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Abstract—As artificial intelligence (AI) systems become in-
creasingly embedded in sensitive domains such as healthcare and
finance, they face heightened vulnerabilities to privacy threats. A
prominent type of attack against AI is the membership inference
attack (MIA), which aims to determine whether specific data
instances were used in a model’s training set, thereby posing
a serious risk of sensitive information disclosure. This study
focuses on Gaussian Process (GP) models, which are widely
adopted for their probabilistic interpretability and ability to
quantify predictive uncertainty, and examines their susceptibility
to MIAs. To mitigate this threat, a novel defense mechanism
based on Random Unitary Transformation (RUT) is introduced,
which encrypts training and testing inputs using orthonormal
matrices. Unlike Differential Privacy-based Gaussian Processes
(DP-GPR), which rely on noise injection and often degrade model
performance, the proposed method preserves both the structural
integrity and predictive fidelity of the GP model without injecting
noise into the learning process. Two configurations are evaluated:
i) encryption applied to both training and test data, and ii)
encryption applied only to training data. Experimental results
on a medical dataset demonstrate that the framework signifi-
cantly reduces the effectiveness of MIAs while maintaining high
predictive accuracy. Comparative analysis with DP-GPR models
further confirms that the proposed method achieves competitive
or stronger privacy protection with less impact on model utility.
These findings underscore the potential of structure-preserving
transformations as a practical and effective alternative to noise-
based privacy mechanisms in GP models, particularly in privacy-
critical machine learning applications.
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I. INTRODUCTION

Machine learning (ML) is now widely used in many
industries due to its popularity and efficacy. However, ethical
and legal restrictions restrict the dissemination of private
data in sectors such as healthcare and banking. Protecting
data privacy is therefore essential at every stage of the ML
lifecycle, from developing models to deployment [1]. The
widespread use of sensitive data in training neural network
models has raised concerns regarding privacy preservation.
To assess whether a model inadvertently reveals information
about its training data, membership inference attacks (MIAs)
[2] have become a widely adopted evaluation technique [3],
[4]. In such attacks, adversaries attempt to determine whether
a data point was included in the training set by leveraging
the model’s behavior when presented with that sample. These

attacks pose significant risks, especially when inclusion in the
training data reveals sensitive information. For instance, if a
model is trained using medical imaging data such as MRI
scans, disclosing that a particular image was part of the training
set could reveal confidential health details. Similarly, training
on criminal offender databases may inadvertently expose an
individual’s criminal background. If an adversary knows a
data instance, learning that it was used in training constitutes
a breach of confidentiality. MIAs are widely recognized as
indicators of privacy risks when ML models are externally
accessible. Beyond their standalone impact, MIAs often serve
as foundations for advanced attacks such as property inference,
where adversaries aim to uncover global attributes of the
training data, and profiling attacks, which attempt to infer
sensitive characteristics about individuals represented in the
data [5].

A widely recognized method in machine learning is the
Gaussian Process (GP), which is based on Bayesian nonpara-
metrics [6]. General practitioners can convert linear data into
nonlinear formats by integrating domain expertise and knowl-
edge into kernel functions. By fine-tuning the hyperparameters
of these kernel functions using Bayes’ theorem, it is possible
to achieve exceptionally precise estimates. A GP can represent
an unlimited number of units in one hidden layer of a neural
network [7]. The GP provides both uncertainty (variance) and
forecast mean values. By utilizing the uncertainty associated
with the GP, it becomes straightforward to assess whether the
test data is included in the training data.

A. Related Work

In [1], the authors proposed a privacy technique for GP
membership inference to tackle this issue. Differential Privacy-
based Gaussian Process (DP-GPR) has become the prevailing
framework for ensuring privacy in machine learning [8]. By
limiting the influence that any single data point can have on a
model’s output, DP-GPR provides strong privacy guarantees.
This principle has been effectively incorporated into a wide
range of machine learning models that assume data point in-
dependence, including applications in deep learning, Bayesian
regression , and general Bayesian inference techniques such as
Markov chain Monte Carlo and variational inference [9], [10],
[11], [12]. While (DP-GPR) provides a worst-case guarantee
for privacy protection, f-Membership Inference Privacy (f-
MIP) leverages noisy stochastic gradient descent (SGD) as a
model-agnostic approach to defend against inference attacks.
The results show that f-MIP can protect privacy effectively
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while using much less noise than DP-GPR, which helps the
model keep better performance and accuracy. In contrast, the
addition of excessive noise, as typically required by DP-GPR,
can reduce model accuracy and disrupt the balance between
predictions for training and non-training data. This imbalance
may unintentionally create new patterns that adversaries can
exploit to infer whether a given test sample was part of the
training data. Both DP-GPR and f-MIP defend against infer-
ence attacks by injecting noise into the training process. While
f-MIP typically uses less noise than DP-GPR and thereby
achieves relatively better accuracy, it still introduces some
degree of performance degradation due to noise perturbation.

