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Abstract—Defective products in manufacturing can be 

reduced by accurately predicting quality outcomes based on 

process parameters. This study proposes a quality prediction 

framework for semiconductor manufacturing using the Data 

Mining Methodology for Engineering Applications (DMME). This 

study extends DMME with domain-specific preprocessing and 

demonstrates its superiority on the SECOM dataset compared to 

other classifiers. Experimental results show that the Random 

Forest algorithm achieved the highest performance, with 92.99% 

accuracy and an F-measure of 0.9637, confirming the effectiveness 

of the proposed approach. These findings highlight the potential 

of structured, engineering-oriented data mining to improve 

product quality and support informed decision-making in 

complex manufacturing environments. 

Keywords—Data mining; quality prediction; DMME; 

semiconductor manufacturing; random forest 

I. INTRODUCTION 

Manufacturing refers to the industrial process of converting 
raw materials into products with higher economic value, 
whether in the form of finished goods or intermediate 
components [1]. Semiconductor production is a highly complex 
stage that involves multiple subprocesses and generates large 
volumes of process data, which must be effectively controlled 
and analyzed to improve product quality [2]. Even with 
continuous advancements in production technology and 
management practices, product defects still occur in 
manufacturing processes [3]. Breakdowns in production 
machinery can further disrupt manufacturing flows and result in 
substantial losses, emphasizing the importance of preventive 
maintenance strategies to ensure production stability and 
consistency in product quality [4]. A practical way to reduce 
these defects is to analyze production data and pinpoint the 
process parameters that have the most significant impact on 
product quality. Understanding these factors enables 
manufacturers to develop predictive models that help anticipate 
product outcomes and support informed decision-making for 
future production runs [5]. When properly built, these models 
can be more accurate and efficient than traditional inspection-
based approaches [6]. 

Several studies have examined the prediction of quality in 
various manufacturing contexts. In wafer dicing, for example, 
models have been shown to predict failures with up to 75% 
accuracy [7]. In the process of coke production, regression 
techniques have been employed to map coal properties into 
performance indicators, such as the coke reactivity index (CRI) 
and the coke strength after reaction (CSR) [8]. On the other 
hand, battery production has adopted various methods to model 

product quality across complex and highly variable production 
lines [9]. 

In semiconductor manufacturing, cascade quality prediction 
techniques that integrate principal component analysis (PCA) 
with decision tree algorithms, such as ID3, have shown strong 
results, achieving prediction accuracies of up to 90.02% [10]. 
While this highlights the promise of predictive modeling in the 
manufacturing sector, the effectiveness of such models can vary 
significantly depending on the application area and the 
characteristics of the data being used. 

Reliable quality prediction depends on more than just 
selecting a good algorithm. The way the problem is defined and 
the data are prepared play a significant role in the outcome. 
Quality management, at its core, is about improving process 
performance and minimizing variation [11], [12]. Predictive 
models built on process data support this goal by providing a 
structured, data-driven means of identifying patterns that affect 
product outcomes [13]. Data mining plays a key part in this 
process. It combines statistical and machine learning techniques 
to uncover useful patterns and insights from complex data 
sources [14], [15], [16]. One common framework for this is the 
Cross-Industry Standard Process for Data Mining (CRISP-DM), 
which organizes data mining into six defined phases, from 
understanding the business context all the way to 
implementation. Still, CRISP-DM is a general-purpose 
framework, and it doesn’t fully address the needs of 
engineering-specific problems. To bridge that gap, the Data 
Mining Methodology for Engineering (DMME) was developed 
to extend CRISP-DM by incorporating additional steps more 
suited to technical domains [17]. 

Despite the availability of various quality prediction 
methods, many are developed and tested under specific 
conditions or on a limited set of data. Because of differences in 
data types, distributions, and feature counts, a model that works 
well in one context might not deliver the same performance in 
another. This limitation is especially relevant in semiconductor 
manufacturing, where the data is often highly complex and 
challenging to work with. The benchmark that is often used in 
this space is called the SECOM dataset. It contains many 
numerical attributes with a nominal label to indicate product 
quality. While this dataset offers considerable potential for 
analysis, limited research has explored which machine learning 
techniques are best suited for handling its specific 
characteristics, such as high dimensionality and class imbalance. 
Moreover, there has been little examination of how individual 
process variables impact prediction outcomes across different 
modeling approaches. 
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To fill this research gap, the study focuses on developing a 
quality prediction model specifically suited to datasets like 
SECOM. A model that consists of numerical features and 
categorical labels. The goal is to identify a modeling approach 
that offers high accuracy while factoring in the distinct 
difficulties and characteristics of the semiconductor 
manufacturing process. 

