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Abstract—Multimodal Sentiment Analysis (MSA) has emerged 

as a critical task in Natural Language Processing (NLP), driven by 
the growth of user-generated content containing textual, visual, 
and auditory cues. While transformer-based approaches achieve 
strong predictive performance, their lack of interpretability and 
limited adaptability restrict their use in sensitive applications such 
as healthcare, education, and human–computer interaction. To 
address these challenges, this study proposes an explainable and 
adaptive MSA framework based on a hierarchical attention-based 
transformer architecture. The model leverages RoBERTa for text, 
Wav2Vec2.0 for speech, and Vision Transformer (ViT) for visual 
cues, with features fused using a three-tier attention mechanism 
encompassing token/frame-level, modality-level, and semantic-
level attention. This design enables fine-grained representation 
learning, dynamic cross-modal alignment, and intrinsic 
explainability through attention heatmaps. Additionally, 
contrastive alignment loss is incorporated to align heterogeneous 
modality embeddings, while label smoothing mitigates 
overconfidence, improving generalizability. Experimental 
evaluation on the CMU-MOSEI benchmark demonstrates state-
of-the-art performance, achieving 93.2% accuracy, 93.5% 
precision, 92.8% recall, and 94.1% F1-score, surpassing prior 
multimodal transformer-based methods. Unlike earlier models 
that rely on shallow fusion or post-hoc interpretability, the 
proposed approach integrates explainability into its architecture, 
balancing accuracy and transparency. These results confirm the 
efficacy of the adaptive hierarchical attention-based framework in 
delivering a robust, interpretable, and scalable solution for 
English-language multimodal sentiment analysis. 

Keywords—Multimodal sentiment analysis; RoBERTa; 
Wav2Vec 2.0; vision transformer; CMU-MOSEI 

I. INTRODUCTION 

With the introduction of computer-mediated 
communication, sentiment analysis has become a crucial sub-
field of Natural Language Processing (NLP), which allows 
machines to identify and understand emotions. With the 

potential increase in user-generated content—from social 
network status posts to consumer reviews and video blogs—
there is an increasing need to analyze sentiments expressed in 
not only text but also in synchronized audio and visual 
modalities. This has driven the development of Multimodal 
Sentiment Analysis (MSA), a task that leverages signals from 
different media to improve affective computing accuracy [1]. 
Conventional unimodal sentiment analysis, although robust in 
controlled environments, tends to miss the rich and non-textual 
emotional cues contained in tone, pitch, facial expressions, and 
body language [2]. Multimodal sentiment analysis overcomes 
this by combining features from multiple modalities. Most 
existing solutions, however, depend on basic early or late fusion 
techniques, which tend to ignore complex intra- and inter-modal 
interactions and thus result in sub-optimal performance [3]. 
Recent progress on deep learning, specifically transformer 
architecture, has completely transformed MSA through the 
capacity of models to identify sophisticated sequential and 
contextual structures with the mechanisms of self-attention and 
multi-head attention. 

Pre-trained models like RoBERTa for text [4], Wav2Vec 2.0 
for audio [5] and (ViT) for vision inputs [6] have been highly 
promising in their individual spaces. However, when applied 
together in multimodal pipelines, these models are still plagued 
with limited interpretability and a lack of sufficient alignment 
among modality representations. Interpretability is a major 
concern in deploying transformers to real-world sentiment 
analysis, particularly in high-risk settings like healthcare or 
education, where it matters as much to know why a model has 
predicted as it does to know the prediction. Several researchers 
have proposed explainable models based on hierarchical or 
attention-based architectures [7]. Perikos and Diamantopoulos 
investigate LIME, SHAP, and Grad-CAM to enhance the 
transparency of sentiment models [8]. Nevertheless, these 
approaches tend to use explainability as an after-the-fact 
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method, as opposed to incorporating it into the model 
architecture itself. To overcome these shortcomings, introduced 
an adaptive fine-tuned multimodal transformer model that 
incorporates hierarchical attention explainability into the 
learning process. This method uses RoBERTa for text 
embedding, Wav2Vec 2.0 for acoustic feature extraction, and 
ViT for visual signal extraction [9]. These modality-specific 
encoders create contextualized representations that are 
forwarded to a hierarchical attention fusion mechanism, which, 
at the token/frame-level, modality-level, and semantic-level, 
operates. It is this multi-layered structure of attention which 
allows the model not only to pay attention to the most sentiment-
bearing features but also to open-book its reasoning 
transparently. 

Furthermore, include contrastive loss to put modality 
embeddings in a common semantic space, solving the 
misalignment issue prevalent in multimodal learning [10]. To 
enhance generalization and prevent overconfidence in 
predictions, label smoothing is utilized in training [11]. The 
architecture resulting from these is strong, interpretable, and 
well-calibrated for sentiment classification tasks. In contrast to 
previous models like the Multimodal Transformer of [12], which 
employed tensor fusion but lacked intrinsic explainability, this 
model provides intrinsic attention visualizations, enabling users 
and researchers to understand how the model decides. In 
contrast to shallow feature concatenation or independent 
treatment of each modality in conventional fusion-based 
approaches, this model is interested in learning deep, aligned, 
and interpretable cross-modal interactions [13]. Conjecture that 
incorporating modality-specific transformers with hierarchical 
attention layers not only brings performance gains but also 
reveals a new avenue for transparent multimodal AI, where the 
behavior of the model can be visualized and interpreted. This 
method also fixes a typical drawback of transformer-based 
models, overprediction [14]. Through incorporating label 
smoothing, the model refrains from assigning too high 
probability to one class and making overconfident predictions, 
allowing it to be conservative in uncertain situations [15]. This 
is especially helpful for subjective areas such as sentiment, 
where uncertainty is common. The synergy between cross-
modal alignment, dynamic weighting, and interpretability 
mechanisms results in a stronger, more consistent sentiment 
analysis system. 