Despite these advances, existing defenses share a funda-
mental limitation: they depend on noise-based mechanisms
that inevitably weaken model utility. Although effective in
theory, these approaches reduce accuracy, distort statistical
structure, and require careful parameter tuning, making them
less practical for real-world deployment. This leaves a clear
research gap for defenses that can maintain predictive fidelity
while still ensuring strong resistance to MIAs.

B. Contributions of this Study

To address this issue, we propose a secure computation-
based defense against MIAs on GP 1. Our approach uses a RUT
to encrypt the data, enabling privacy-preserving processing.
By preserving essential geometric properties such as norms,
distances, and inner products, the proposed method avoids
the trade-off between privacy and accuracy that characterizes
noise-based techniques. As a result, attackers cannot determine
whether specific test samples were part of the training dataset.
Our method addresses the following two scenarios:

1) Case 1: Both the training and test data are encrypted.
When the same private key is used for both, the model achieves
prediction accuracy comparable to conventional non-encrypted
GP regression. In contrast, if different private keys are used (for
example, to simulate an attacker scenario), accurate predictions
cannot be made, and it becomes infeasible to determine
whether test samples were included in the training data.

2) Case 2: Training data is encrypted, while the test data
remains non-encrypted. The model fails to make accurate
predictions, making it impossible for attackers to determine
whether test samples were included in the training set.

The proposed methodology provides a strong defense
against membership inference for attackers, while maintaining
high prediction accuracy for legitimate users without additional
safeguards.

The remainder of this study is organized as follows: Section
II introduces the concept of membership inference attacks
and their implications for machine learning models. Section
III reviews the fundamentals of Gaussian Process Regression.
Section IV presents the proposed defense framework against
membership inference attacks using Random Unitary Trans-
formation. Section V describes the experimental setup and
provides a comparative evaluation of the proposed method.
Section VI concludes the study with key findings, while
Section VII discusses limitations and outlines directions for
future research.

1Part of this work has been presented at CSP 2025 [13].

II. MEMBERSHIP INFERENCE ATTACK

MIAs target ML models with the intent of determining
whether a data record was included in the training dataset.
These attacks pose serious privacy risks, especially when the
mere inclusion of a record reveals sensitive information. For
instance, if an attacker learns that a clinical record was used
to train a disease-specific model, it may strongly suggest that
the individual associated with that record has the disease in
question. A recent report by the U.S. National Institute of Stan-
dards and Technology (NIST) [14] classifies such inferences
as violations of confidentiality. These risks are particularly
concerning for organizations offering Machine Learning as a
Service (MLaaS), where exposing models to external queries
can unintentionally breach legal privacy protections. Veale et
al. [15], for example, highlight that MIAs can cause ML
outputs to be considered personal data under the General Data
Protection Regulation (GDPR) [16].

The idea of MIAs was first introduced by Homer et al.
[17] in the genomics domain. They showed that an attacker
could use summary statistics from a genomics dataset to
find out if a specific person’s genome was included. Later,
researchers [18], [19] found that similar attacks could also
be used on location data. In machine learning, Shokri et al.
[2] were the first to show how MIAs could be used against
classification models. They found that by only looking at a
model’s prediction results—without knowing anything about
how the model was built—an attacker could tell whether
a certain data point was used during training. Since then,
extensive research has explored MIAs across various model
types, including regression models [20], generative models
[21], and embedding models [22]. Alongside this, a growing
body of literature has proposed a range of defense mechanisms
aimed at mitigating the risk of MIAs while maintaining model
performance.