The remainder of this study is organized as follows: 
Section II reviews related works on data-driven quality 
prediction and outlines the research gap addressed in this study. 
Section III details the proposed methodology based on DMME. 
Section IV presents the dataset used in this research, data 
preparation techniques, describes the modelling approach and 
selected algorithms. Section V reports the experimental results 
and Section VI discusses their implications. Finally, Section VII 
concludes the study with key findings and suggestions for future 
research. 

II. RELATED WORK 

Recent advancements have demonstrated the increasing role 
of machine learning (ML) and data-driven approaches in 
enhancing semiconductor manufacturing processes. A 
comprehensive review of ML applications for semiconductor 
process optimization was presented by [18], in which predictive 
models, virtual metrology, and advanced process control were 
highlighted as methods that have improved yield and quality 
across various stages of production. While these approaches 
have demonstrated significant improvements, most focus on 
specific techniques or stages rather than employing a holistic 
methodology to systematically address data challenges in 
manufacturing. This study addresses this gap by leveraging the 
Data Mining Methodology for Engineering Applications 
(DMME) to develop a comprehensive quality prediction 
framework for semiconductor processes. In [19], the authors 
systematically reviewed automated defect inspection using 
convolutional neural networks (CNNs) on scanning electron 
microscope (SEM) images, emphasizing the potential of ML to 
replace traditional, labor-intensive inspection methods. In 
specific process applications, [20] developed a machine-
learning-based prediction model to optimize plasma etching 
parameters, demonstrating that domain-specific ML techniques 
can enhance process stability and output quality. Beyond 
improving accuracy, [21] integrated explainability methods into 
manufacturing quality prediction models, enabling better 
transparency and trust in model-driven decisions. Furthermore, 
[22] addressed a critical challenge of ML adoption in 
manufacturing by analyzing the effects of data quality and class 
imbalance on predictive performance, recommending robust 
preprocessing pipelines for reliable outcomes. 

In addition to algorithmic improvements, recent works have 
explored leveraging modern computing infrastructures to 
enhance quality management systems. In [23], the authors 
demonstrated the feasibility of integrating data mining 
techniques such as Decision Tree, k-Nearest Neighbor, Naïve 
Bayes, and Random Tree into a Software-as-a-Service (SaaS) 
platform, enabling low-cost and accessible quality prediction for 
manufacturing environments. Similarly, [24] proposed a Cloud-
based Quality Analyzer (CQA) that incorporates real-time 
analysis, automated feedback loops, and reduced reliance on 

human quality engineers, aligning with Industry 4.0 principles 
of cyber-physical integration and data-driven decision-making. 
These studies highlight the growing trend toward combining 
advanced predictive models with cloud-based and intelligent 
platforms to achieve scalable, efficient, and adaptive quality 
management solutions. 

Despite these contributions, many existing approaches either 
focus on specific manufacturing tasks or rely heavily on singular 
algorithmic solutions without a structured methodology to 
handle data quality issues systematically. To bridge this gap, the 
present study employs the Data Mining Methodology for 
Engineering Applications (DMME), which integrates domain-
specific preprocessing, feature selection, and algorithm 
comparison to develop a robust product quality prediction 
framework tailored for high-dimensional, imbalanced 
semiconductor manufacturing data. 

