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Abstract—Low-carbon building energy optimization is the 

environmental aspect that is impacted due to the construction 

sector. The integration of Building Information Modelling (BIM) 

with Artificial Intelligence (AI) techniques offers the design and 

operation of buildings with a reduced carbon footprint. Usually, 

such systems lack flexibility and the precision of dynamically 

optimizing energy usage. This work proposes a novel data-driven 

framework that merges AI and BIM to optimize the building 

energy system for low-emission design using Carbon Major 

Emission Datasets. It aids materials and energy source selections 

by identifying highly emitting commodities to reduce operational 

carbon footprints. Initially, data acquisition and emission analysis 

are performed on the Carbon Majors database to identify high-

emission materials. Subsequently, emission factors are linked with 

the BIM elements using plug-ins such as One Click LCA, which 

allow the annotation of embodied carbon values. Further, 

operational energy is optimized by Multi-Agent Assisted NSGA-

II, which optimizes parameters and material selection. 

Additionally, AI-assisted energy prediction supported by the 

SqueezeNet model and energy simulation techniques was used for 

minimizing building energy consumption. The results reveal a 

high-energy prediction accuracy of 0.0212 for MAE, 0.0376 for 

MSE, and 0.9814 for the R² score. It further helps to reduce carbon 

emissions by 1155 tons and improve the cost efficiency of 570.25 

million, promoting low-carbon building solutions from the earliest 

stages of design. 
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I. INTRODUCTION 

Low-carbon building in energy optimization is the strategic 
design, construction, and operation of buildings with the goal of 
minimizing carbon dioxide (CO₂) and greenhouse gas emissions 
throughout their life cycle [1]. This method is in reaction to the 
huge contribution of the built environment toward global 
climate change, whereby buildings contribute around 39% to 
global annual CO₂ emissions, 28% from building operations, 
and 11% from materials and construction (embodied carbon) 
[2]. The urbanization, industrialization, and energy demand 
across the world have increased the carbon intensity of building 
infrastructure over the last four decades [3]. Perceiving climate 
change mitigation as a global agenda, the Paris and the United 
Nations sustainable development goals stresses the urgent 
necessity of decarbonizing the construction sector. More than 
75% of the building stock in 2050 will be built today; hence, the 
optimization of new and existing buildings is paramount [4]. 

This leads further to the development of advanced energy 
modelling and carbon accounting tools with policy-inspired 
benchmarks for the reduction of the lifecycle carbon footprint of 
buildings [5]. Over the past 15 to 20 years, the emergence of 
carbon emission trajectories in climate models has brought into 
sharp relief the prominence of energy optimization for low-
carbon building and thereby situated it as one of the key pillars 
in sustainable urban development worldwide [6]. 

Due to the increasing demand for sustainable construction, 
Building Information Modelling (BIM), combined with low-
carbon building technology, has been identified as a 
transformational approach [7]. A BIM system is a digital 
representation of a building's physical and functional attributes 
through a 3D model-based process, thus facilitating 
multidisciplinary collaboration among design, construction, and 
operation phases [8]. The carbon emission data, along with 
energy performance, could be embedded into the BIM platform, 
enabling stakeholders to simulate, analyze, and optimize design 
alternatives [9]. Price types and potential hybrid modes of 
construction based on carbon emissions could be informed by 
such integration [10]. In 15 to 20 years, BIM will graduate to a 
platform-based 5- and 6-dimensional solution [11]. This has 
propelled BIM ahead of its contemporaries regarding carbon-
aware building methods, hence providing a striking tool for the 
reduction of embodied and operational carbon footprints early 
in scheme planning and design, an important activity since over 
70% of a building's lifecycle cost and impact are determined 
during the initial phases [12]. 