To further illustrate the architecture of a MIA, we present
a conceptual overview in Fig. 1. The diagram depicts how
an adversary employs a shadow model to approximate the
behavior of a target model and then trains an attack model
to distinguish between member and non-member data points
based on observed prediction outputs. This framework repre-
sents the standard MIA strategy widely adopted in the literature
and forms the basis of our experimental implementation.
The target model is trained using features and corresponding
predictions from training data. An adversary queries the target
model using features of new data and collects output responses.
These outputs, along with corresponding input features, are
used to train an attack model (shadow model) that learns to
classify whether a data sample was part of the target model’s
training set (member) or not (non-member).

III. GAUSSIAN PROCESS REGRESSION

A. Gaussian Process

We focus on a regression task where the inputs are vectors
xi ∈ RD and the outputs are scalar values yi ∈ R. Suppose
we have a training dataset Dtrain = {X, Y}, where the input
and output matrices are represented, as in Eq. (1):
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Fig. 1. Architecture of a membership inference attack (MIA) framework.

X =


x1
x2
...

xN

 , Y =


y1
y2
...
yN

 . (1)

The outputs are modeled, as in Eq. (2), where f(X)
represents the unknown function to be inferred, and ϵ is
Gaussian noise with zero mean and variance σ2, capturing
uncertainty and measurement errors.

Y = f(X) + ϵ. (2)

This formulation captures measurement noise and reflects
uncertainty in the observations. The function f(X) is assumed
to follow a GP prior, as expressed in Eq. (3):

f(X) ∼ GP(0, K(X,X)). (3)

The mean is set to zero for simplicity, and the covariance
between inputs is defined by the kernel K, which is usually
a symmetric, positive semi-definite matrix. A commonly used
covariance function is the RBF kernel, defined in Eq. (4):

K(xi, xj) = θ1 exp

(
−|xi − xj |2

θ2

)
+ σ2δ(i, j), (4)

where, δ(i, j) 1, if i=j, otherwise 0. To fit the model, the
hyperparameters θ1, θ2 and σ2 are optimized by minimizing
the negative log marginal likelihood, as shown in Eq. (5):

min
K,σ

YT
(
K(X, X) + σ2I

)−1
Y+log2

∣∣K(X, X) + σ2I
∣∣ . (5)

This optimization is typically done via gradient descent
[23].

B. Gaussian Process Regression

To make predictions for new input data x∗ ∈ RD, we define
a test set Dtest = {X∗,Y∗} in Eq. (6):

X∗ =


x∗1
x∗2
...

x∗
M

 , Y∗ =


y∗1
y∗2
...

y∗M

 . (6)

The joint distribution of Y and f(X∗) follows a multivari-
ate Gaussian, as expressed in Eq. (7):

[
Y

f(X∗)

]
∼ N

([
0
0

]
,

[
K(X, X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
. (7)

In this formulation, K(X,X∗) denotes the covariance matrix
capturing the dependencies between the N training inputs
and the M test inputs. Conditioning on the training data, the
posterior distribution of f(X∗) is obtained, as in Eq. (8):

p(f(X∗)|(X,Y,X∗)) ∼ N (f(X∗), σ2(X∗)), (8)

where, the predictive mean and variance for test inputs are
derived using Eq. (9) and Eq. (10), respectively.

f(X∗) = K(X∗,X)T
[
K(X,X) + σ2I

]−1 Y (9)
σ2(X∗) = K(X∗,X∗)

− K(X∗,X)T
[
K(X,X) + σ2I

]−1 K(X∗,X).

(10)

These equations give us both the predicted mean and the
uncertainty (variance) for the test data.

IV. DEFENDING AGAINST GAUSSIAN PROCESS
MEMBERSHIP INFERENCE ATTACK

Fig. 2. System configuration of defending against Gaussian process
membership inference attack.

A. System Configuration

Fig. 2 illustrates the system architecture designed to defend
against MIAs in GP models. The process begins with the
collection of training data Dtrain = {X,Y}, at a local site.
To protect the input features X, a random unitary matrix Qp,
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generated using a private encryption key p is applied. This
transforms the raw inputs into their encrypted form X̂, which
is then transmitted along with the corresponding outputs Y to
an edge or cloud server. At the inference stage, test inputs X∗

are similarly encrypted using another random unitary matrix
Qq , derived from a separate secret key q, resulting in encrypted
test inputs X̂∗. These are also sent to the edge or cloud
server for processing. This encryption scheme ensures data
confidentiality while enabling efficient GP-based inference in
distributed environments.

