
the comparative analysis and offers an in-depth discussion of 
the observations made, followed by a reflection on the 
limitations of the results. Finally, Section V concludes the 
study by summarizing the main contributions and suggesting 
avenues for future research. 

II. THEORETICAL FRAMEWORK AND BACKGROUND 

A. Introduction to Supervised Classification Models 

1) Machine learning-an overview: Machine Learning is a 

branch of artificial intelligence that aims to equip systems 

with the ability to discover patterns and relationships within 

datasets, without being explicitly programmed for each 

specific task [1][2][3]. By forming models from training data, 

it enables the automation of complex tasks such as image 

recognition or the prediction of user behavior [1][3][4]. This 

field relies on techniques that enable machines to learn from 

past data or interactions with their environment, without 

requiring specific programming for each task [5][6]. More 

broadly, Machine Learning encompasses the analysis, design, 

development and implementation of methods that enable 

machines to systematically improve themselves, offering 

solutions to problems through advanced algorithmic 

approaches [7]. 

As Mitchell explains in [1], a learning system is able to 
improve its performance with experience, i.e. from data. 
Machine Learning can be divided into three broad categories: 
supervised, unsupervised and reinforcement learning. This 

classification is based on the way the model learns from the 
data. 

2) Supervised learning: Supervised Learning is an 

approach to Machine Learning in which a model is trained on 

a set of labeled data. This means that each instance of training 

data is associated with a known label or response. The model 

uses these examples to learn to predict the label of new 

instances. 

In supervised learning, two main tasks are often 
distinguished: 

 Regression: The model predicts a continuous numerical 
value as a function of input data (e.g. temperature 
prediction). 

 Classification: the model predicts a category or class 
from a predefined set (e.g., spam detection in e-mail). 

Supervised classification, the focus of our study, is 
therefore a sub-category of supervised learning. Hastie et al in 
[2], point out that supervised learning is particularly effective 
when data is abundant and well-labeled, as it enables the 
construction of accurate and robust models. 

3) Supervised classification: Supervised Classification 

involves using a set of labeled data to train a model that can 

predict the class to which new observations belong. This is a 

key task in many fields, from medicine (e.g. medical 

diagnosis) to security (intrusion detection) to financial 

services (fraud detection). 

The Classification model learns to distinguish between 
different classes by identifying the characteristics that separate 
them. For example, in a dataset containing images of dogs and 
cats, a classification model learns to spot specific 
characteristics to correctly identify each category. 

The advantages of Supervised Classification include: 

High accuracy: when data is reliably labeled. 

Adaptability: Models can be applied in a variety of sectors 
requiring precise categorization. 

Transparency: Some algorithms, such as decision trees, 
allow decisions to be interpreted, making it easier to 
understand the criteria used. 

However, these models generally require large, well-
balanced data sets to avoid bias and ensure good 
generalizability. According to Domingos in [3], it is crucial 
that the training data represent the future data well for the 
model to be robust and reliable. 

B. Main Types of Classification Models 

1) Naïve Bayes: Naïve Bayes is a supervised classification 

algorithm based on Bayes' theorem and the assumption of 

conditional independence between data characteristics. This 

algorithm is particularly appreciated for its simplicity and 

speed, making it highly effective in automatic natural 

language processing (NLP) and text classification tasks [8]. 
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Despite its simplifying assumption, Naïve Bayes often 

performs competitively against more complex algorithms.  

Mathematically, the algorithm is based on Bayes' theorem, 
formulated as follows: 

𝑃(𝐶|𝑋) =
𝑃(𝑋|𝐶)𝑃(𝐶)

𝑃(𝑋)


Where 𝑃(𝐶|𝑋)  represents the probability that an 

observation 𝑋 belongs to a class 𝐶.To simplify the calculation, 

Naïve Bayes assumes that features 𝑥𝑖  are conditionally 
independent, allowing the following approximation: 

𝑃(𝑋|𝐶) = ∏ 𝑃(𝑥𝑖|𝐶)𝑛
𝑖=1 

This simplification makes Naïve Bayes particularly fast and 
undemanding in terms of computational resources. 

Historically, this algorithm was introduced in the 1960s as 
a statistical tool for probabilistic classification. Its adoption in 
machine learning was reinforced by the work of [8], who 
demonstrated its effectiveness in contexts where conditional 
independence is respected. 

The algorithm works by estimating the probability of each 
class for a given observation, then assigning that observation to 
the class with the highest probability. Naïve Bayes calculates 
these probabilities using pre-processed training data. 

There are several variants of Naïve Bayes adapted to 
specific types of data. Gaussian Naïve Bayes, for example, is 
used for continuous data, assuming a normal distribution of 
features [9]. Multinomial Naïve Bayes is particularly suited to 
discrete data, such as word occurrences in text documents [2], 
while Bernoulli Naïve Bayes applies to binary data. 

Naïve Bayes has many advantages, not least its simplicity 
of implementation and speed of execution, even on high-
dimensional data. However, it suffers from limitations when 
features are highly correlated or when the conditional 
independence assumption is violated, which can reduce its 
accuracy [8]. 