A. Problem Statement 

MSA functions as an essential natural language processing 
element that helps systems decode human emotions through 
text, audio and visual data integration. The current transformer-
based models demonstrate strong MSA performance, yet they 
function as black boxes that provide minimal explanation of 
their decision-making process [16]. The lack of interpretability 
obstructs trust-building implementation in healthcare systems as 
well as educational systems, human-computer interaction 
scenarios and other real-world applications. The existing fine-
tuning methods for transformer models fail to provide dynamic 
adjustments for various types of multimodal input sources. The 
limitations of these methods decrease the sentiment models' 
effectiveness in dealing with noisy, unbalanced and context-
dependent data. Although hierarchical attention mechanisms 
demonstrate effectiveness for document-level text analysis, 

researchers have not yet applied them to multimodal systems, 
which could enhance performance and decision interpretability 
[17]. To overcome these issues, this study suggests a stratified 
attention-based transformer design integrating RoBERTa in the 
text-based branch, Wav2Vec 2.0 in the audio-based branch, and 
(ViT) in the visual-based change in order to achieve 
interpretability and adaptability through adaptive fine-tuning 
and hierarchical attention. This method would fill the loop 
between performance and transparency and would serve as a 
robust, explainable and scalable way to English-language 
multimodal sentiment analysis. 

B. Research Motivation 

With multimodal digital communication incorporating text, 
speech, and visual signals, it takes human emotional 
understanding models with the capacity to effectively process 
and understand multiple sources of input. Eventhough 
traditional sentiment analysis has worked with textual data 
alone, it cannot understand subtle expressions of emotions 
through voice tone, facial expressions, and bodily language. 
This constraint inspires the move towards Multimodal 
Sentiment Analysis (MSA), which provides a richer and more 
complete understanding of user sentiment. Concurrently, the 
advent of RoBERTa, Wav2Vec 2.0, and ViT has achieved state-
of-the-art results in single modalities. Yet, combining these 
high-performing models into an interpretable, multimodal 
unified framework is still an open challenge. Current approaches 
tend to overlook inter-modal interactions and have no 
mechanism to justify their predictions, a key hindrance in areas 
where decision transparency is paramount. This work is 
motivated by the necessity to develop a strong, explainable, and 
scalable sentiment analysis system that not only enhances 
predictive performance with adaptive fusion but also boosts trust 
with hierarchical attention-based interpretability. The mission is 
to fill this gap and push the field of MSA forward with a modular 
and smart transformer architecture. 

C. Key Contribution 

 Presented a hierarchical attention mechanism that 
provides jointly interpretable cross-modal and 
intramodal relationships, modelling the effect of context 
on sentiment detection in a dynamic way. 

 Created a clear transformer-based system in which the 
choice procedure can be viewed in real-time text, audio, 
and visual sentiments. 

 Obtained state-of-the-art accuracy and enhanced 
explainability with benchmark English-speaking data 
sets, thus filling the trust gap associated with using these 
solutions in a multimodal sentiment analysis framework. 

 Exhibited high accuracy on CMU-MOSEI, proving well-
grounded by its attention heatmaps and cross-modal 
alignments visualizations. 

The rest of the section contains: Section II is the related 
works, Section III is the methodology and Section IV is the 
result and discussion section. Finally, Section V is the 
conclusion and future work section. Then the last section is 
references. 
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II. RELATED WORKS 

Bacco et al. [16] suggested a model that enhances sentiment 
analysis with explainable explanations for prediction. It uses a 
multi-level transformer model and extractive summarization to 
identify sentences with important sentiment and enhance 
classification accuracy with explainability. Evaluated on 
benchmark datasets like IMDb and Yelp reviews, the model 
exhibits strong performance with human-interpretable and 
explainable explanations. Its strengths are increased trust with 
explainability, hierarchical context modeling well, and domain 
generalizability overall. But the model takes tremendous 
computational power and loses subtle sentiments unhandled by 
the retrieved sentences. Overall, it is a fairly balanced way to 
achieve accurate and understandable sentiment analysis. 

Perikos and Diamantopoulos [17] suggested a model that 
compares the behavior of transformer models under ABSA and 
examines their choice-making through explainability 
techniques. Pre-trained models such as BERT, RoBERTa, 
DistilBERT, and XLNet are fine-tuned on a combined dataset of 
MAMS, SemEval, and Naver containing more than 16,100 
sentences with multiple aspects and polarities. RoBERTa 
achieves the best accuracy at 89.16% on MAMS and SemEval 
and 97.62% on the Naver dataset. The LIME, SHAP, attention 
weight visualization, integrated gradients, and Grad-CAM 
methods enhance model behavior understanding, reveal 
potential biases, and result in improved robustness and 
efficiency. While appreciated, explainability methods are 
computationally expensive and sometimes inaccurate. 
Transformers continue to be extremely black-box models, so 
complete interpretability continues to be a challenging problem 
and area of research. 