Using the encrypted datasets, the server computes the
kernel function and estimates the mean and variance of pre-
dictions. When both training and test data are encrypted using
the same transformation key (i.e., p = q , the predicted
results (mean and variance) remain consistent with those
produced using non-encrypted data. This property guarantees
that encryption does not distort the inference outcomes. In
scenarios where the attacker attempts to manipulate the system
by inserting non-encrypted test data, the server still processes
the data using the encrypted training inputs. The resulting
inconsistency in kernel computations between the encrypted
and non-encrypted datasets limits the attacker’s ability to infer
training membership, thereby enhancing the system’s privacy
protection.

B. Secure Computation

To ensure secure GP regression, the proposed method em-
ploys random unitary transformations to encrypt both training
and testing data. For the training inputs X, a unitary matrix
Qp is created using a private key p, resulting in encrypted
inputs X̂ = XQp. Similarly, the test inputs X∗ are encrypted
as X̂∗ = X∗Qq , using a different unitary matrix Qq generated
with a separate key q, as in Eq. (11):

X̂ = XQp =


x̂1
x̂2
...

x̂N

 , X̂
∗
= X∗Qq =


x̂∗
1

x̂∗
2
...

x̂∗M

 . (11)

This transformation is applied to every element of the
input vectors, meaning all input features are protected during
transmission and computation. The GP model then estimates
the function f(X̂) from the encrypted training data, modeling
the outputs, as in Eq. (12):

Y = f(X̂) + ϵ. (12)

This equation says that the observed output Y (e.g., a
medical measurement) is made up of the model’s prediction
f(X̂) plus some random noise ϵ to account for uncertainty or
measurement error.

Next, we establish a joint Gaussian distribution that en-
compasses both the training outputs and the model’s function
values at the encrypted test points, as detailed in Eq. (13):

[
Y

f(X̂
∗
)

]
∼ N

([
0
0

]
,

[
K(X̂, X̂) + σ2I K(X̂, X̂

∗
)

K(X̂
∗
, X̂) K(X̂

∗
, X̂

∗
)

])
.

(13)

This joint covariance matrix characterizes a multivariate
normal distribution over the training outputs and the function
values at the test points. The top-left block K(X̂, X̂) + σ2I
captures the dependencies among the encrypted training inputs.
The bottom-right K(X̂∗, X̂∗), reflects the covariance structure
among the encrypted test inputs. The off-diagonal blocks,
K(X̂, X̂

∗
) and K(X̂

∗
, X̂), represent the interaction between the

training and test data. The term σ2I accounts for observation
noise, introducing a measure of uncertainty into the model.

From this joint distribution, we derive the posterior predic-
tion—that is, the model’s estimate for the test outputs based
on the training data:

f(X̂
∗
) = K(X̂

∗
, X̂)T

[
K(X̂, X̂) + σ2I

]−1

Y. (14)

This Eq. (14) is used to generate predictions for the
encrypted test inputs X̂

∗
. It leverages the relationships between

test and training inputs, as captured by the kernel function, the
internal structure among the training inputs, and the observed
training outputs Y.

Eq. (15) provides the variance (uncertainty) of those pre-
dictions:

σ2(X̂
∗
) = K(X̂

∗
, X̂

∗
)

− K(X̂
∗
, X̂)T

[
K(X̂,X) + σ2I

]−1

K(X̂
∗
, X̂).

(15)

This expression quantifies the model’s predictive uncer-
tainty for each test input. A lower variance indicates higher
confidence in the prediction, whereas a higher variance sug-
gests greater uncertainty. The magnitude of this variance
reflects how closely the test input resembles the training data
distribution.

C. Encryption Based on Random Unitary Transform

Prior research has investigated secure sparse coding tech-
niques based on random unitary transformation [24], [25],
[26], [27], demonstrating that it is possible to protect sensitive
data while preserving key geometric structures. To ensure data
privacy in Gaussian Process Regression (GPR), this study
adopts a transformation-based encryption mechanism utilizing
random unitary matrices. This technique obfuscates input data
while preserving essential geometric properties required for
kernel-based learning. Unlike additive noise methods such
as DP-GPR, this approach enables secure learning without
degrading model accuracy.