The algorithm has applications in various fields. For 
example, it is used for spam filtering, where it classifies e-
mails as junk or not [10]. In sentiment analysis, it is used to 
determine the polarity (positive or negative) of textual opinions 
[2]. Finally, it is applied to facial recognition, rapidly 
identifying patterns based on discrete features [9]. 

In short, Naïve Bayes is a fundamental tool in the 
supervised learning toolbox, combining mathematical 
simplicity with practical efficiency. Its remarkable 
performance in specific contexts, combined with its speed, 
explains its widespread adoption in many applications. 

2) Decision tree: A decision tree is a supervised 

classification model structured in the form of a tree, where 

each node represents a question or test on a feature of the data, 

each branch corresponds to a possible outcome of that test, 

and each leaf represents a class or final decision. Decision 

trees are widely used because of their simplicity and 

interpretability, enabling users to visualize and understand the 

decision-making process clearly and explicitly [10]. 

Decision trees are based on sound mathematical 
foundations, notably the division criteria used to determine the 
most discriminating features at each stage. Among these 
criteria, information gain, used by the ID3 and C4.5 
algorithms, measures entropy reduction after a specific division 
[10]. It is defined by the following formula: 

𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − ∑
|𝑇𝑣|

|𝑇|
. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇𝑣)𝑣∈𝑉 

where 𝑇 is the data set at the current node, 𝑋 is the feature 
being tested, and 𝑇𝑣 represents the subset of data corresponding 
to a value 𝑣  of 𝑋 . The Gini index, used by the CART 
algorithm, is another popular criterion, quantifying the 
homogeneity of classes in the subsets generated. It is defined 
by : 

𝐺𝑖𝑛𝑖(𝑇) = 1 − ∑ 𝑃𝑖
2𝐶

𝑖=1 

where 𝑃𝑖  is the proportion of data belonging to class i [11].  

The history of decision trees is marked by significant 
advances. Ross Quinlan introduced the ID3 algorithm in 1986, 
one of the first models based on information gain [12]. He later 
developed C4.5, an extension of ID3 capable of handling 
continuous data and missing values [10]. At the same time, Leo 
Breiman proposed the CART (Classification and Regression 
Trees) algorithm in 1984, which introduced the use of the Gini 
index and opened up possible applications for regression [11]. 
These contributions laid the methodological foundations for 
decision trees, positioning them as an essential tool in 
supervised learning. 

Decision trees work by recursively dividing the data 
according to the most discriminating characteristics, based on 
the criteria mentioned. For example, to predict whether a 
person will buy a product based on their age and income, a 
decision tree would ask questions such as: “Is the person under 
30 ?” or “Is the income over 50,000 ?”. Each answer leads to a 
specific decision, represented by a leaf in the tree. 

Decision trees come in several variants, adapted to specific 
needs. ID3 (Iterative Dichotomiser 3), proposed by [12], is 
based on information gain as the dividing criterion. Its 
extensions, C4.5 and C5.0, introduce the management of 
continuous data and missing values [10]. Finally, CART, 
developed by study [11], uses the Gini index and can be 
applied to classification and regression tasks. 

The advantages of decision trees are numerous. They offer 
a high degree of interpretability, thanks to their explicit and 
easily visualized structure [10]. They can be adapted to both 
categorical and continuous data, making them versatile in a 
variety of contexts [11]. What's more, their speed makes them 
effective for medium-sized data sets. However, they also have 
their limitations. Decision trees are prone to overlearning, 
particularly in the absence of regularization, which can impair 
their generalization ability [13]. They are also sensitive to 
variations in the training data, which can affect their stability 
[2]. 
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In terms of applications, decision trees play a key role in 
various fields. In bioinformatics, they are used to identify 
genes associated with disease [10]. In the financial sector, they 
are used to analyze credit decisions and detect fraud [11]. 
Finally, in industry, they are applied for quality control and 
predictive maintenance [9]. Their flexibility and simplicity 
explain their widespread adoption in sectors requiring clear, 
explainable decisions. 

In conclusion, decision trees represent a robust and intuitive 
method for solving classification and regression problems. 
Although they present challenges such as overlearning and data 
sensitivity, their advantages and wide range of applications 
make them an indispensable tool in the arsenal of supervised 
classification algorithms. 

3) Random forest: Random Forest is a powerful ensemble 

algorithm that combines several independent decision trees to 

improve the robustness and accuracy of predictions. 

Developed by [14], this algorithm is based on two 

fundamental principles: bootstrap aggregation and random 

feature selection [14]. By aggregating the predictions of 

several trees, Random Forest reduces errors due to variance 

and increases the stability of results. 

Mathematically, each tree is constructed from a bootstrap 
sample of the training data. At each node, only a random sub-
selection of features is evaluated to determine the best split. 
This approach introduces diversity between trees, improving 
the generalizability of the model. 

Historically, Random Forest was conceived as an 
improvement on conventional decision trees, in response to 
their tendency to overlearn. [14] Demonstrated that the 
introduction of randomness in both data and features makes the 
model more resistant to noisy data and outliers. 

Random Forest works by independently generating a large 
number of decision trees, then combining their predictions. For 
a classification task, the predicted class is determined by a 
majority vote among the trees. In regression, the final 
prediction is obtained by averaging the tree outputs. 

The algorithm has several advantages. It is robust to noisy 
data, efficiently handles unbalanced classes and requires no 
prior data normalization. However, its main drawback is its 
increased complexity, which makes interpretation more 
difficult than with a single decision tree [13]. 