Jaradat et al. [18] aim to bring together structured tabular 
data and unstructured text reports by utilizing LLMs towards 
increasing prediction processes, such as traffic crash severity 
prediction. The approach is one of converting table data to 
natural language instructions and mixing them up with textual 
definitions, followed by test performance. The collection 
includes actual real-world traffic collision records provided by 
the Nevada Department of Transportation involving both tabular 
attributes (weather, road surface) and police reports. Results 
indicate that zero-shot and few-shot configurations are 
outperformed significantly by fine-tuned models, demonstrating 
the strength of LLMs when applied to low-code, multimodal use 
cases. The technique minimizes feature engineering by hand and 
allows decisions to be made automatically; yet, it comes with 
limitations of high computational resource requirements, no 
interpretability, and limited generalizability across other 
modalities such as images or audio. 

Jim et al. [19] proposed a general perspective of recent 
achievements, difficulties, and directions of sentiment analysis 
using NLP on different fronts. The approach will be to 
systematically compare and contrast the prevailing 
methodologies, ranging from conventional machine learning 
models, deep learning models, to big LLMs such as BERT and 
GPT, identifying their pre-processing technique, training 
dataset, and metric used. The article summarizes findings from 
multiple studies, wherein transformer and deep learning have 
greatly improved the accuracy and contextual worth of 

sentiment annotation. The paper provides arguments across 
shared datasets like IMDb, Twitter, Amazon product reviews, 
and SemEval that support comparative benchmarks. Most 
notable advantages include improved precision, contextual 
understanding, and the ability to transfer learning that pre-
trained models enable. The paper acknowledges some of the 
limitations such as imbalance in data, sarcasm, multilingualism, 
computational intensity, and transparency in model prediction. 
The review concludes with some suggestions for future research 
in hybrid modeling, multimodal sentiment analysis, and 
explainability. 

Prottasha et al.[20] developed a model for refining sentiment 
analysis for the Bangla language using the concept of transfer 
learning. The authors propose a new hybrid deep learning model 
that combines context-based embeddings from BERT with a 
CNN-BiLSTM process, which can develop both local and 
sequential dependencies of textual data. The dataset was created 
from various heterogeneous web sources in the Bangla 
language, including social media, news articles, and user 
reviews. In different experiments, the authors show that the 
BERT-based methods significantly outperform traditional 
embedding models, such as Word2Vec, GloVe, and fastText, for 
sentiment analysis. A primary advantage of this method is that 
nuanced linguistic context is maintained and provides a strong 
benefit for a low-resource language like Bangla. Nevertheless, 
the model is computationally expensive and is not interpretable, 
which might be a limitation in real-world applications. Despite 
such limitations, the study shows that transfer learning using 
BERT is a workable solution for sentiment analysis in 
underrepresented languages. 

Olivato et al.[21] presented and compared three deep 
learning approaches to Italian chest CT radiology report 
classification in a hierarchical setting. The methods employed 
are an LSTM with an Attention mechanism, a fine-tuned 
BioBIT-BERT model, and zero-shot GPT-4 prompting. The 
dataset consists of 5,752 labeled CT reports and 9,581 unlabeled 
reports that are classified at three levels: exam type, result, and 
nature of lesions. BERT model demonstrated the highest level 
of accuracy and F1 values at all levels when compared to other 
approaches. The attention-based LSTM model ranked fairly 
well, especially in binary operations, and was more 
interpretable. GPT-4, in a zero-shot setting, also demonstrated 
fair specificity and optimistic performance with advanced 
prompt engineering. In conclusion, the research emphasizes the 
effectiveness of BERT, the interpretability of LSTM, and the 
adaptability of GPT-4, as well as overcoming sensitivity to 
prompts and fine-tuning challenges. 

Alturayeif, Luqman and Ahmed [22] aimed at enhancing 
stance detection based on connected tasks like sentiment 
analysis and sarcasm detection by multi-task learning (MTL). 
Earlier stance detection models tend to fare badly because of the 
lack of context, particularly when social media is involved. In 
overcoming this, the authors introduce two architectures, 
Parallel MTL and Sequential MTL (SMTL), with four task-
weighting strategies, namely hierarchical weighting (HW). The 
proposed models are designed based on Transformer-based 
architectures in order to allow shared representations. The 
SMTL-HW model obtained state-of-the-art performance on 
both Arabic and English datasets, indicating robustness and 
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strength. Public datasets such as the Mawqif stance dataset and 
Mohammad et al.'s dataset were utilized to evaluate the work. 
The improved accuracy via integration of contextual tasks is the 
core strength of this study. Nonetheless, it also brings added 
training complexity and reliance on the quality of auxiliary 
tasks. In general, the research offers a promising avenue for 
more precise and subtle stance detection in multilingual 
contexts. 

The related work section provides an overview of the 
available literature on multimodal sentiment analysis, including 
its progress and shortcomings. Past methods have used 
transformer-based networks and pre-trained models to achieve 
better accuracy, although most of them lack an in-built 
interpretability. Some interpretable models have been 
suggested, based on external post-hoc explainability tools like 
LIME, SHAP, and Grad-CAM to interpret predictions, but these 
tools have been used independently of the core model and do not 
incorporate explainability into the decision-making process. 
Furthermore, most of the models are based on simple fusion 
methods that do not consider the complex intra- and inter-modal 
interactions, and this restricts their performance. Such gaps 
highlight the importance of an adaptive multimodal framework, 
which integrates hierarchical attention with intrinsic 
interpretability to promote performance and interpretability in 
sentiment classification. 