III. METHODOLOGY 

This research uses the Data Mining Methodology for 
Engineering Applications (DMME), which builds on the widely 
recognized CRISP-DM framework and adapts it specifically for 
engineering challenges [25]. DMME introduces important 
technical extensions to the process, including feature selection, 
dimensionality reduction, and techniques to address class 
imbalance, which are critical steps due to the high-dimensional 
and unbalanced nature of the SECOM dataset analyzed here. For 
example, principal component analysis (PCA) was considered 
to simplify the dataset. On the other hand, methods like SMOTE 
were explored to address the uneven distribution between 
defective and acceptable products. For the classification task, the 
study focused on five algorithms, i.e., Decision Tree, Random 
Forest, Support Vector Machine, k-Nearest Neighbor, and Naive 
Bayes. These were selected because they offer a good mix of 
transparency, speed, and effectiveness for structured data 
typically found in manufacturing. More complex options, such 
as XG Boost or neural networks, were set aside for this work in 
favor of models that are easier to interpret and commonly used 
in process engineering. All analyses were conducted using 
Rapid Miner Studio and Microsoft Excel, ensuring a systematic 
evaluation of how various process parameters affect product 
quality in semiconductor manufacturing. 

IV. DATA UNDERSTANDING AND METHODOLOGY 

This stage describes the process of collecting and selecting 
data to be processed for research. The process of predicting 
product quality requires historical data owned by the company 
to be used as a reference in the prediction process. The data used 
must have elements that directly affect the quality of the product 
or can be referred to as attributes. The data studied in this study 
were defect data in semiconductor products [25]. The 
semiconductor dataset can be seen in Table I. 

The data above displays several columns of identity 
information, including the time of manufacture of the product, 
the product number in the second column, the third column, 
which contains parameters with both numeric and real 
characteristics, and the last column, which shows the quality 
results of the product. There are 590 types of parameters, each 
with a unique value in the column. The last column in the table 
indicates the quality of the product, with an accept/reject 
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classification status characterized by binomial characteristics. 
The dataset used has multivariate characteristics, with the value 
of each attribute having numerical characteristics. The dataset is 
in the manufacturing area. The dataset used contains attributes 
with numeric characteristics, comprising 591 columns and 1567 
rows of production data. This semiconductor dataset accounts 
for missing values and bias resulting from disturbances in the 
data collection process, with varying intensities depending on 
the features of each product. This null value must be considered 
when preprocessing data or when the algorithm is applied. The 
data is represented in a raw text file, with each line 
corresponding to an individual and a feature in the process. 

TABLE I SEMICONDUCTOR DATASET 

Time Prod 
Attribute 

Accept/Reject 
0 1 … 589 

19/07/2008 
11:55 

1 3030,9 2564,0 …  Accept 

19/07/2008 

12:32 
2 3095,8 2465,1 … 208,2 Accept 

19/07/2008 
13:17 

3 2932,6 2559,9 … 82,9 Reject 

19/07/2008 

14:43 
4 2988,7 2479,9 … 73,8 Accept 

19/07/2008 
15:22 

5 3032,2 2502,9 … 73,8 Accept 

… … … … … … … 

17/10/2008 
6:07 

1567 2944,9 2450,8 … 137,8 Accept 

A. Data Preparation 

The data preparation process involves adjusting the type of 
data to be used in conjunction with the character data from the 
dataset. The data prepared for the data type adjustment process 
is part of the attribute column, where each parameter value has 
special characteristics that can be classified as a particular data 
type. An explanation of the data preparation stage is provided 
below. 

1) Data cleansing: The raw dataset, before the cleansing 

process is carried out to eliminate missing values, can be seen 

in Table II. 

TABLE II SEMICONDUCTOR RAW DATASETS 

Time Prod 
Attribute 

Accept/Reject 
0 1 … 589 

19/07/2008 
11:55 

1 3030,9 2564,0 …  Accept 

19/07/2008 

12:32 
2 3095,8 2465,1 … 208,2 Accept 

19/07/2008 

13:17 
3 2932,6 2559,9 … 82,9 Reject 

19/07/2008 

14:43 
4 2988,7 2479,9 … 73,8 Accept 

19/07/2008 
15:22 

5 3032,2 2502,9 … 73,8 Accept 

… … … … … … … 

17/10/2008 
6:07 

1567 2944,9 2450,8 … 137,8 Accept 

The data cleansing process, which involved eliminating 
missing values in this study, was performed using Microsoft 
Excel on the rows and columns of the dataset. After the process 
of removing missing values is completed in Microsoft Excel, the 
data can be viewed in Table III. 