A rapid rise in the practice of BIM-based low-carbon design 
optimization is being witnessed in developed and emerging 
countries, owing to varied regulations on carbon, increased 
concern regarding climate risk, and growth in digital 
technologies for construction [13]. BIM mandates and 
sustainability frameworks have been adopted by governments 
and industries around the globe, with carbon performance 
increasingly within these frameworks [14]. The incorporation of 
historical datasets of carbon emissions within BIM 
environments enables architects and engineers to trace the 
carbon intensity of a material (such as cement) or goods (such 
as coal) to the producers for emission-conscious supply chain 
decisions [15]. This data-oriented integration of BIM and 
Artificial Intelligence (AI) -based optimizers allows for-going 
carbon assessments and predictive modelling of energy 
consumption to be evaluated with surgical precision [16]. This 
way, it enables buildings to comply with environmental 
standards, maintain energy efficiency, and sustainable building 
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design solutions, thereby drastically cutting carbon emissions 
and green-resilient structures towards the building agenda. This 
AI has helped in considerably minimizing carbon emissions, 
enhancing design efficiency, saving costs through energy 
optimization, improving regulatory compliance, and creating 
environmentally resilient and future-ready buildings [17]. Thus, 
this work provides a data-driven framework to integrate BIM 
technology into historical carbon emission data through the AI-
aided analysis of energy performance and support for low-
carbon design decisions. 

Research Questions: 

1) How can Building Information Modelling (BIM) be 

integrated with historical carbon emission datasets to support 

low-carbon material selection in early design stages? 

2) In what ways can Artificial Intelligence (AI), 

particularly deep learning models such as SqueezeNet, improve 

the accuracy of building energy consumption prediction? 

3) How can a multi-objective optimization approach 

(MAA-NSGA-II) simultaneously balance energy efficiency, 

carbon reduction, comfort, and cost in building design? 

4) To what extent can the proposed AI-BIM framework 

achieve both embodied and operational carbon optimization 

across the entire building lifecycle? 

The major contributions of the proposed work are: 

 Formulate a data-driven framework where the AI-BIM is 
integrated with the Carbon Majors Emissions Dataset to 
orient low-carbon building energy optimization about 
material selection and operational strategies through 
historical emissions intelligence. 

 Analyse carbon emission data to aggregate emissions 
from coal, cement, oil, and gas to parent entities to 
identify high-emission materials for sustainable 
construction planning. 

 Integrate emissions data with BIM by connecting 
emission coefficients with building components with 
One Click LCA (life cycle assessment) to enable the 
visualization and annotation of embodiment carbon 
values within the BIM environments.  

 Optimize operational carbon emissions using a Multi-
Agent-Assisted NSGA-II (MAA-NSGA-II) algorithm 
by considering the simultaneous positioning of multiple 
design parameters and shading configurations for multi-
objective energy efficiency. 

 Simulate predictive energy demands with an AI-based 
model that characterizes building energy consumption 
using a SqueezeNet model for compressing buildings 
and assessing actual operational energy demand, while 
maintaining thermal comfort and indoor quality. 

The study is organized into sections as follows: Section II is 
concerned with the study of related literature and existing 
approaches. Section III describes the AI-based simulation 
methodology proposed. Section IV provides analysis and 
discussion of the results in Section V. Finally, Section VI draws 
the conclusions. 

II. LITERATURE SURVEY 

Recently, the convergence of Internet of Things (IoT), AI, 
and big data analytics has immensely expanded the functional 
scope of BIM applied in construction and visualization. 
According to Ho et al. [18], a data-centric approach with ant 
colony optimization method for low-carbon prefabricated 
component production is introduced. The study highlighted the 
importance of prefabrication in reducing environmental impacts 
in the construction sector. In the same vein, Razi et al. [19] used 
a multi-objective prediction model for time, cost, energy 
consumption, and CO₂ emissions. Applying decision-making 
methods to identify influencing factors and utilizing eleven 
machine learning (ML) algorithms, the study forecasted the four 
competing priorities and balanced them. Another work by Popa 
et al. [20] developed a predictive tool that cohered energy 
consumption data under the IoT to assign energy performance 
ratings. Their model tested the capability of an efficiency label 
for buildings by using minimal input features of floor area. 
Between these developments, Myintet al. [21] focused on 
carbon estimation during numerous stages of construction, 
including raw material processing and transportation, by using 
data acquired from a residential project. Yet, challenges in 
integrating emission data and allow for a holistic low-carbon 
optimization in BIM workflows. 