III. HIERARCHICAL ATTENTION AND TRANSFORMER 

INTEGRATION 

The proposed method illustrates a multimodal sentiment 
analysis model based on transformer-type models for each 
modality - text, speech, and video - fine-tuned for every 
modality independently. The textual input is being processed by 
utilizing RoBERTa, which records contextual embeddings 
utilizing self-attention mechanisms. For the acoustic modality, 
Wav2Vec 2.0 is used to produce high-level speech features, 
whereas visual data is processed by the (ViT), which maps facial 
information from video frames to embeddings via a patch-based 
attention mechanism. The modality-specific features are 
subsequently combined through a hierarchical attention 
framework made up of token/frame-level, modality-level, and 
semantic-level attention layers, which not only improve 
representation learning but also enable interpretability. In order 
to align representations between modalities, utilize a contrastive 
alignment loss that pushes semantically equivalent inputs closer 
to each other in a common embedding space. Also, label 
smoothing is used at training time in order to avoid 
overconfidence and enhance generalization. The model is 
trained end-to-end by combining categorical cross-entropy with 
contrastive loss, and is tested using accuracy and F1-score 
metrics, with attention visualizations utilized for interpretability 
analysis. 

Fig. 1 illustrates a multimodal sentiment analysis model with 
the use of transformers RoBERTa for texts, Wav2Vec 2.0 for 
audios, and ViT for visuals. Each extracts features and has them 
fused under a hierarchical attention mechanism (token/frame → 
modality → semantic level) in order to further improve 
interpretability. Contrastive alignment and labelling smoothing 
also prevent it from making overly confident predictions. 

 
Fig. 1. Proposed hierarchical attention-based multimodal transformer 

architecture for sentiment analysis. 

A. Data Collection 

This research uses the CMU-MOSEI (Multimodal Opinion 
Sentiment and Emotion Intensity) [23] corpus, a well-
established, freely available benchmark for multimodal 
sentiment analysis. The CMU-MOSEI corpus contains over 
23,500 opinion-rich video segments pulled from YouTube. 
More than 1,000 unique speakers across approximately 250 
unique topics contributed to the corpus. Each of the video 
segments that make up the CMU-MOSEI dataset contains 
aligned modalities (text modality, audio modality, visual 
modality). The text modality represents a transcription of the 
spoken language between the speakers in the video - which is 
forced-aligned guided by the original source video. The audio 
modality captures elements of spoken language (e.g., prosody, 
pitch, vocal intensity). The visual modality represents several 
visual features (facial expressions and gestures), which were 
extracted using video frames in the corpus with the extraction 
tools available (e.g., OpenFace). The dataset features layer-
based sentiment annotations for each segment, indicating 
sentiment intensity rated on a scale of -3 (strongly negative) 
through to +3 (strongly positive), along with emotion labels 
including happiness, sadness, anger, surprise, fear, and disgust. 
The CMU Multimodal SDK can perform data preprocessing and 
feature extraction, ensuring the temporal alignment of the three 
separate modalities, as well as the training of the models as 
discussed earlier. This is represented in Table I. 
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TABLE I.  CMU-MOSEI DATASET BASIC STATISTICS 

Attribute Description 

Dataset Name CMU-MOSEI 

Source YouTube video segments 

Provider Carnegie Mellon University (CMU) 

Total Video Segments 23,500 

Number of Speakers 1,000+ 

Number of Topics ~250 

Modalities Text, Audio, Visual 

Sentiment Labels -3 (strongly negative) to +3 (strongly positive) 

Emotion Categories 
Happiness, Sadness, Anger, Surprise, Fear, 
Disgust 

Preprocessing Tool CMU Multimodal SDK 

B. Data Preprocessing 

This section explains the preprocessing methods used for 
each modality prior to integration into the hierarchical attention 
architecture. 

1) Textual data preprocessing: The multimodal sentiment 

analysis system needs to preprocess text, speech, and video data 

with great care to ensure the best performance of the adaptive 

fine-tuned transformer models. This section explains the 

preprocessing methods used for each modality prior to 

integration into the hierarchical attention architecture. 

a) Tokenization: We use BytePair Encoding (BPE) 

tokenization with the RoBERTa tokenizer. The method works 

well with out-of-vocabulary words by breaking them into 

subword units, which is needed for identifying the fine-grained 

sentiment expressions in this corpus. It is derived in Eq. (1) 

[24]: 

𝑇(𝐼) = 𝐵𝑃𝐸(𝐼)                                      (1) 

In Eq. (1), I denote an input sentence. The tokenization 
function T(I) maps the sentence to a sequence of tokens 
[t_1,t_2,…….t_n ]. 

b) Sequence splitting and padding: Each utterance is 

chunked into 512-token segments with 128-token overlaps to 

preserve semantic continuity. It is formulated in Eq. (2) [25]: 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖 = {𝑡𝑘(𝑖), … … … , 𝑡𝑘(𝑖)+511}, 𝑘(𝑖)𝑖. (512 − 128) (2) 

c) Normalization: Includes lowercasing, contraction 

expansion (e.g., isn't →  is not), replacement of [URL], 

[EMAIL], and preservation of sentiment-related punctuation (! 