TABLE III SEMICONDUCTOR DATASETS AFTER CLEANSING DATA FOR 

MISSING VALUE 

Attribute 
Accept/Reject 

0 1 … 589 

2932,6 2559,9 … 82,9 Reject 

2988,7 2479,9 … 73,8 Accept 

2946,3 2432,8 … 44,0 Accept 

3030,3 2430,1 … 44,0 Accept 

3058,9 2690,2 … 95,0 Accept 

… … … … … 

3246,3 2499,8 … 23,6 Accept 

Then, the data cleansing process is carried out to handle 
outlier values in the semiconductor dataset using the auto-
cleansing feature in RapidMiner Studio software. An overview 
of auto cleansing can be seen in Fig. 1. 

 

Fig. 1. Cleansing data for outlier handling. 

After the auto cleansing process is done, the data after the 
process can be seen in Table IV. 

TABLE IV SEMICONDUCTOR DATASETS AFTER CLEANSING DATA FOR 

OUTLIERS 

Attribute 
Accept/Reject 

0 1 … 589 

2932,6 2559,9 … 82,9 Reject 

2988,7 2479,9 … 73,8 Accept 

2946,3 2432,8 … 44,0 Accept 

3030,3 2430,1 … 44,0 Accept 

3058,9 2690,2 … 95,0 Accept 

… … … … … 

3246,3 2499,8 … 23,6 Accept 
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2) Data transformation: Before the data transformation 

process is carried out, the dataset to be studied is prepared in 

advance. Data transformation is performed using a read 

operator in Rapid Miner, which can be used for various data 

extensions, including CSV, Excel, URL, SAS files, and several 

other file extensions that resemble databases. Researchers in 

this study used an Excel file type (xlsx), so that the operator 

used was Read Excel. Four steps must be taken when importing 

data to this operator. First, select files; second, determine the 

format to be used; third, determine the rows and columns; and 

finally, select labels to predict. The determination of the label 

is based on the classification results expected in the study. The 

prediction process carried out refers to the classification results 

to be achieved. The processed elements consisted of 392 

attribute variables and the outcome of the decision variable, 

which was labeled. The type of data used depends on the value 

in each attribute column. In this research dataset, all values in 

the attribute columns are numeric data types, and the label 

variable, resulting from the accept/reject decision, is nominal. 

B. Modelling 

The modeling process is carried out by extracting the data 
that has been prepared in advance. The extraction process is 
carried out with the selected algorithms, namely, random forest, 
decision tree, k-NN, support vector machine, and naïve Bayes. 
The extraction processes up to the selection of Rules can be seen 
below. 

1) Data extraction: The data extraction stage on the 

prepared dataset utilizes several operator processes to facilitate 

the data extraction process. Extraction begins by reading the 

data from the dataset using the Read Excel operator and then 

proceeds through the preprocessing process (data preparation) 

until it reaches the cross-validation process. 

2) Cross-validation: Cross-validation is a statistical 

method for evaluating and comparing algorithms by dividing 

the dataset into two classifications, namely the training set and 

the testing set. Validation in this study employs a 10-fold cross-

validation approach, performing iterations with 10 data waves 

that alternate as test data. Cross-validation is used because the 

validation process emphasizes the use of test data 

interchangeably, ensuring that the data used to create a model 

is similar to the original characteristics. The training set is part 

of the dataset that is used to train the model, while the testing 

set is a subset of the dataset that is used to evaluate its 

performance. The principle of the cross-validation process is to 

conduct repeated experiments (iterations) on the test and train 

sets. The number of these iterations can be determined 

according to the intended results. The extraction stage involves 

several supporting operators that optimize the data to be 

extracted, ensuring that at the time of cross-validation, the data 

is relevant for validation. 

V. RESULTS 

A. Selected Algorithm 

The accuracy value of each algorithm used can be seen in 
Table V. 

TABLE V ALGORITHM ACCURACY 

Algorithm Precision Recall Accuracy 
F 

Measure 
G-Mean 

Random 

Forest 
92.99% 100.00% 92.99% 0.9637 0.4649 

k-NN 99.72% 93.21% 92.99% 0.9636 0.4648 

SVM 99.91% 92.98% 92.90% 0.9632 0.4645 

Decision 

Tree 
98.70% 93.64% 92.55% 0.9610 0.4621 

Naive 

Bayes 
93.63% 21.88% 25.97% 0.3547 0.1024 

The Rapid Miner results recapitulation for algorithms that 
have been used in graphical form can be seen in Fig. 2. 