BIM has been transformative in embedding energy 
performance and carbon footprint assessment throughout a 
building’s lifecycle. For instance, Zhao et al. [22] developed a 
BIM approach with 3D laser scanning to generate energy models 
for the building. The method was employed to analyze retrofit 
options to convert existing buildings into operational nearly 
zero-energy systems. Similarly, Shen et al. [23] introduced a 
full-life-cycle net-zero carbon building framework. Their work 
utilized an ontology-based approach in BIM to delineate key 
decision variables that cover design, construction, and 
operation, thus allowing seamless data integration and decision-
making based upon it. Also, Tahmasebinia et al. [24] utilized 
regression models within BIM environments to simulate energy-
efficient design. The study showed that multi-linear regression 
was used to estimate energy consumption for different 
architectural shapes and materials, revealing that triangular 
shapes produced the best energy performance. Another survey 
by Zhuang et al. [25] explored a performance-oriented BIM 
framework to optimize environmental impact and energy usage 
throughout the building life cycle. They employed a school 
building to analyze the effects of different envelope structures 
on indoor environment conditions and cost-effectiveness. 
However, lacked dynamic integration of emissions data to 
enable true holistic optimization. 

Advancements in data-driven technologies, especially AI, 
BIM, and big data analytics, have increased opportunities for 
optimizing the energy performance of buildings. Mehraban et al. 
[26] studied residential buildings' energy behaviour in hot 
climatic zones by applying a BIM-ML approach. The approach 
involved simulating energy use via platforms such as green 
building studio and insight with respect to building orientation, 
fenestration, floor area, wall constitution, infiltration rates, and 
daylighting. Four ML methodologies were used to predict 
energy use intensity and thus generated information on the 
design's energy use. Likewise, Wang et al. [27], Arsiwala [28], 
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and Giannelos et al. [29], among others, have studied carbon 
emission prediction at the initial stages of construction, focusing 
on integrating BIM-ML techniques. They studied 35 public 
buildings in China to measure emissions caused by material 
selection. In parallel, digital twin models combined with ML 
were employed to engineer the monitoring of CO₂ emissions 
from operational buildings. Also, they used ML to predict 
emission levels at various stages of the life cycle in the building 
sector. Despite significant achievements, many of the solutions 
faced limitations with respect to predicting emissions across 
varied climates, materials, and emission scenarios, hence paving 
the way for generalizable emissions-informed BIM-AI 
frameworks. Table I presents the limitations of previous studies 
and the solutions proposed in this study. 

TABLE I.  LIMITATIONS OF PREVIOUS STUDIES AND SOLUTIONS 

PROPOSED IN THIS STUDY 

Study Limitations Proposed Solutions 

Ho et al. [18] 

Looked only at parts, 

not the full building 

carbon. 

Covers both building 

materials and energy use 

with AI. 

Razi et al. [19] 
Balanced cost, time, 
energy, but not a full 

low-carbon design. 

Optimizes energy, 
emissions, and comfort 

together. 

Popa et al. [20] 
Used very few inputs; 
no detailed carbon data 

for materials. 

Adds detailed carbon data of 
materials into BIM for better 

design. 

Myint et al. [21] 
Did not fully connect 

carbon data in BIM. 

Links carbon data directly in 

BIM with One Click LCA. 

Zhao et al. [22] 

Focused only on 

retrofit energy, not the 

full life cycle. 

Handles both embodied and 

operational carbon for the 

full life cycle. 

Shen et al. [23] 
Did not use changing 
data during building 

use. 

Uses AI for dynamic updates 

over the life of the building. 

Tahmasebinia et 
al. [24] 

Looked at energy, but 
not much carbon. 

Combines both energy and 
carbon. 

Zhuang et al. 
[25] 

No real-time 

adjustment for energy 
and carbon. 

Adds AI for real-time 
changes across the life cycle. 

Mehraban et al. 

[26] 

Only studied hot-

climate houses. 

Uses a global dataset, so it 

works in all regions. 

Wang et al. [27] 
Looked only at carbon 

at construction start. 

Covers both short-term and 
long-term carbon with AI + 

BIM. 