Random Forest is used in a variety of fields. In finance, it is 
applied to credit scoring and fraud detection [14]. In 
bioinformatics, it is used for feature selection and classification 
of genomic data [9]. In the energy sector, it is used to predict 
energy consumption as a function of various factors [13]. 

In conclusion, Random Forest is a flexible, high-
performance method for a wide range of classification and 
regression tasks. Its robustness and precision make it an 
indispensable tool in complex, noisy environments. 

4) K-Nearest Neighbor (KNN): K-Nearest Neighbor 

(KNN) is a supervised classification algorithm based on the 

concept of proximity in a multidimensional space. It classifies 

an observation according to the majority class among its k 

nearest neighbors. Introduced by study [15], KNN is one of 

the simplest and most intuitive algorithms in supervised 

learning [15]. 

In mathematical terms, KNN relies on a distance measure 
to assess the proximity between observations. The Euclidean 
distance is the most commonly used and is defined by:  

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)²𝑛
𝑖=1 

where 𝑥𝑖 and 𝑦𝑖  represent the characteristics of points 𝑥 and 
𝑦. For a new point, KNN identifies the k nearest neighbors, 
then determines the majority class among them. 

Historically, KNN has gained in popularity thanks to its 
simplicity and adaptability to different types of data. However, 
it is particularly sensitive to the choice of k, which directly 
influences its performance. Too small a k makes the model 
sensitive to noise, while too large a k can dilute important 
features [2]. 

KNN works as follows: for each new observation, the 
algorithm identifies the k closest observations in the training 
data, using a predefined distance measure. It then assigns the 
majority class among these neighbors to the observation in 
question. 

KNN offers several advantages, not least its simplicity and 
effectiveness on small or well-separated data sets. However, it 
is computationally expensive for large datasets, as it requires 
each new observation to be compared with the training dataset. 
In addition, it is sensitive to irrelevant or redundant features, 
which can affect its accuracy [2]. 

KNN has many applications. In product recommendation, it 
identifies similar products based on user preferences. In image 
recognition, it classifies images based on distances in pixel 
space. In healthcare, KNN is used to diagnose diseases based 
on biological characteristics [2]. 

In summary, KNN is a versatile and efficient algorithm for 
classification and regression tasks. Despite its limitations in 
terms of computational complexity, its simplicity and 
adaptability make it a preferred choice for applications 
requiring proximity-based classification. 

5) Support Vector Machine (SVM): The Support Vector 

Machine (SVM) is a supervised classification algorithm 

designed to maximize the margin between classes in a 

multidimensional space. Developed by study [16], SVM 

revolutionized classification methods by introducing the idea 

of kernels to project data into higher-dimensional spaces, thus 

facilitating their linear separation [16]. 

min
𝜔,𝑏

1

2
‖𝜔‖²

under the constraints : 

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖

where ω is the weight vector, 𝑏 the bias, 𝑥𝑖  the observations 
and 𝑦𝑖  their respective labels. By maximizing the margin 
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between the points closest to the classes, called support 
vectors, SVM guarantees better generalization [17]. 

The use of kernels enables SVM to handle non-linear 
problems. Common kernels include linear, polynomial and 
radial basis function (RBF). These functions transform the data 
into a higher-dimensional space, where it becomes linearly 
separable [16]. 

SVM works by constructing an optimal hyperplane that 
maximizes the margin between classes. For non-linear data, 
SVM uses kernels to perform an implicit transformation into a 
higher-dimensional space. In this way, data are optimally 
separated, minimizing classification errors. 

SVM is particularly efficient for small to medium-sized 
datasets, but its computational cost can become prohibitive for 
large databases. In addition, it requires careful selection of 
hyperparameters, such as the 𝐶  parameter (controlling the 
trade-off between maximum margin and error) and the choice 
of kernel [17]. 

SVM applications cover a wide range of fields. In 
bioinformatics, it is used to classify genes and predict diseases. 
In the financial sector, it analyzes trends and predicts market 
behavior. In computer vision, SVM is applied to facial and 
object recognition [2]. 

In conclusion, SVM is a powerful and flexible algorithm, 
capable of processing both linear and non-linear data. Although 
it requires expertise to optimize its parameters, its accuracy and 
ability to handle complex problems make it a preferred choice 
for many applications. 

C. Current Limitations and Challenges 

Despite their many applications and successes, supervised 
classification algorithms have inherent limitations and 
challenges that impact their adoption in certain contexts. These 
limitations vary from algorithm to algorithm and are influenced 
by factors such as the nature of the data, available resources, 
and the specific requirements of application domains. 

1) Dependence on data quality: The performance of 

supervised classification algorithms is highly dependent on the 

quality of the training data. Noisy, unbalanced or incomplete 

data can lead to bias and reduced accuracy [2][18]. For 

example, Decision Trees are prone to overfitting when 

training data contains anomalies or extreme values [10]. 

2) Scalability problem: Algorithms such as KNN and 

SVM can be inefficient on large datasets due to their 

algorithmic complexity [9][14]. KNN, with its O(n) 

complexity, becomes impractical for databases containing 

millions of points [15]. 