Let x∗i ∈ RD denote a raw input vector. A unitary matrix
Qp ∈ CDXD, generated using a private key p, is applied to
encrypt the data, as shown in Eq. (16):
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x̂i = xiQp. (16)

This transformation yields an encrypted representation x̂i,
where Qp satisfies the unitary condition given in Eq. (17):

QH
p Qp = I. (17)

Here, QH
P denotes the Hermitian transpose, and I is the

identity matrix. This property ensures that the transformation
is norm-preserving and invertible, enabling the encrypted in-
puts to retain structural similarity to the original data. The
encryption preserves the following fundamental properties:

• Property 1: Norm Isometry

||xi||22 = ||x̂i||22
• Property 2: Distance Preservation

||xi − xj||22 = ||x̂i − x̂j||22
• Property 3: Inner Product Preservation

xHi xj = x̂Hi x̂j

These preserved characteristics are essential for accurate
kernel computation in GPR, particularly when using the Radial
Basis Function (RBF) kernel. The kernel function on the
encrypted data is expressed, as in Eq. (18):

K(x̂i, x̂j) = θ1 exp

(
−||x̂i − x̂j ||2

θ2

)
+ σ2δ(i, j). (18)

Substituting x̂i = xiQp and x̂j = xjQp, and applying the
unitary property, we obtain the distance preservation relation
shown in Eq. (19):

||x̂i − x̂j ||2 = ||(xi − xj)Qp||2 = ||(xi − xj)||2. (19)

Hence, the kernel function becomes: K(x̂i, x̂j) = K(xi, xj)
This result confirms that encrypting the input vectors with the
same key does not alter the pairwise kernel values, thereby
preserving model fidelity during training.

While the analysis primarily focuses on the RBF kernel,
the properties of random unitary transformation (RUT)—such
as norm preservation, inner product invariance, and distance
preservation—also ensure compatibility with other kernel func-
tions. For example, the linear kernel, which directly relies
on inner products, remains unaffected by RUT. Similarly,
polynomial kernels, which are functions of inner products, also
retain their behavior under unitary transformations, enabling
broad applicability of the proposed method across kernel-based
models.

Similarly, if the test inputs x∗
i ∈ RD are encrypted with

the same unitary matrix Qp, the kernel between test points
remains invariant, as expressed as in Eq. (20):

K(x̂∗i , x̂∗j ) = K(x∗
i , x∗j ). (20)

However, when training and test inputs are encrypted using
different keys (i.e., Qp ̸= Qq), the kernel function between
them is modified, as in Eq. (21):

K(x̂i, x̂j) = θ1 exp

(
−
||x̂iQq − x̂jQp||2

θ2

)
+ σ2δ(i, j). (21)

Since Qp ̸= Qq , the transformation no longer preserves
the distances between training and test samples. Consequently,
K( ˆx∗i , x̂j) ̸= K(xi, xj). This mismatch distorts the kernel
values, making it infeasible for an adversary to infer train-
ing membership based on similarity, thereby enhancing the
model’s privacy guarantees.

When the same transformation key is applied to both
training and test inputs (that is, Qp = Qq), the encrypted GP
model produces predictions and uncertainties identical to the
plaintext case, as shown in Eq. (22) and Eq. (23):

f(X̂
∗
) = f(X∗), (22)

σ2(X̂
∗
) = σ2(X∗). (23)

This property ensures that the encryption does not com-
promise the accuracy of the model.

Finally, when only the training inputs are encrypted (i.e.,
test data remains non-encrypted), the kernel between test and
training data becomes distorted, as expressed in Eq. (24):

K(x∗i , x̂j) = θ1 exp

(
−
|x∗

i − x̂j|2

θ2

)
+ σ2δ(i, j)

= θ1 exp

(
−
|xiI − xjQp|2

θ2

)
+ σ2δ(i, j)

̸= K(xi, xj). (24)

Since the test inputs are in their original form and the
training inputs are encrypted, the kernel function again deviates
from its non-encrypted counterpart, further reinforcing privacy
against inference attacks.

V. EXPERIMENTAL EVALUATIONS

To evaluate the effectiveness of the proposed approach, a
series of experiments were conducted using a diabetes dataset
commonly employed in medical data analysis.

A. Simulation Conditions

To assess the effectiveness of the proposed secure Gaussian
Process Regression (secGPR) framework, experiments were
conducted using a publicly available medical dataset related
to diabetes. This dataset, sourced from the scikit-learn library,
comprises 442 individual records, each containing 10 baseline
clinical features such as age, sex, body mass index (BMI),
and a quantitative measure of disease progression recorded
one year after baseline assessment [28], [29]. For the purpose
of model training, a subset of 353 samples was used, while
the remaining 89 records were reserved for testing. In this
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experimental setup, the input matrix X ∈ RNXD represents the
10-dimensional clinical features, and the corresponding target
values Y ∈ RN indicate the diabetes progression scores. This
configuration allows for a rigorous evaluation of the secGPR
model’s ability to accurately predict continuous outcomes
under various encryption scenarios.