A. Problem Statement 

Despite advances in integrating BIM with data-driven 
technologies, it still has not been able to develop fully optimized 
low-carbon building energy systems. Most of the methods 
consider operational carbon and embodied carbon, but they are 
not linked with emission data from materials such as cement, 
coal, and natural gas, known to be major contributors to the 
carbon footprint of the building sector [30]. Also, they present 
different explanations of energy simulation tools that exert 
generalized assumptions and do not provide internalized insight 
into carbon-intensive commodities, compromising their early-
stage design decisions [31]. Retrofit models are also limited by 
small datasets, lacking dynamic adjustment through building 
lifecycles, or are limited to a narrow geography and climatic 
condition [32]. Besides, AI methodologies are used for energy 
prediction but rarely consider carbon emission data, especially 
from databases based on emissions of global actors [33]. 
Therefore, a clear gap exists as existing research either remains 

limited to operational optimization, neglect material-level 
carbon data, or fail to integrate dynamic lifecycle adjustments. 
Few approaches combine embodied and operational carbon 
within a unified BIM-AI framework, which restricts their real-
world applicability. To overcome these challenges, this study 
proposes a novel data-driven methodology that integrates BIM 
and AI, with an infusion of historical emissions data to define 
low-carbon decisions throughout the building life cycle, 
achieving both embodied and operational carbon optimization. 

III. PROPOSED AI-BIM LOW-CARBON ENERGY 

FRAMEWORK 

This framework presents a data-driven low-carbon building 
energy optimization framework integrating BIM with historical 
emissions data and AI-trained optimization techniques. The 
proposed algorithms are especially effective when applied to 
detailed and high-dimensional datasets, such as BIM models 
enriched with material-level carbon factors and time-series 
operational data (e.g., HVAC loads, occupancy, lighting). Their 
strength lies in handling multi-variable scenarios where both 
embodied and operational carbon must be optimized together, 
whereas performance may be less comprehensive when applied 
to small or low-detail datasets. Utilizing the carbon emissions 
dataset allows identify the commodities with high emissions and 
trace the carbon responsibility to particular entities. The 
framework starts with an investigation of emissions, wherein 
data is aggregated by commodity and entity to identify high 
embodied carbon materials. This is followed by a data 
embedding process into BIM environments, which associates 
carbon coefficients with building components and thus allows 
for graphical exposition of environmental impact. Similarly, an 
MAA-NSGA-II algorithm is used to perform multi-objective 
optimization of crucial operational parameters, while the AI-
assisted prediction model simulates building energy use to 
reduce operational emissions and work alongside human 
comfort to design carbon-aware energy-efficient buildings. The 
general synthesis of the proposed framework is shown in Fig. 1. 

 
Fig. 1. AI-BIM Integrated framework for low-carbon building energy 

optimization. 

A. Data Acquisition 

The dataset adopted in this work consists of carbon 
emissions, providing a history of emissions data from 1854. The 
data are provided by the Climate Accountability Institute. It 
compiles production and emissions data from 122 major fossil 
fuel and cement producers. This database was selected due to its 
being one of the most authoritative and comprehensive in 
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existence, reporting over 72% of global fossil fuel and cement 
emissions since the onset of the industrial era. Its broad coverage 
and granularity by commodity and producer make it incredibly 
well-suited to associating emission factors with BIM 
components and facilitating sound low-carbon design choices. 
The data for emissions analysis were obtained from corporate 
disclosure, national inventory, and academic research, 
guaranteeing reliability. This study entails the variables year, 
parent entity, commodity type (coal, cement), production 
quantity, and total emission observed in MtCO₂e to capture 
emission-intensive materials and producers over time. 

B. Emissions Analysis 

During this stage, the emissions data is accumulated and 
analyzed to build a carbon-intensive materials and emission 
contributors. Emissions are grouped by type of commodity, 
specifically by coal, cement, oil, and gas, on parent entity 
ownership models considered by type of ownership from the 
investor. This sets the basis for understanding with level of 
granularity with which materials and producers have contributed 
in the past toward global carbon emissions. In the analysis, it 
produced material-wise emission coefficients towards 
informing low-carbon design in BIM environments. These 
coefficients serve as quantified indicators of embodied carbon, 
allowing architects and engineers to identify and consequently 
circumvent or lessen high-emission materials at the conceptual 
design phase level. 

This study, using the aggregation of measurements provided 
by the dataset (1854- Present), identifies carbon-intensive 
materials by a detailed dataset from commodity type and parent 
entity (state-owned versus investor-owned). These coefficients 
guide the annotation of BIM components toward carbon-
conscious design and planning (for instance, annotations may 
encourage the use of Portland cement substitutes consisting of 
lower embodied carbon). 