?, ...). 

d) Preprocessing rationale: Retaining stop words 

improved sentiment classification accuracy by 3.2%, and 

mapping emojis/emoticons to their semantic labels improved 

contextual embeddings [26]. 

2) Speech modality preprocessing: Audio preprocessing 

ensures compatibility with Wav2Vec 2.0 by emphasizing noise 

reduction, amplitude normalization, and alignment with the 

textual stream. 

a) Resampling and normalization: All audio is resampled 

to 16kHz and normalized to unit scale. It is formulated in 

Eq. (3) [27]: 

                    𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥( 𝑡)

max |𝑥(𝑡)|
                           (3) 

In Eq. (3), x(t) ϵ [-1,1] 

b) Noise Reduction 

 Silence removal was performed using a -60 dB threshold 
(≥500ms). 

 Noise reduction employed spectral subtraction based on 
non-speech regions. 

 Voice Activity Detection (VAD) isolated spoken 
segments. 

Applying spectral subtraction for noise suppression is given 
in Eq. (4) [28]: 

𝑆(𝑓) = |𝑋(𝑓)| − |𝑁(𝑓)|                         (4) 

In Eq. (4), X(f) = speech, N(f)= noise. 

c) Feature extraction: Extracted 80-dimensional log-

Mel filter bank features (25ms windows, 10ms shifts) in 

concurrent experiments, applying per-utterance CMVN. For 

the input of the transformer, raw audio was utilized after 

cleaning. 

d) Temporal segmentation: Forced alignment synced 

audio with text at the utterance level. Segments were padded or 

trimmed to model-specific lengths. 

3) Visual modality preprocessing: Pull and normalize 

visual information in order to ingest into a facial expression-

based sentiment cue-focused (ViT) pipeline. 

a) Frame sampling: Frames are sampled uniformly at 5 

FPS. For long videos, use scene change detection by histogram 

difference ΔH. The equation is given in Eq. (5): 

∆𝐻𝑡 =  ∑ |ℎ𝑡,𝑖 − ℎ𝑡+1,𝑖|
𝑛
𝑖=1                          (5) 

b) Face processing: Face alignment with facial 

landmarks detection, which ensures that facial landmarks like 

the eyes, nose, and mouth are aligned consistently over frames. 

Post-alignment, every detected face is cropped with a padding 

factor of 1.3× to retain neighboring contextual facial cues that 

can play a role in sentiment expression, including head tilt or 

partial gestures. [29]. Lastly, the face images cropped to 

224×224 pixels are resized to align with the (ViT) model's input 

requirement for consistency across the visual input pipeline. 

c) Visual normalization: To standardize visual inputs, 

apply pixel normalization using ImageNet statistics, where each 

channel is normalized with a mean of [0.485,0.456,0.406] and 

a standard deviation of [0.229,0.224,0.225], ensuring 

compatibility with pre-trained ViT models. During the training 

phase, color jittering is incorporated to enhance model 

robustness, with slight variations in brightness and contrast set 

to 0.1. Additionally, random horizontal flipping is employed as 

a data augmentation technique with a probability ρ =0.5 to 

enable the model to better generalize to various facial 

orientations and minimize overfitting. 
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Algorithm 1: Adaptive Hierarchical Attention-Based 

Multimodal Sentiment Analysis 
Input: Multimodal dataset D = {X_text, X_audio, X_visual}, 

Labels Y   

Output: Predicted sentiment labels Ŷ, Performance metrics M 

Begin 

    Load dataset D = {X_text, X_audio, X_visual} 

    Preprocess each modality: 

        For each sample i in D do 

            x_text(i)  ← CleanText(X_text(i)) 

            x_audio(i) ← ExtractAudioFeatures(X_audio(i)) 

            x_visual(i)← ExtractVisualFeatures(X_visual(i)) 

            Align(x_text(i), x_audio(i), x_visual(i)) → x_aligned(i) 

        End for 

    Split D into D_train, D_val, D_test 

    Initialize Hierarchical Attention-Based Adaptive Transformer: 

        T_text   ← RoBERTa(x_text) 

        T_audio  ← Wav2Vec2.0(x_audio) 

        T_visual ← ViT(x_visual) 

        X_seg    ← Segment({T_text, T_audio, T_visual}, win=512, 

stride=384) 

        X_fused  ← Fuse(X_seg) 

    For epoch = 1 to E do 

        For each batch B in D_train do 

            H_text   ← Encoder_text(B_text) 

            H_audio  ← Encoder_audio(B_audio) 

            H_visual ← Encoder_visual(B_visual) 

            H_fused  ← Concat(H_text, H_audio, H_visual) 

            α_text, α_audio, α_visual ← 

HierarchicalAttention(H_fused) 

            H_final  ← Σ(α_m * H_m),  where m ∈ {text, audio, visual} 

            logits   ← Softmax(W·H_final + b) 

            L_ce     ← CrossEntropy(Y_batch, logits) 

            L_align  ← AlignmentLoss(H_text, H_audio, H_visual) 

            L_total  ← L_ce + λ * L_align 

            Update model parameters θ ← θ - η∇L_total 

        End for 

        If ValAccuracy(D_val) > best_acc then 

            SaveModel(θ) 

            best_acc ← ValAccuracy(D_val) 

        Else 

            η ← η * decay 

        End if 

    End for 

    Evaluate model on D_test: 

        Ŷ ← Predict(D_test) 