The random unitary transformation matrix Qp, used
to encrypt the input features, was generated through the
Gram–Schmidt orthogonalization process to ensure it satisfies
the unitary constraint. This matrix was applied to the input data
prior to training and testing in the secure learning environment.

B. Simulation Results

This section presents a comparative analysis of the predic-
tive performance between the conventional GP model and the
proposed secure approach.

1) Non-encrypted GP (Where both the training data X
and the testing data X∗ remain non-encrypted): When the
test data was included in the training set, the conventional
(non-encrypted) GP model exhibited near-perfect predictive
performance, achieving an average error of 1.515×10−11 and
1.000× 10−10, as reported in Table I. While these results
indicate extremely high accuracy, they also reveal a significant
security concern: the model’s highly deterministic behavior
enables adversaries to easily infer whether specific data points
were used during training, thus exposing it to MIAs.

Fig. 3. Mean prediction and uncertainty of conventional GP for
non-encrypted training and testing data.

Conversely, when the test data was excluded from the
training process, the model’s predictive accuracy declined
markedly, with the average error rising to 64.32 and the vari-
ance increasing to 585.26. This outcome reflects a more real-
istic deployment scenario in which unseen inputs yield greater
uncertainty and lower confidence. The sharp contrast between
these two settings highlights a fundamental vulnerability of
traditional GPR models in privacy-sensitive applications: they
lack an effective balance between predictive performance and
data confidentiality.

Fig. 3 illustrates the prediction results of the GPR model in
the non-encrypted baseline configuration, where both training
and test data are used in their original, untransformed form.
The x-axis represents patient IDs, and the y-axis corresponds
to the diabetes progression measure.

In this figure:

• Red circles denote the ground truth values of the
training data.

• Brown stars represent the model’s mean predictions
for training samples, with the red shaded region
indicating the corresponding predictive uncertainty
(standard deviation).

• Green crosses mark the test data samples that were
included in the training set.

• Blue circles show the predicted means for these test
samples, while the blue shaded region visualizes their
associated uncertainty.

The predictions for both training and test data exhibit
excellent alignment with the true values, accompanied by
consistently low variance. This high confidence and low pre-
diction error—particularly for test data reused during train-
ing—indicates strong memorization behavior. While desirable
from a model accuracy standpoint, this deterministic prediction
pattern introduces a substantial privacy vulnerability. Specif-
ically, the marked discrepancy in model behavior between
training and unseen test inputs (not shown in this figure) can
be exploited in MIAs. In this setting, an adversary can reliably
infer whether a data point was part of the training set by
observing prediction confidence and error.

TABLE I. COMPARATIVE PERFORMANCE ACROSS METHODS

Scenario Condition Average Error Average Variance

Non-encrypted GP Test Data Included 1.515 × 10−11 1.000 × 10−10

Test Data Excluded 64.32 585.26

DP-GPR Test Data Included 45.7158 342.4383
Test Data Excluded 50.2886 345.6273

Proposed GP: Case 1 (P = Q) Test Data Included 1.515 × 10−11 1.000 × 10−10

Test Data Excluded 64.32 585.26

Proposed GP: Case 1 (P ̸= Q) Test Data Included 102.604 838.253
Test Data Excluded 87.07 850.8863

Proposed GP: Case 2 Test Data Included 113.96 843.99
Test Data Excluded 103.74 827.38

2) DP-GPR: The DP-GPR based model achieves moderate
privacy protection by injecting noise into the training process.
It achieves relatively lower error and variance compared to
Case 2 (included: error = 45.7158, variance = 342.4383;
excluded: error = 50.2886, variance = 345.6273), while still
maintaining acceptable accuracy. However, the residual gap
between seen and unseen data behaviors indicates that some
MIA risk remains. Moreover, DP-GPR distorts the internal
structure of the data and relies heavily on tuning privacy
budgets, potentially impacting generalization.