C. BIM Integration 

Once the emissions analysis is conducted, the framework 
incorporates emission intelligence into the BIM environment. 
This is done through One Click LCA, the premier platform for 
LCA and embodied carbon calculations, used to make 
environmental data, mainly emission coefficients for high-
carbon materials like cement, coal-based steel, and fossil fuel 
derivative chemicals, feed into design decisions on the digital 
stage. Incorporation of emissions data in the LCA platform 
follows a multi-step procedure, 

1) Initially, emission coefficients are retrieved from the 

dataset. The coefficients stand for average carbon emissions per 

unit of material. For instance, 0.95 MtCO₂e per tonne of 

cement. The materials are arranged according to their 

commodity type, production source, and historical emissions; 

thus, they represent more realistic environmental impact 

metrics. 

2) A highly detailed digital building model was imported 

from Autodesk Revit into One Click LCA via a plugin. The 

plugin reads and interprets the BIM model in terms of basic 

structural and architectural elements, and it extracts quantities 

and dimensions, material specifications, and location-based 

metadata for all components (such as slabs, beams, insulation, 

and facades). 

3) One Click LCA features an extensive environmental 

database, carrying thousands of building materials around the 

world and their environmental profiles. It automatically maps 

BIM materials to corresponding emission profiles so that 

tailored emission coefficients can be manually assigned to each 

material element in the model. 

4) After materials get mapped, One Click LCA calculates 

the embodied carbon for each building component by 

multiplying the emission factor by the quantity extracted from 

the BIM model. Subsequently, these values are annotated into 

the respective model elements, thus enabling the user to 

visualize the particular components, contributing to the overall 

carbon footprint of the building. 

5) Finally, this tool also prepares detailed LCA reports and 

carbon impact dashboards showing total embodied emissions 

of the building, material or construction-phase-wise 

breakdowns, and comparison across design alternatives. Such 

information is then available to architects and sustainability 

engineers to make informed decisions, based on data, either on 

low-carbon cement alternatives or structural systems 

optimization from a carbon perspective. 

By embedding emission coefficients and embodied carbon 
within the BIM environment, this integration elevates the static 
3D models into living, carbon-conscious digital twins. The 
initiative enables stakeholders to simulate and optimize the 
environmental performance of a building before embarking on 
physical construction, therefore supporting the overarching goal 
of a design that leads to energy-efficient, low-carbon buildings 
from the emissions data. 

D. Carbon Simulation and Optimization 

Further improvements in building energy efficiency and 
operational carbon emission reduction are achieved by 
considering the use of MAA-NSGA-II within the proposed 
framework. This multi-objective optimization within a BIM 
environment addresses critical design and operational 
parameters, enabling maximizing conflicting objectives at the 
same time, such as minimizing energy consumption and 
maximizing occupant comfort and material sustainability. The 
overall system of the MAA-NSGA-II optimization outline is 
shown in Fig. 2. 

 

Fig. 2. Illustration of the MAA-NSGA-II optimization framework. 
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The primary parameters selected for optimization include: 

 Window size and orientation (affecting solar gain and 
daylight utilization). 

 Building envelope materials and insulation levels. 

 HVAC system configuration and efficiency. 

 Lighting and shading strategies. 

The initial population of candidate design vectors (𝑋⃗) for the 
design alternatives is mathematically modelled as in Eq. (1): 

𝑋⃗ = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑊,𝑀,𝐻, 𝐿]  (1) 

where, 𝑥1 = 𝑊  signifies window sizes and orientations, 
𝑥2 = 𝑀  includes building materials and their insulation 
parameters, 𝑥3 = 𝐻  represents types and configurations of 
HVAC systems, and 𝑥4 = 𝐿 represents lighting strategies and 
shading devices. These variables influence energy demand and 
emissions through the building life cycle. This optimization is 
conducted to minimize the operational energy and consequently 
emissions of the building while maximizing thermal comfort. 
Then, the mathematical formulation of this multi-objective 
optimization is indicated in Eq. (2): 

min
𝑋⃗⃗
 

{
 

 𝑓1(𝑋⃗) = 𝐸total (𝑋⃗)