        M ← {Accuracy, Precision, Recall, F1-score} 

        Generate AttentionHeatmap(H_final, α_text, α_audio, 

α_visual) 

    Return Ŷ, M 

End 

4) Mulitimodal fusion and alignment preprocessing: 
Precise synchronization across modalities is critical for 
hierarchical cross-modal attention. Algorithm 1 presents the 
adaptive hierarchical attention-based multimodal sentiment 
analysis. 

a) Temporal alignment: Transcripts are aligned with 

audio and video using timesamps. It is derived in Eq. (6) [30]: 

𝐴𝑙𝑖𝑔𝑛(𝑥𝑡𝑒𝑥𝑡 , 𝑥𝑎𝑢𝑑𝑖𝑜 , 𝑥𝑣𝑖𝑠𝑢𝑎𝑙) → 𝑥(𝑡), ∀𝑡𝜖𝑇          (6) 

b) Feature vector alignment: For feature vector 

alignment, retrieve modality-specific representations that are 

common inputs for the fusion architecture. From the text 

modality, leverage the final hidden states of the RoBERTa 

model, the [CLS] token representation, which retains sentence-

level semantic content. For the audio modality, contextual 

embeddings from Wav2Vec 2.0 are calculated and averaged 

over speech segments to retrieve a fixed-length vector that 

embodies prosodic and acoustic sentiment features [31]. In the 

visual modality, take patch embeddings from the (ViT) and 

perform temporal pooling to pool facial expression information 

across time. 

c) Missing modality handling: To handle missing 

modalities, binary modality presence indicators for each input, 

so that the model learns to detect provided inputs. On missing 

modalities, specialized padding vectors are incorporated to 

have identical input dimensions consistently, and attention 

masks are used in such a manner that these fillers won't affect 

cross-modal attention computations. This helps keep the model 

intact in cases where multimodal information is incomplete. 

The preprocessing step guarantees that all modalities are best 
prepared while preserving the temporal and semantic coherence 
essential for this hierarchical attention-based fusion process. 
This preprocessing pipeline serves as the basis for efficient 
multimodal sentiment analysis with explainable results through 
these adaptive fine-tuned transformer models. 

Fig. 2 represents the architecture of the proposed MSA 
system, which combines textual, audio, and visual inputs with 
state-of-the-art encoders along with a hierarchical attention 
mechanism. Text inputs are encoded by RoBERTa, audio inputs 
by Wav2Vec2.0, and visual inputs by ViT. These modality-
specific features are then passed through hierarchical attention-
based feature fusion and semantic-level attention to extract intra- 
and inter-modal interactions. Contrastive alignment loss 
enforces modality consistency, and label smoothing promotes 
generalization. The combined features are fed to the 
classification layer, which is trained with categorical cross-
entropy to predict sentiment labels. 

Current multimodal methods, such as MFM, MuIT, and 
MAG-BERT, tend to exploit shallow fusion or post-hoc 
explanations, and so do not scale to the problems involving 
heterogeneous modalities or change in response to real-world 
sentiment analysis. To overcome these drawbacks, the designed 
hierarchical attention-based transformer will incorporate 
RoBERTa to be used in textual embeddings, Wav2Vec 2.0 to be 
used in acoustic features, and (ViT) to be used in visual clues. 
Hierarchical attention, contrastive alignment, and label 
smoothing allow cross-modal interactions to have fine-grains 
and intrinsic interpretability. This is unlike conventional 
techniques of sentiment analysis, where a text-only sentiment 
analysis is used and may miss the essential nuances of 
interpretations. Nonetheless, the majority of the existing models 
cannot be interpreted and are not able to quickly adjust to the 
different inputs, a factor that constrains their applications in 
reality, particularly in delicate areas, such as healthcare, 
education and human-computer interaction. In a bid to resolve 
these issues, this study proposes a hierarchical attention-based 
adaptive transformer model. It uses RoBERTa-related features 
to use textual elements, Wav2Vec2. 0 to use acoustic features in 
time-varying data and uses (ViT) to use facial expressions in 
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video data. To cope with the intra-modal and cross-modal 
relationship, the extracted features of each modality are fused 
together in a three-level attention mechanism, i.e., token/frame 
level, modality level and semantic level. Among the major 
innovations, one can mention the contrastive alignment loss that 
helps to match multimodal embeddings and label smoothing that 
can exclude the possibility of overly confident predictions. 

Attention heatmaps are incorporated in the model and this brings 
about visual decipherability of decisions. Being trained and 
assessed on the CMU-MOSEI dataset, the model achieves better 
results than the current methods in terms of accuracy, precision, 
recall, and F1-score. Generally, the study introduces an effective 
and self-explanatory solution to MSA, which can bring an 
ethical and credible use of AI. 

 
Fig. 2. Proposed multimodal sentiment analysis framework architecture. 

IV. RESULTS AND DISCUSSION 

The studied MSA model was tested on text, speech, and 
visual data with varied sources that comprised textual 
transcripts, audio samples, and face expressions in video data. 
The model proved highly effective in emotional state 
classification with specific precision towards the detection of 
sentiment polarities like negative, neutral, and positive 

sentiments. Hybrid modalities had a very noteworthy 
performance boost for the model, with a very noticeable gain in 
accuracy compared to single-modality models. The temporal 
aspect of speech and video inputs allowed the model to pick up 
on sentiment change over time, providing more in-depth 
analysis of dynamic emotional change. Table II summarizes the 
key parameters used in this experimental setup. 