Fig. 4 illustrates the predictive performance of the DP-
GPR model when the test data is included in the training
set. The horizontal axis represents the individual patient IDs,
while the vertical axis corresponds to the diabetes progression
measure. The red dots denote the true test data values, serving
as the ground truth. The blue line with star markers represents
the mean predictions made by the DP-GPR model. The pink
shaded region around the prediction curve indicates the stan-
dard deviation of the predictions, capturing the model’s predic-
tive uncertainty. As shown, the prediction curve closely follows
the general trend of the true values, but several true points
deviate significantly—especially in regions of higher variance.

www.ijacsa.thesai.org 77 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

These deviations are partially accounted for by the uncertainty
bands, which widen in areas where the model expresses less
confidence. The presence of these variability bands is a result
of the noise added by the DP-GPR mechanism, which affects
both prediction sharpness and confidence calibration.

Fig. 4. Mean prediction and uncertainty of DP-GPR.

Fig. 4 highlights a key characteristic of DP-GPR: while
the model maintains reasonable alignment with the true data,
it introduces a moderate level of uncertainty due to privacy-
preserving noise. Importantly, the overall prediction behavior
remains consistent, though less precise compared to non-
private or fully encrypted models, such as those in the proposed
method’s Case 1.

3) Case 1 (Both the training data X and the test data
X∗ were encrypted using random unitary transformations):
Two scenarios were evaluated to assess the effectiveness of
the proposed method: one in which the same key was used
for both transformations (Qp = Qq), and another in which
different keys were applied (Qp ̸= Qq).

In the key mismatch scenario (Qp ̸= Qq), the model’s
predictive performance declined due to the inconsistency in
the transformed input spaces. When test data was included
in the training set, the average prediction error and variance
were 102.60 and 838.25, respectively. When test data was
excluded, the error reduced to 87.07, accompanied by a slight
increase in variance to 850.89. These results indicate that
although encryption mismatches degrade accuracy, they also
enhance privacy by disrupting kernel-based similarity, thereby
complicating membership inference attempts.

In contrast, the key match scenario (Qp = Qq) yielded
prediction results indistinguishable from those of the non-
encrypted model. Specifically, when test data was part of the
training set, the average error and variance were extremely
low— 1.515× 10−11 and 1.000× 10−10, respectively. Even
when the test data was excluded, the model maintained strong
performance with an error of 64.32 and variance of 585.26.
These findings demonstrate that when consistent encryption is
applied, the proposed method retains full predictive accuracy
while ensuring data confidentiality.

Fig. 5 presents the predictive results of the proposed GPR
model under the Case 1 configuration, where both training and
test inputs are encrypted using the same random unitary matrix
(i.e., Qp = Qq ). The x-axis represents patient IDs, while the
y-axis denotes diabetes progression measurements.

In the plot, red dots correspond to the true training data,
with black stars showing the model’s predicted means and red

Fig. 5. Mean prediction and uncertainty of proposed method (Case 1) for
encrypted training and testing data.

shaded areas indicating prediction uncertainty. Green crosses
represent the encrypted test data (used in training), while blue
circles and blue shaded regions indicate their predicted means
and standard deviations, respectively.

The figure shows that the model achieves highly accurate
predictions and low uncertainty for both datasets, indicating
that structural data relationships are preserved under consistent
encryption.

4) Case 2 (Where training data X is encrypted and testing
data X∗ is non-encrypted): This asymmetric configuration,
referred to as a mixed encryption state, resulted in the poorest
predictive performance among all evaluated scenarios. When
the test data was included in the training set, the model
exhibited the highest average error and variance, recorded at
113.96 and 844.00, respectively (see Table I). Excluding the
test data from training slightly improved the outcomes, with the
average error decreasing to 103.74 and the variance dropping
to 827.38. Despite this modest reduction, the performance
remained significantly worse than in fully encrypted or non-
encrypted settings.

Fig. 6. Mean prediction and uncertainty of proposed method (Case 2) for
encrypted training data and non-encrypted testing data.

Fig. 6 illustrates the prediction performance of the pro-
posed GPR model under the Case 2 configuration, in which
the training data is encrypted using a random unitary matrix
Qp, while the test data remains non-encrypted. The x-axis
represents the patient IDs, and the y-axis indicates the diabetes
progression measure.

In this figure:

• Red circles correspond to the ground truth values for
the training data.
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• Black stars represent the mean predictions for the
training data, and the red shaded area denotes the
associated prediction uncertainty (standard deviation).