 

Fig. 2. Comparison of algorithms. 

Table V presents the performance metrics for each 
algorithm. Random Forest achieved the highest accuracy 
(92.99%) and F-measure (0.9637), outperforming all other 
classifiers. While Random Forest provided the best 
performance, its computational cost was higher than single-tree 
models, which may impact real-time applications. 

The five models used have their characteristics based on 
their work specifications. Based on this research, the random 
forest model has the highest accuracy and F-measure value, at 
92.99% for accuracy and 0.9637 for the F-measure. Therefore, 
it was selected for use on the dataset. However, this model has 
weaknesses in terms of computation time. The random forest 
algorithm uses random attributes and classifies the trees that are 
formed. The tree building is done recursively based on the data 
associated with the same label. Tree splitting is performed to 
divide the data based on the type of attribute used. The Naïve 
Bayes algorithm classifies labels using probability and statistical 
methods. The SVM algorithm pursues the optimal hyperplane 
by maximizing the distance between classes. A hyperplane 
serves as a separator between classes. Another classification 
algorithm is the k-Nearest Neighbor algorithm, which classifies 
new nodes by assigning a value based on the category with the 
highest number of nearest k neighbors. Finally, the decision tree 
algorithm serves as the basis for the random forest algorithm, 
which converts data into decision rules to form a tree, enabling 
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decision makers to better interpret solutions to the problems that 
arise. 

There is a visualization of the random forest algorithm, 
which consists of several decision tree diagrams. An illustration 
of one of the first decision tree visualizations from the Random 
Forest algorithm, is demonstrated in Fig. 3, following the 
knowledge mining process already conducted. 

The decision tree model in the random forest algorithm can 
be interpreted as a set of rules, making it easier to understand. 
Rules are a concise summary of descriptive algorithms that 
enable the deduction of solutions to a problem, making them 
easy to understand. One of the rules for the decision tree shown 
in Fig. 4 is evident. 
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Fig. 3. One of the random forest model diagram visualization. 