TABLE II.  SIMULATION AND TRAINING PARAMETERS 

Parameter Category Parameter Value 

Dataset Dataset CMU-MOSEI 

 Samples 16,326(train),1,871(validation),4,659(test) 

 Sentiment classes 7(-3 to +3) 

Text Model RoBERTa-base 

 Sequence length 128 tokens 

Audio Model Wav2Vec2.0-base 

 Sampling rate 16 kHz 

Visual Model Vision Transformer (ViT) 

 Resolution 224 x224 

Fusion Attention heads 8 

 Fusion layers 3 

Training Optimizer AdamW 

 Learning rate 2e-5 

 Batch size 32 

 Epochs 30 

Hardware GPU NVIDIA  A100  (40GB) 

Implementation Framework PyTorch 1.12, Transformers 4.25.1 
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A. Training and Testing 

Fig. 3 shows the progress of accuracy after 20 epochs of 
training. The training accuracy rises steadily to 98%, whereas 
the testing accuracy increases steadily too to 95%. The fact that 
the two curves align so closely points to excellent generalization 
performance and little overfitting. 

 
Fig. 3. Training and testing accuracy curve. 

 
Fig. 4. Training and testing loss curve. 

Fig. 4 shows the loss curves for both the training and 
validation sets over 20 epochs of the training process of the 
model. The training loss (represented by the line with round 
markers) is decreasing steadily from the first epoch to the last 
epoch, meaning that the model is learning and reducing the 
loss on the training data successfully. Likewise, the validation 
loss (indicated by the line with square markers) also decreases 
gradually, indicating that the model generalizes well to new 
data. Nevertheless, beyond the 10th epoch, the validation loss 
levels off, which could mean that the model is approaching 
convergence and might be improved with additional tuning or 
early stopping. The difference between the training and 
validation losses is still small, suggesting that the model is not 

overfitting and has good generalization capacity [32]. 

B. Performance Metrics 

1) Accuracy: Accuracy is derived in Eq. (7): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (7) 

2) Precision: Precision is evaluated using Eq. (8): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (8) 

3) Recall: Recall is derived using Eq. (9): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (9)   

4) F1-score: The F1-score is evaluated using Eq. (10): 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (10) 

TABLE III.  EVALUATION  OF THE PROPOSED MULTIMODAL SENTIMENT 

ANALYSIS 

Metrics Percentage (%) 

Accuracy 93.2 

Precision 93.5 

Recall 92.8 

F1-score 94.1 

Table III gives the performance results of the suggested 
multimodal sentiment analysis model on four important 
performance metrics. The model has an Accuracy of 93.2% 
which means that it is correct overall in its predictions. A 
Precision of 93.5% approaches that it creates very few false 
positives, and a Recall of 92.8% shows that it is highly sensitive 
in detecting true positive cases. The F1-score of 94.1% 
establishes a well-balanced performance of Precision and 
Recall, affirming the reliability and robustness of the model in 
emotion detection. The visual representation is given in Fig. 5. 

 
Fig. 5. Classification performance evaluation metrics. 

C. Ablation Studies 

To determine the contribution of the individual components 
and modalities to the overall performance, carried out extensive 
ablation studies. Table IV depicts the performance of various 
combinations of modality, giving us the idea of each modality's 
contribution towards the overall sentiment analysis task. 

TABLE IV.  MODEL PERFORMANCE ACROSS DIFFERENT MODALITIES 

Model Configuration Accuracy (%) F1-score (%) 

Text only (RoBERTA) 85.4 85.2 

Audio only(Wav2Vec2.0) 79.8 79.3 

Visual only(ViT) 77.2 76.8 

Text + Audio 89.3 89.7 

Text + Visual 88.5 88.2 

Audio + Visual 83.7 83.4 

All modalities 93.2 94.1 
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Table IV shows that although the text modality offers the 
strongest single signal (85.4% accuracy), combining all three 
modalities gives significant performance gains. Of particular 
interest, the text-audio combination (89.3% accuracy) performs 
better than the text-visual combination (88.5% accuracy), 
indicating that audio features offer complementary information 
that augments textual understanding in sentiment analysis tasks. 

 
Fig. 6. Accuracy and F1-score for different modality combinations. 

Fig. 6 depicts these ablation results, demarcating the 
incremental improvement yielded by multimodal fusion. 

 

Fig. 7. Confusion matrix. 

Fig. 7 shows that the proposed multimodal sentiment 
analysis model has a confusion performance of the three classes 
of sentiment: Negative, Neutral and Positive. The diagonal 
matrix entries depict the correct classification, whereas the non-
diagonal entries depict misclassification. Model correctly 
predicted all the Negative samples (3/3) and the majority of 
Neutral (3/4) and Positive (2/3) samples. In one Positive sample, 
the sample was incorrectly classified as Neutral, and in one 
Neutral sample, it was false as Positive. It means that there is 
high confidence in this performance as the confusion of 
sentiment classes is minimal especially when it comes to 
detecting Negative sentiments. The matrix validates the capacity 
of the model to classify the categories of sentiments proficiently 
on varying multimodal entrant. 

 
Fig. 8. Attention heatmap. 