• Green crosses mark the true test data values (used in
training).

• Blue circles indicate the predicted mean values for the
test data, with the blue shaded area visualizing their
predictive uncertainty.

Despite the fact that test data are included in training, the
model demonstrates substantially degraded prediction accuracy
and elevated uncertainty across both training and test datasets.
This performance degradation arises from the incompatibility
between the encrypted training data and the non-encrypted (or
differently encrypted) test data, which undermines kernel con-
sistency and limits the model’s ability to capture meaningful
relationships.

These results indicate that the mixed encryption scenario
in Case 2 provides a high level of privacy by intentionally
disrupting the correspondence between encrypted and non-
encrypted data. The resulting reduction in predictive accuracy
is not a drawback, but rather a desirable characteristic from a
privacy perspective—specifically, it ensures that attackers can-
not make accurate estimations about whether a given sample
was part of the training set. The sharp degradation in model
performance serves to obscure membership signals, thereby
strengthening the model’s resistance to membership inference
attacks (MIAs).

VI. CONCLUSION

This study introduced a noise-free privacy-preserving
framework for Gaussian Process Regression based on Random
Unitary Transformation. The method supports configurations
that either preserve accuracy (Case 1) or prioritize privacy
robustness (Case 2). Compared with DP-GPR, which relies
on noise injection, the proposed framework maintains model
fidelity while enhancing resistance to MIAs.

The results demonstrate that Case 1 achieves excellent
predictive accuracy, comparable to the non-encrypted baseline,
while ensuring structural privacy without introducing noise.
However, the observed discrepancy in prediction behavior
between training and unseen data introduces a moderate vul-
nerability to MIAs. In contrast, Case 2 offers the strongest
privacy protection, as it produces uniformly high error and
uncertainty regardless of whether a data point was part of the
training set. This consistency effectively conceals membership
status, though at the cost of reduced model utility.

Compared to DP-GPR, which achieves moderate privacy
through noise injection, the proposed framework provides
a noise-free alternative that either maintains model fidelity
or maximizes privacy robustness. While DP-GPR strikes a
balance between accuracy and privacy, it fails to eliminate
membership leakage entirely and distorts the data’s statistical
structure.

Overall, the proposed approach demonstrates flexibility in
supporting different privacy scenarios without compromising
predictive accuracy. In Case 1, where the same key is used
to encrypt both training and test data, the model maintains

predictive performance equivalent to the non-encrypted base-
line. However, this configuration introduces a potential at-
tack surface: if the shared key is ever leaked, inferred, or
reused, it could allow adversaries to align encrypted inputs and
compromise membership privacy. In contrast, Case 2, where
only the training data is encrypted, offers stronger privacy
protection by fully disrupting alignment between training and
test distributions. The resulting decrease in predictive accuracy
is not a limitation, but a privacy-enhancing effect—by weak-
ening the correspondence between training and test samples,
it becomes significantly more difficult for adversaries to infer
membership or reconstruct sensitive data. These findings high-
light the promise of unitary transformation-based encryption as
a practical, interpretable, and privacy-preserving solution for
sensitive machine learning applications.

VII. LIMITATIONS AND FUTURE WORK

While the proposed encryption-based GPR framework
demonstrates strong potential in balancing privacy and pre-
dictive performance, several limitations warrant further in-
vestigation. First, the current evaluation is conducted on
a single dataset with a moderate number of features and
samples. Additional experiments on larger, more diverse
datasets—particularly in high-dimensional or real-time envi-
ronments—are necessary to assess the scalability and gener-
alizability of the approach. Second, although Case 2 offers
strong resistance to MIAs, it does so at the cost of significantly
degraded predictive accuracy, which may limit its practicality
in applications where precision is critical. Furthermore, this
work assumes a passive attacker model; evaluating robustness
under more aggressive or adaptive adversarial strategies (e.g.,
shadow models, reconstruction attacks) remains an open area.

Future research could explore hybrid defense mechanisms
that combine unitary transformation with adaptive noise injec-
tion or output randomization to further enhance privacy with-
out significantly compromising predictive accuracy. Investigat-
ing how this framework performs under federated learning or
distributed settings is also a promising direction—particularly
in scenarios where local privacy constraints and communica-
tion efficiency are critical. These directions would broaden the
applicability of the proposed method and address emerging
challenges in real-world privacy-preserving machine learning
systems.
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