3) Lack of interpretability: Some algorithms, such as 

Random Forest, produce complex models that are difficult for 

non-expert users to interpret [14][19]. Although Random 

Forest offers high accuracy, its inner workings are often 

described as “black box”, limiting its adoption in sensitive 

fields such as medicine [19]. 

4) Sensitivity to overfitting: Models such as Decision 

Trees tend to overfit on training data, losing their ability to 

generalize on new data [10][2]. An unregularized Decision 

Tree may provide perfect results on training data but fail on 

test sets [13]. 

5) Resources and computing time: Algorithms like SVM 

and Random Forest require significant resources for training, 

which can be prohibitive in resource-constrained 

environments [9][16]. SVM with nonlinear kernels can require 

several hours to train on large datasets [16]. 

6) Adaptability problem: Some models, such as Naïve 

Bayes, assume feature independence, which limits their 

performance on datasets where features are highly correlated 

[8][9]. In textual datasets, Naïve Bayes' conditional 

independence assumption can lead to a significant loss of 

accuracy [8]. 

7) Hyperparameter dependence: Algorithm performance 

often depends on the fine-tuning of hyperparameters, which 

requires in-depth expertise and resources for cross-validation 

[2][16]. SVM efficiency is strongly influenced by the choice 

of kernel, C, and γ [2]. 

8) Generalization and robustness: Models sometimes lack 

robustness in the face of unbalanced or noisy data, which can 

lead to inconsistent performance [20][21]. Although Random 

Forests are robust in many cases, their performance can 

plummet when minority classes are severely under-

represented [20]. 

9) Ethical and regulatory challenges: The use of models 

in sensitive areas (health, finance) raises ethical issues related 

to fairness and transparency [19]. Biases introduced in training 

data can lead to discriminatory decisions in classification 

systems [19]. 

These limitations and challenges underline the need to 
tailor supervised classification algorithms to the specifics of 
applications. Future research should focus on developing 
models that are more interpretable, scalable, and robust to data 
variations. At the same time, solutions such as model 
hybridization or the integration of unsupervised approaches can 
help overcome some of these challenges. 

III. METHODOLOGY 

The aim of this work is to analyze and compare supervised 
classification algorithms and ensure a comprehensive and 
balanced evaluation based on well-defined criteria and a 
rigorous literature review. The methodology includes algorithm 
selection, definition of evaluation criteria, data collection and 
organization of the comparative synthesis. 

A. Algorithm Selection 

Five algorithms widely recognized in the scientific and 
industrial literature were selected: Naïve Bayes, Decision Tree, 
Random Forest, K-Nearest Neighbor (KNN) and Support 
Vector Machine (SVM).  

This choice is justified by: 

 Representativeness of approaches: These algorithms 
cover a wide range of methods (probabilistic, tree-
based, instance-based, etc.). 
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 Popularity and relevance: Their widespread adoption in 
industry and research testifies to their effectiveness in a 
variety of contexts [14], [16]. 

 Richness of available studies: These algorithms have 
been extensively documented, enabling in-depth 
comparison based on reliable experimental data. Naïve 
Bayes for text classification and spam detection [8]. 
Random Forest for fraud detection and medical 
diagnostics [14]. 

B. Criteria for Comparing Classification Algorithms 

The comparison of classification algorithms requires 
rigorously defined criteria to assess their performance and 
suitability for specific tasks. This subsection presents the 
criteria and sub-criteria used, explains their importance, and 
justifies their selection. 

1) Presentation of the criteria 

 Criteria for comparing supervised classification 
algorithms play a key role in assessing their 
effectiveness, performance and adaptability to different 
contexts. These criteria, carefully defined and justified, 
cover the essential dimensions for ensuring a rigorous 
and scientifically valid analysis. 

 Prediction accuracy is one of the most fundamental 
criteria, measuring the percentage of observations 
correctly classified by a model. It is calculated as the 
ratio between the number of correct predictions and the 
total number of predictions [2]. This criterion is crucial 
for applications where errors could have serious 
consequences, such as in medicine or finance. It directly 
reflects the reliability of a model and its suitability for 
accuracy requirements in critical environments. 

 Robustness represents the ability of an algorithm to 
maintain its performance despite noisy or disturbed data 
[13]. In real-world environments where data is often 
imperfect, this criterion ensures that the algorithm 
remains reliable, even in the presence of errors or 
anomalies in the data. This is particularly important in 
fields such as bioinformatics or facial recognition. 

 The tendency to overfitting assesses whether a model is 
able to avoid too much adaptation to training data, 
which would compromise its ability to generalize on 
new data [2]. Algorithms with a high risk of overfitting 
often require regularization techniques to guarantee 
stable performance. This criterion is essential in 
applications requiring the ability to generalize over 
varied data sets. 

 Generalizability is closely linked to the tendency to 
overfitting, and measures the extent to which an 
algorithm can successfully predict on unseen data [22]. 
This criterion is essential for assessing the durability of 
model performance in dynamic and unpredictable 
environments. 

 Training time refers to the time required to build a 
model from training data [2]. In contexts where models 
need to be updated frequently, such as real-time 
recommendation systems, this criterion helps to identify 
algorithms suited to strict time constraints. 