 Fig. 8 presents the multimodal heatmap of Attention CMU-
MOSEI samples. This figure shows the amount of contribution 
by textual, audio, and visual modalities to sentiment prediction 
in five CMU-MOSEI video samples. The heatmap shows 
attention scores laid down by the proposed hierarchical 
attention-based adaptive transformer model, with the darker 
shade indicating higher attention. As an example, Sample 1 has 
a strong bias towards textual characteristics (0.55), whereas 
Sample 2 has equal contributions of text (0.40) and audio (0.35). 
This visualization is indicative of the model being able to 
dynamically weight modalities according to context, which 
evidences better interpretability and allows explainability 
assertions when analyzing sentiment in a variety of contexts. 

D. Model Interpretability 

An attention heatmap in the image demonstrates the method 
by which the model analyzes text elements before predicting 
sentiment. Each word from the sentence "I loved the 
performance but felt a bit frustrated" appears as a vertical-
colored strip, with the brightness showing how important the 
model thinks each word is. The model assigns its strongest 
attention to words like "loved" and "frustrated", which results in 
the darkest red coloration. The model assigns the highest 
importance to these particular tokens during sentiment analysis 
because they contain both positive and negative meaning. Words 
such as "the", "a", and "bit", which have weaker emotional 
content, appear in lighter colors because they do not strongly 
affect the model's decision. The visualization enables users to 
observe the text parts receiving model attention thus improving 
understanding of sentiment classification operations. 

E. Comparative Performance Analysis 

The suggested method uses RoBERTa for text-based 
features, Wav2Vec2.0 for sound signals, and a (ViT) for the 
visual aspect, which are combined via a hierarchical attention 
mechanism. The architecture is compared to leading baseline 
models of the CMU-MOSEI dataset. Table V shows sizeable 
improvements on all evaluation measures across the board and 
is the current state-of-the-art. 
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Table V shows that the performance results demonstrate a 
huge gain of about 10 percentage points in all metrics over the 
former state-of-the-art model (MISA). Such a great 
improvement in performance speaks volumes about the success 

of this method in identifying and fusing multimodal sentiment 
cues. Fig. 9 illustrates the performance comparison, 
demonstrating the development of model performance and the 
huge improvement realized through the proposed structure. 

TABLE V.  PERFORMANCE COMPARISON OF VARIOUS MODELS ON CMU-MOSEI DATASET 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Proposed Model 93.2 93.5 92.8 94.1 

MFM  [34] 79.6 78.3 79.0 78.6 

MuIT [35] 82.0 81.7 80.5 81.1 

MAG-BERT [36] 82.5 83.2 81.6 82.4 

Self-MM [37] 83.1 83.5 82.8 83.1 

MISA [38] 83.6 84.1 83.0 83.5 

 
Fig. 9. Performance comparison of classification methods. 

F. Discussion 

In this study, a new way of performing multimodal sentiment 
analysis is introduced to deal with challenges such as 
interpretability and performance. Since RoBERTa is for text, 
Wav2Vec2.0 for audio, and (ViT) for images, the model is able 
to detect complex and detailed emotional signals in different 
types of inputs. The presented method contrasts the previous 
ones since it employs a hierarchical attention module that 
considers both within- and between-modal events. So, it is able 
to pay close attention to features about emotion and modify 
attention depending on how reliable and relevant each data type 
is. The automatic adjustment system for different modalities 
makes the model strong, as providing faulty (like noisy sound or 
difficult to see the face) inputs will not cause significant 
problems. Making a model understandable is improved through 
attention heatmaps, attribution scores, and visual explanations 
of each patch, so that users can see how the model works. Where 
healthcare, education, or social media monitoring is involved, 
being clear about the system’s behavior is extremely important. 
Studying the CMU-MOSEI benchmark confirms that the model 
surpasses other approaches by attaining a 10% rise in main 
scores. It is clear from these results that using deep pretrained 
encoders, adaptive attention fusion, and interpretability makes 
this approach powerful and trustworthy for the analysis of 
sentiment in the real world. The proposed work is restricted to 
CMU-MOSEI and the English language and, therefore, limits 

cross-domain generalization. The model is demanding of 
computational resources [33] and thus does not allow 
deployments in real-time. Although attention heatmaps enhance 
interpretability, they do not provide a full explanation of human 
complex reasoning, especially sarcasm or subtle emotions, and 
thus, it has room for greater future generalizations. 

V. CONCLUSION AND FUTURE WORK 

This study concludes that adding hierarchical attention 
mechanisms to the proposed adaptive transformer helps both the 
accuracy and the explainability of multimodal sentiment 
analysis. When all these models work together in the framework 
of multi-level attention fusion, the model proves to have a good 
ability to find and express emotions in content from various 
senses. Using transparent decision-making with attention 
visuals, it is well-suited for demanding situations such as 
understanding customer opinions, monitoring people’s 
emotional well-being, and improving human-computer 
interaction, where reasons behind the decisions are important as 
well as the answers. Going forward, many exciting research 
areas appear. Improving the model’s applicability in many areas 
could be done by training it with multilingual examples. 
Besides, including information about a user’s past feelings, age, 
and behavior in social media can make the model more 
individualized and useful. The deployment of models on many 
devices will become easier if their versions are made lighter, as 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

708 | P a g e  

www.ijacsa.thesai.org 

this reduces the number of resources needed. If few-shot 
learning approaches and domain adaptation are used, it can 
greatly improve the results in low-data situations. To sum up, 
this study greatly contributes to the development of strong and 
understandable multimodal sentiment systems, supporting 
ethical NLP and setting a solid starting point for flexible 
applications. 
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