524 > 2.958 

|   161 > 8811.500: Accept {Reject=0, Accept=86} 

|   161 ≤ 8811.500 

|   |   341 > 3.609 

|   |   |   89 > 0.154 

|   |   |   |   204 > 0.177 

|   |   |   |   |   272 > 22.653 

|   |   |   |   |   |   222 > 0.004 

|   |   |   |   |   |   |   469 > 5.184: Accept {Reject=0, 

Accept=10} 

|   |   |   |   |   |   |   469 ≤ 5.184: Reject {Reject=2, 

Accept=0} 

|   |   |   |   |   |   222 ≤ 0.004: Accept {Reject=0, 

Accept=57} 

|   |   |   |   |   272 ≤ 22.653: Reject {Reject=2, Accept=0} 

|   |   |   |   204 ≤ 0.177 

|   |   |   |   |   455 > 3.030 

|   |   |   |   |   |   130 > 0.678: Reject {Reject=8, Accept=0} 

|   |   |   |   |   |   130 ≤ 0.678: Accept {Reject=0, 

Accept=4} 

|   |   |   |   |   455 ≤ 3.030 

|   |   |   |   |   |   269 > 4.238: Reject {Reject=2, Accept=0} 

|   |   |   |   |   |   269 ≤ 4.238: Accept {Reject=0, 

Accept=10} 

|   |   |   89 ≤ 0.154: Reject {Reject=5, Accept=0} 

|   |   341 ≤ 3.609 

|   |   |   460 > 22.968 

|   |   |   |   16 > 9.888 

|   |   |   |   |   296 > 926.377 

|   |   |   |   |   |   310 > 0.331 

|   |   |   |   |   |   |   573 > 0.195 

|   |   |   |   |   |   |   93 ≤ -0.001 

|   |   |   |   |   |   |   |   3 > 1259.721: Accept {Reject=0, 

Accept=22} 

|   |   |   |   |   |   |   |   3 ≤ 1259.721 

|   |   |   |   |   |   |   |   |   137 > 88.300 

|   |   |   |   |   |   |   |   |   |   26 > 1.909: Reject {Reject=5, 

Accept=1} 

|   |   |   |   |   |   |   |   |   |   26 ≤ 1.909: Accept {Reject=0, 

Accept=3} 

|   |   |   |   |   |   |   |   |   137 ≤ 88.300: Accept {Reject=0, 

Accept=8} 

|   |   |   |   16 ≤ 9.888 

|   |   |   |   |   71 > 171.004 

|   |   |   |   |   |   89 > 0.173 

|   |   |   |   |   |   |   16 > 9.014: Accept {Reject=0, 

Accept=12} 

|   |   |   |   |   |   |   16 ≤ 9.014: Reject {Reject=2, 

Accept=0} 

|   |   |   |   |   |   89 ≤ 0.173: Reject {Reject=4, Accept=0} 

|   |   |   |   |   71 ≤ 171.004 

|   |   |   |   |   |   59 > 1.631 

|   |   |   |   |   |   |   32 > 85.275: Accept {Reject=0, 

Accept=52} 

|   |   |   |   |   |   |   32 ≤ 85.275 

|   |   |   |   |   |   |   |   153 > 0.005 

|   |   |   |   |   |   |   |   |   576 > 1.761 

|   |   |   |   |   |   |   |   |   |   573 > 0.356: Reject {Reject=5, 

Accept=1} 

|   |   |   |   |   |   |   |   |   |   573 ≤ 0.356 

|   |   |   |   |   |   |   |   |   |   |   477 > 8.084: Reject 

{Reject=1, Accept=1} 
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|   |   |   |   |   |   |   |   560 > 0.060 

|   |   |   |   |   |   |   |   |   589 > 64.412: Accept {Reject=0, 

Accept=4} 

|   |   |   |   |   |   |   |   |   589 ≤ 64.412: Reject {Reject=12, 

Accept=0} 

|   |   |   |   |   |   |   |   560 ≤ 0.060: Accept {Reject=0, 

Accept=16} 

|   |   |   |   |   |   |   573 ≤ 0.195: Reject {Reject=6, 

Accept=0} 

|   |   |   |   |   |   310 ≤ 0.331 

|   |   |   |   |   |   |   7 > 0.122 

|   |   |   |   |   |   |   |   221 > 0.076: Accept {Reject=0, 

Accept=20} 

|   |   |   |   |   |   |   |   221 ≤ 0.076 

|   |   |   |   |   |   |   |   |   283 > 3.293: Reject {Reject=4, 

Accept=0} 

|   |   |   |   |   |   |   |   |   283 ≤ 3.293 

|   |   |   |   |   |   |   |   |   |   389 > 0.000: Accept {Reject=0, 

Accept=15} 

|   |   |   |   |   |   |   |   |   |   389 ≤ 0.000 

|   |   |   |   |   |   |   |   |   |   |   207 > 22.065: Accept 

{Reject=0, Accept=2} 

|   |   |   |   |   |   |   |   |   |   |   207 ≤ 22.065: Reject 

{Reject=7, Accept=1} 

|   |   |   |   |   |   |   7 ≤ 0.122: Accept {Reject=1, 

Accept=44} 

|   |   |   |   |   296 ≤ 926.377 

|   |   |   |   |   |   12 > 204.234 

|   |   |   |   |   |   |   99 > -0.007: Accept {Reject=0, 

Accept=2} 

|   |   |   |   |   |   |   99 ≤ -0.007: Reject {Reject=4, 

Accept=0} 

|   |   |   |   |   |   12 ≤ 204.234 

|   |   |   |   |   |   |   93 > -0.001: Accept {Reject=0, 

Accept=80} 

 