 Prediction time corresponds to the time required to 
provide a prediction on new data [2]. This criterion is 
essential in applications where responsiveness is 
crucial, such as autonomous vehicles or industrial 
control systems. It ensures that the algorithm can 
respond quickly to real-time requests. 

 Memory requirement measures the amount of memory 
needed to store the model and make predictions [17]. In 
resource-constrained environments, such as embedded 
devices, this criterion enables the selection of memory-
efficient algorithms. 

 Algorithmic complexity evaluates the computational 
cost of an algorithm in terms of time and space, often 
expressed in O notation (Hastie et al., 2009). This 
criterion is crucial in determining whether an algorithm 
can be used efficiently with large datasets or in 
resource-constrained environments. 

 Ease of implementation examines the simplicity with 
which an algorithm can be integrated into an existing 
system [10]. An easy-to-deploy model reduces the costs 
and time associated with development, which is 
particularly advantageous in projects requiring rapid 
integration. 

 Model interpretability refers to a model's ability to 
provide understandable explanations for its predictions 
[19]. This criterion is essential in regulated sectors, such 
as healthcare or finance, where transparency of 
decisions is paramount in building user trust. 

 The level of expertise required reflects the skills needed 
to configure and use an algorithm effectively [3]. This 
criterion is important for organizations with limited 
human resources in technical expertise, as it can 
influence the ease of model adoption. 

 Available documentation and libraries also play a key 
role in algorithm implementation [23]. Comprehensive 
documentation and well-supported libraries simplify the 
learning process and enable faster adoption of 
algorithms. 

 Adaptability to multimodal data assesses a model's 
ability to simultaneously process different types of data, 
such as text, images or audio signals [21]. This criterion 
is crucial for modern applications such as voice 
assistants or multimodal recognition. 

 Adaptability to unbalanced data measures an 
algorithm's ability to efficiently handle datasets where 
certain classes are under-represented [20]. This criterion 
is essential in fields such as fraud detection or the 
prediction of rare diseases, where the scarcity of cases 
of interest complicates model training. 
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 Handling missing data is an important criterion for 
assessing an algorithm's ability to operate in 
environments with incomplete data [18]. Models 
capable of tolerating missing values are particularly 
valuable in applications where complete data is rarely 
available. 

 Dimensionality reduction is a criterion that measures a 
model's ability to identify and use the most important 
features while reducing noise [24]. This improves the 
efficiency of algorithms and their ability to handle 
complex data sets. 

 Application domains reflect the usefulness of 
algorithms in a variety of sectors, such as finance or 
healthcare, where solutions like Random Forest have 
demonstrated their effectiveness in fraud detection and 
genomic analysis [14]. This criterion is crucial for 
assessing the relevance of algorithms in specific 
contexts. 

 Impact on practical decisions assesses the direct 
contribution of algorithms to decision-making. For 
example, Decision Trees are valued for their 
interpretability, facilitating reliable medical diagnoses 
[10]. This criterion is essential in determining how an 
algorithm can transform critical decision-making 
processes. 

 Integration into existing systems measures the ease with 
which algorithms can be implemented. Naïve Bayes are 
simple to deploy and easily adaptable to tools such as 
spam filtering systems [3]. Conversely, SVMs, with 
their complexity, pose integration challenges [16], 
underlining the importance of this criterion in assessing 
their practical applicability. 

 Implementation cost, finally, evaluates the resources 
required to operate an algorithm. Naïve Bayes, for 
example, are cost-effective, unlike SVMs, which 
require greater resources due to their algorithmic 
complexity [2]. This criterion is essential for judging 
the suitability of algorithms for real system constraints. 

2) Distribution of evaluation criteria 

 Technical performance: Prediction accuracy, 
robustness, tendency to overfitting and generalizability. 

 Computational efficiency: Computation time for 
training and prediction, memory requirements and 
algorithmic complexity. 

 Practicality and Ease of Use: Ease of implementation, 
Interpretability of models, Level of expertise required 
and Documentation and libraries available. 

 Data compatibility: Adaptability to data (multimodal, 
unbalanced), Handling of missing data and Reduction 
of dimensionality. 

 Applicability and Practical Impact: Application 
domains, Impact on practical decisions, Integration into 
existing systems and Implementation cost. 

These dimensions cover the essential aspects of algorithms, 
ensuring a balanced assessment between their raw 
performance, practicality, and adaptability to real-life use cases 
[2] [21]. 

3) Data collection 

a) Publication selection criteria 

 Period: Publications from 2000 to 2025 to include 
recent advances while maintaining a historical 
perspective. 

 Types of publication: Papers in indexed journals 
(Elsevier, Springer, IEEE), Proceedings of major 
conferences (NeurIPS, ICML, AISTATS) and relevant 
industrial technical reports. 

 Context of studies: Include work covering various fields 
of application (health, finance, education, etc.). 

b) Research process 

 Databases searched: Google Scholar, PubMed, IEEE 
Xplore, Scopus. 

 Screening: The selected studies had to provide detailed 
experimental results and quantitative comparisons 
between several algorithms. 

c) Validation of results 

 Each publication is reviewed in two stages: Analysis of 
the abstract and introduction to confirm relevance, and 
reading of the methodology and results sections to 
ensure data quality. 

d) Data synthesis 

 Thematic organization: Publications are grouped by 
application (healthcare, finance, industry, etc.) and 
evaluation criteria (accuracy, robustness, etc.). 

 Metrics extraction: Experimental results (accuracy, 
computation time) are extracted to feed comparative 
analyses. 

4) Organization of the comparative summary 

a) Results format: Synthetic tables: Presentation of 

criteria in tabular form for quick comparison of algorithms. 

b) Qualitative analysis: Textual explanation of algorithm 

strengths and weaknesses, contextualized by extracted results. 

c) Cross-validation: Comparison of experimental results 

between different publications to reinforce reliability. 

Narrative analysis to incorporate variations due to specific 

study contexts. Fig. 1 shows the comparative study workflow. 
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 The comparative study workflow shows the overall study process. 

IV. RESULTS AND DISCUSSION 

A. Presentation of Results 

The results are organized according to the dimensions 
defined in the methodology: technical performance, 
computational efficiency, practicality, compatibility with data, 
and practical applicability. 

1) Technical performance: This table evaluates the 

accuracy, robustness to perturbations, tendency to overfitting, 

and generalizability of the models. The qualitative scores are 

normalized on a scale of 5 and accompanied by accuracy 

ranges reported in the literature. Scientific references are 

provided for each criterion to support the evaluations. Random 

Forest (RF) and Support Vector Machine (SVM) models stand 

out overall for their high performance, while Naive Bayes 

(NB) shows more variable performance depending on the 

criteria. 

This figure illustrates the comparative performance of the 
five supervised classification algorithms (Naive Bayes, 
Decision Tree, Random Forest, SVM, and KNN) based on the 
average scores assigned to each according to the five 
dimensions defined in the study: technical performance, 
computational efficiency, ease of use, data compatibility, and 
practical applicability. The colors of the bars represent the 
different dimensions of analysis (e.g., yellow = performance, 
orange = efficiency, red = ease of use, blue = data 

compatibility, etc.). Each score ranges from 1 (low) to 5 
(excellent). We can see that Random Forest and SVM achieve 
the highest scores overall, while Naive Bayes and KNN show 
more mixed results depending on the criteria. 

TABLE I.  COMPARISON OF ALGORITHMS BASED ON TECHNICAL 

PERFORMANCE CRITERIA 

Algorithm 

Accuracy 

(%) 

Yellow (Y) 

Robustness 

Orange(O) 

Tendency 

to 

overfitting 

Red(R) 

Generalizability 

Blue (B) 

NB 

3/5 

45 – 98 

[25][26][27] 

[28][29] 

2/5 

[40] 

4/5 

[45] 

3/5 

[9] 

DT 

3/5 

64 – 95 

[25][30][31] 

[32][33] 

3/5 

[41] 

2/5 

[46] 

3/5 

[14] 

RF 

5/5 

71 – 98 

[30][31][33] 

[34][35] 

5/5 

[42] 

4/5 

[41] 

5/5 

[49] 

KNN 

3/5 

64 – 98 

[26][36][36] 

[38][39] 

2/5 

[43] 

2/5 

[47] 

4/5 

[50] 

SVM 

5/5 

70 – 97 

[27][28][29] 

[35][38] 

4/5 

[44] 

4/5 

[48] 

5/5 

[9] 

 
 Comparison of algorithms based on technical performance criteria. 

2) Computational efficiency:  This table compares the five 

algorithms studied according to four key aspects of 

computational efficiency. Each criterion is evaluated on a 

scale of 1 to 5. The results highlight the superiority of Naive 

Bayes across all criteria, with perfect scores (5/5), while 

Random Forest and SVM show compromises between 

accuracy and computational cost. The bibliographic references 

associated with each score are also indicated to ensure the 

traceability of the evaluations. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

632 | P a g e  

www.ijacsa.thesai.org 

TABLE II.  COMPARISON OF ALGORITHMS BASED ON COMPUTATIONAL 

EFFICIENCY 

Algorithm 
Time for 

training (Y) 

Time for 

prediction 

(B) 

Memory 

requirements 

(O) 

Algorithmic 

complexity 

(R) 

NB 
5/5 

[45] 

5/5 

[3] 

5/5 

[2] 

5/5 

[45] 

DT 
4/5 

[47] 

4/5 

[47] 

4/5 

[2] 

4/5 

[41] 

RF 
2/5 

[49] 

3/5 

[41] 

3/5 

[42] 

2/5 

[49] 

KNN 
3/5 

[51] 

1/5 

[43] 

2/5 

[43] 

3/5 

[51] 

SVM 
2/5 

[52] 

3/5 

[48] 

3/5 
[48] 

2/5 

[52] 

 
 Comparison of algorithms based on computational efficiency. 

This figure provides a comparative visual representation of 
the five algorithms studied in Table II, according to the 
following criteria: Time for training (Yellow), Memory 
requirements (Orange), Algorithmic complexity (Red), and 
Time for prediction (Blue). Each criterion is rated on a scale of 
1 to 5. 

3) Practicality and ease of use: This table evaluates the 

five supervised classification algorithms (Naive Bayes, 

Decision Tree, Random Forest, k-NN, SVM) according to 

four practical criteria: ease of implementation, interpretability, 

level of expertise required, and availability of documentation 

and associated libraries. Scores are rated on a scale of 1 to 5. 