|   |   |   |   |   |   |   |   |   |   |   477 ≤ 8.084: Accept 

{Reject=0, Accept=16} 

|   |   |   |   |   |   |   |   |   576 ≤ 1.761: Accept {Reject=0, 

Accept=31} 

|   |   |   |   |   |   |   |   153 ≤ 0.005: Reject {Reject=4, 

Accept=0} 

|   |   |   |   |   |   59 ≤ 1.631: Accept {Reject=0, 

Accept=177} 

|   |   |   460 ≤ 22.968 

|   |   |   |   123 > 16.065 

|   |   |   |   |   43 > 351.844: Accept {Reject=0, 

Accept=5} 

|   |   |   |   |   43 ≤ 351.844: Reject {Reject=2, Accept=0} 

|   |   |   |   123 ≤ 16.065 

|   |   |   |   |   121 > 15.795: Accept {Reject=0, 

Accept=124} 

|   |   |   |   |   121 ≤ 15.795 

|   |   |   |   |   |   359 > 0.013 

|   |   |   |   |   |   |   348 > 0.028 

|   |   |   |   |   |   |   |   589 > 45.159: Accept {Reject=0, 

Accept=13} 

|   |   |   |   |   |   |   |   589 ≤ 45.159: Reject {Reject=1, 

Accept=1} 

|   |   |   |   |   |   |   348 ≤ 0.028: Accept {Reject=0, 

Accept=92} 

|   |   |   |   |   |   359 ≤ 0.013 

|   |   |   |   |   |   |   148 > 7.970: Accept {Reject=0, 

Accept=17} 

|   |   |   |   |   |   |   148 ≤ 7.970 

|   |   |   |   |   |   |   |   57 > 0.951: Accept {Reject=0, 

Accept=6} 

|   |   |   |   |   |   |   |   57 ≤ 0.951 

|   |   |   |   |   |   |   |   |   164 > 0.061: Reject {Reject=3, 

Accept=0} 

|   |   |   |   |   |   |   |   |   164 ≤ 0.061: Accept {Reject=0, 

Accept=2} 

524 ≤ 2.958: Accept {Reject=0, Accept=140} 

Fig. 4. Rules in the random forest model. 

The formulation of the quality prediction model, performed 
on semiconductor data sets, produces rules with the highest 
accuracy level, specifically the random forest algorithm, which 
achieves an accuracy value of 92.99% and an F-measure of 
96.37%. This is supported by some knowledge from the results 
of data extraction regarding the relationship between process 

parameters and the final quality of the product, as represented 
by red and green, as shown in Fig. 5. 

The results of the quality prediction model are close to the 
accepted results from the previous production, with a total of 
1096 units of products and a failure rate of 59 units. The 
predicted results are shown in Fig. 6. 

 

Fig. 5. Important factor. 
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Fig. 6. Results of the quality prediction model. 

VI. DISCUSSION 

The Random Forest algorithm achieved the highest 
performance among all evaluated classifiers, with an accuracy 
of 92.99% and an F-measure of 0.9637 on the SECOM dataset. 
This superior performance can be attributed to Random Forest’s 
ensemble learning approach, which mitigates overfitting and 
effectively handles high-dimensional data with complex inter-
feature dependencies. 

The variation in performance across datasets indicates that 
the proposed Random Forest-based model is particularly 
effective for high-dimensional, structured process data like 
SECOM. For datasets with fewer features or lower variance, 
simpler models such as SVM or k-NN may suffice. This 
suggests that the algorithm’s suitability is strongly linked to data 
characteristics, reinforcing the importance of feature 
engineering in DMME. These insights confirm that structured 
methodologies like DMME can deliver practical, high-
performance solutions in real-world manufacturing contexts. 

These findings highlight the value of adopting a structured 
methodology that integrates domain-specific preprocessing, 
feature selection, and model comparison, as facilitated by 
DMME. By systematically addressing data quality issues, the 
framework ensures that the most suitable algorithm is selected 
for the given manufacturing context. Future research could 
extend this work by incorporating cost-sensitive learning, real-
time adaptation, and integration with cloud-based quality 
management systems to further improve predictive performance 
in dynamic production environments. 

VII. CONCLUSION 

This study applied the Data Mining Methodology for 
Engineering Applications (DMME) to predict product quality in 
semiconductor manufacturing. By integrating advanced 
preprocessing techniques and comparing multiple classification 
algorithms, the framework effectively addressed the challenges 
of high dimensionality and data imbalance in the SECOM 
dataset. Experimental results identified Random Forest as the 
most suitable classifier, achieving 92.99% accuracy and an F-
measure of 0.9637. 

The findings confirm that enhancing traditional CRISP-DM 
with domain-specific preprocessing and algorithm evaluation 
improves predictive performance in complex manufacturing 
environments. This work contributes to the development of 
structured, data-driven methodologies for quality prediction and 
provides a practical approach for industries seeking reliable, 

interpretable models. Future research will explore broader 
manufacturing applications, incorporate cost-sensitive learning, 
and integrate this framework into real-time, multi-stage 
production systems to further strengthen defect prevention and 
decision-making. 
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