A simplified visualization of the results in Table III, this 
figure compares the performance of the five algorithms 
according to four criteria: Ease of implementation (yellow), 
Interpretability (orange), Level of expertise required (red), and 
Documentation and libraries available (blue). Scores are given 
on a scale of 5 to allow for quick comparative reading. 

4) Data compatibility: This table evaluates the five 

algorithms according to four compatibility sub-criteria: 

Adaptability to multimodal data, Management of missing data, 

Dimensionality reduction, and Adaptability to unbalanced 

data. Each criterion is scored out of 5, and the associated 

bibliographic references are indicated in brackets. These 

scores illustrate the extent to which each model is able to 

adapt to the diversity and imperfections of the data used in 

supervised classification. 

TABLE III.  COMPARISON OF ALGORITHMS BASED ON PRACTICALITY AND 

EASE OF USE 

Algorith

m 

Ease of 

implementatio

n (Y) 

Interpretabili

ty (O) 

Level of 

expertis

e 

require 

(R) 

Documentatio

n and 

libraries 

available (B) 

NB 

5/5 

[45] 

3/5 

[3] 

5/5 

[45] 

5/5 

[9] 

DT 
4/5 

[51] 

5/5 

[53] 

4/5 
[48] 

5/5 

[23] 

RF 
3/5 

[41] 

2/5 

[49] 

3/5 

[52] 

5/5 

[9] 

KNN 
5/5 

[51] 

2/5 

[43] 

5/5 

[51] 

5/5 

[23] 

SVM 
2/5 

[48] 

2/5 

[54] 

2/5 

[48] 

5/5 

[9] 

 

 Comparison of algorithms based on practicality and ease of use. 

TABLE IV.  COMPARISON OF ALGORITHMS BASED ON COMPATIBILITY 

WITH DATA 

Algorithm 

Adaptability 

to 

multimodal 

data (Y) 

Handling 

of missing 

data (O) 

Reduction of 

dimensionality 

(R) 

Adaptability 

to 

unbalanced 

data (B) 

NB 

3/5 

[55] 

3/5 

[18] 

4/5 
[24] 

2/5 

[55] 

DT 
4/5 

[47] 

4/5 

[41] 

3/5 

[47] 

3/5 

[54] 

RF 
5/5 

[49] 

5/5 

[42] 

4/5 

[49] 

4/5 

[49] 

KNN 
3/5 

[51] 

2/5 

[43] 

3/5 
[51] 

2/5 

[43] 

SVM 
4/5 

[54] 

2/5 

[48] 

5/5 

[48] 

4/5 

[52] 
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 Comparison of algorithms based on compatibility with data. 

Summary graph based on data from Table IV, showing the 
scores assigned to algorithms on four criteria: Adaptability to 
multimodal data (yellow), Handling of missing data (orange), 
Reduction of dimensionality (red), and Adaptability to 
unbalanced data (blue). This visualization facilitates 
comparative interpretation between models. 

5) Applicability and practical impact: This table presents 

a comparative evaluation of five supervised classification 

algorithms—Naive Bayes (NB), Decision Tree (DT), Random 

Forest (RF), k-Nearest Neighbors (k-NN) [37], and Support 

Vector Machine (SVM)—based on four criteria related to their 

applicability in real-world contexts. The criteria studied 

include: (1) diversity of application domains, (2) impact on 

practical decision-making, (3) degree of integration into 

existing systems, and (4) implementation cost. Each criterion 

is rated on a scale of 1 to 5, where 5 indicates the best 

performance. The scores are accompanied by bibliographic 

references [45], [2], [14], etc., attesting to the origin of the 

evaluations. This summary aims to guide practitioners in 

choosing an algorithm based on concrete constraints, such as 

ease of implementation, compatibility with existing systems, 

or decision-making scope. It thus complements purely 

technical or statistical comparisons by integrating the 

dimension of operational applicability. 

This visualization illustrates the comparative scores from 
Table V for the four criteria selected: Application domains 
(yellow), Impact on practical decisions (orange), Integration 
into existing systems (red), and Implementation cost (blue). It 
highlights the relative strengths of each algorithm through a 
clear representation. 

B. Discussion 

Quantitative analysis of supervised classification 
algorithms reveals clear but complementary differences in their 
technical, operational, and practical properties. These results 
can be interpreted in several ways depending on the 
deployment objectives and context of use. 

TABLE V.  COMPARISON OF ALGORITHMS ACCORDING TO APPLICABILITY 

AND PRACTICAL IMPACT 

Algorithm 

Application 

domains 

(Y) 

Impact on 

practical 

decisions 

(O) 

Integration 

into 

existing 

systems (R) 

Implementation 

cost (B) 

NB 

4/5 

[45] 

3/5 

[2] 

4/5 
[45] 

5/5 

[9] 

DT 
4/5 

[41] 

4/5 

[14] 

4/5 

[48] 

4/5 

[41] 

RF 
5/5 

[49] 

5/5 

[49] 

4/5 
[42] 

3/5 

[49] 

KNN 
3/5 

[43] 

3/5 

[51] 

3/5 

[51] 

5/5 

[51] 

SVM 
5/5 

[56] 

4/5 

[54] 

3/5 

[52] 

3/5 

[48] 

 
 Comparison of algorithms according to applicability and practical 

impact. 

The Random Forest and SVM algorithms clearly stand out 
in terms of accuracy, generalization ability, and robustness 
(Table I, Fig. 2). Their high scores confirm their ability to 
handle complex problems requiring reliable prediction, such as 
in medical imaging or cybersecurity. Conversely, although 
Naive Bayes has an elegant probabilistic structure, its 
simplification of inter-variable dependencies limits its overall 
accuracy, particularly in highly correlated contexts. Decision 
Tree shows moderate performance, while KNN suffers from 
high sensitivity to noise and overfitting. 

Naive Bayes and, to a lesser extent, Decision Tree, are 
notable for their computational lightness (Table II, Fig. 3). 
These methods are appropriate in real-time processing contexts 
or on machines with limited resources. In contrast, Random 
Forest and SVM, although powerful, have a significant 
computational cost, both in training and prediction. KNN, 
although without a learning phase, is slowed down at the time 
of classification due to the need to scan the entire dataset. 

Naive Bayes and KNN stand out as the most accessible, 
requiring little expertise and being very easy to implement 
(Table III, Fig. 4). Decision Tree combines this accessibility 
with excellent interpretability, making it a popular model for 
decision support systems. On the other hand, SVM and 
Random Forest are often perceived as “black boxes” requiring 
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more sophisticated configuration and increased expertise, 
which can limit their adoption in constrained industrial 
contexts. 

The results show that Random Forest is the most versatile, 
effectively handling missing data, class imbalances, and 
dimensionality reduction. SVM follows closely behind, 
provided rigorous preprocessing is performed (Table IV, Fig. 
5). Naive Bayes and KNN, on the other hand, are sensitive to 
data quality and structure. The former assumes conditional 
independence of variables, while the latter suffers from the 
effects of dimensionality and noise. 

Random Forest and Decision Tree are very attractive from 
an application standpoint, with broad sectoral adaptability and 
a concrete impact on decision-making (Table V, Fig. 6). Naive 
Bayes is also valued for its low cost and ease of integration. On 
the other hand, SVM remains more expensive to implement, 
although it offers high performance. Finally, KNN remains 
unpopular in production environments due to its limited 
scalability. 

C. Limitations of the Results 

Although this comparative review provides an in-depth 
summary of the literature, several limitations should be noted: 

1) Lack of empirical validation: The scores are based on 

bibliographic analyses and do not reflect direct experiments on 

specific datasets. An empirical study would have allowed for 

more contextual calibration of the assessments. 

2) Variability of application contexts: Algorithm 

performance can vary significantly depending on the domain 

(healthcare, finance, language processing, etc.). As this study 

is general in nature, it does not capture all the nuances specific 

to each sector. 

3) Implementation changes: The performance and 

practicality of algorithms can be influenced by the software 

libraries used, which evolve rapidly. Results may therefore 

change in the short term. 

4) Equal weighting of criteria: Aggregating scores 

assumes uniform weighting of the 20 criteria, which does not 

necessarily reflect the actual importance of each criterion 

depending on the context of use. 

V. CONCLUSION 

This comparative study, based on an in-depth literature 
review, evaluated five major supervised classification 
algorithms—Naive Bayes, Decision Tree, Random Forest, 
Support Vector Machine (SVM), and K-Nearest Neighbor 
(KNN)—across twenty criteria divided into five dimensions: 
technical performance, computational efficiency, practicality, 
data compatibility, and applicability. 

The results show that Random Forest offers an excellent 
compromise between accuracy, robustness, and applicability, 
making it a preferred choice for high-stakes use cases. Naive 
Bayes, on the other hand, stands out for its simplicity, speed, 
and low implementation cost, making it ideal for resource-
constrained environments. Decision Tree occupies a middle 
ground, combining interpretability and good performance. On 

the other hand, SVM, despite its remarkable technical 
performance, remains difficult to implement and integrate into 
real systems. Finally, KNN has significant limitations in terms 
of scalability and robustness, although it remains useful for 
simple and exploratory cases. 

This study highlights the importance of a contextualized 
multi-criteria assessment in the choice of classification 
algorithms. No model is universally applicable; each algorithm 
has strengths and weaknesses that must be weighed according 
to the specific constraints of the problem, the domain, and the 
technical environment. 

Future work could expand on this bibliographic analysis 
through rigorous experimental validation, applying the five 
classification algorithms to real-world datasets from various 
fields such as education, healthcare, and finance. Such an 
extension would allow theoretical observations to be compared 
with empirical performance and recommendations for use to be 
refined according to the application context. In addition, a 
promising avenue lies in integrating recent advances in 
AutoML to automate the selection, configuration, and 
optimization of models based on the nature of the data. 
Exploring hybrid learning techniques (e.g., combining multiple 
algorithms via ensembles or mixed architectures) could also 
improve robustness and predictive performance. Finally, the 
use of supervised deep learning approaches, in particular deep 
neural models or pre-trained neural networks (e.g., BERT, 
LSTM, CNN), would represent a step forward in the 
processing of more complex data (text, images, etc.). A 
complementary benchmark could thus be considered to 
compare classical models and neural architectures on broader 
common criteria (training time, ability to generalize, sensitivity 
to imbalances, etc.). 
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