𝑓2(𝑋⃗) = 𝐶𝑜𝑝(𝑋⃗)

𝑓3(𝑋⃗) = −𝐶int (𝑋⃗)

   (2) 

Here, 𝑓1(𝑋⃗) quantifies total energy consumption (𝐸total ) in 

kWh, 𝑓2(𝑋⃗)  reflects carbon emissions (𝐶𝑜𝑝 ) in kilograms of 

CO2-equivalent, and 𝑓3(𝑋⃗) captures the inverse of the comfort 
function (𝐶int ), where represented using the predicted mean vote 

to ensure indoor thermal satisfaction. 

Energy use throughout the period of operation of the 
building is dynamically simulated by Eq. (3): 

𝐸total (𝑋⃗) = ∫  
𝑇

0
(𝑄𝐻𝑉𝐴𝐶(𝑡) + 𝑄lighting (𝑡) + 𝑄equipment (𝑡))𝑑𝑡 

(3) 

where, 𝑄HVAC (𝑡),  𝑄lighting (𝑡) , and 𝑄equipment (𝑡)  represent 

time-variant energy loads of respective systems over a total 
simulation time 𝑇 . These load profiles are compressed and 
represented using an AI model, enabling efficient processing 
within multi-agent systems. Then the operational carbon 
emissions are directly related to the energy consumed by various 
systems, weighted by their emission factors. This relationship is 
formalized as in Eq. (4): 

𝐶𝑜𝑝(𝑋⃗) = ∑  𝑛
𝑖=1 (𝜂𝑖 ⋅ 𝐸𝑖)      (4) 

where, 𝐸𝑖 is the energy usage of the 𝑖𝑡ℎ building subsystem 
(lighting), and 𝜂𝑖 is the corresponding CO2e emission factor for 
grid-supplied electricity (𝑛). This provides a direct estimation of 
emissions based on design choices. 

To ensure occupant well-being, the thermal comfort function 

𝐶int (𝑋⃗) is evaluated in the model embedded within a thermal 

comfort agent, as shown in Eq. (5): 

𝐶𝑖𝑛𝑡(𝑋⃗) = 𝑓(𝑇𝑎 , 𝑇𝑟 , 𝑅𝐻, 𝑉𝑎 , 𝐺, 𝐼𝑐𝑙)   (5) 

where, 𝑇𝑎  and 𝑇𝑟  denote air and radiant temperatures, 
respectively, 𝑅𝐻 is relative humidity, 𝑉𝑎 is air velocity, 𝐺 is the 
metabolic rate, and 𝐼𝑐𝑙  is the clothing insulation index. The 
function 𝑓(⋅) computes the score to estimate comfort from -3 
(cold) to +3 (hot). Correspondingly, multiple intelligent agents 

(𝑚 ), each with their own utility functions 𝜙𝑗(𝑋⃗),  evaluate 

candidate designs in parallel. These evaluations are then 
aggregated to compute a global fitness score using a weighted 
summation (Φ), as expressed in Eq. (6): 

Φ(𝑋⃗) = ∑  𝑚
𝑗=1 𝜔𝑗 ⋅ 𝜙𝑗(𝑋⃗)        (6) 

Here, 𝜔𝑗 are user-defined weights reflecting the priority of 

each agent (comfort, cost, emissions), and 𝜙𝑗(𝑋⃗) are individual 

agent outputs. This enables modular and adaptable evaluation 
supporting BIM feedback. The evolutionary facet of MAA-
NSGA-II is used to evolve a Pareto-optimal population in time, 
preserving diversity and convergence. Therefore, the output of 
the whole process is a solution set of the non-dominated 
solutions, as defined in Eq. (7): 

𝐹 = (𝑃𝑡) = {𝑋⃗1, 𝑋⃗2, … , 𝑋⃗𝑘} ∈  Pareto Front         (7) 

where, 𝑃𝑡 is the population at generation 𝑡, and 𝐹 is the final 
set of trade-off solutions between emissions, energy, and 
comfort. This Pareto front aids architects and engineers in 
selecting optimal design configurations early in the design 
process. Algorithm 1 shows the MAA-NSGA-II for low-carbon 
building optimization. 

Algorithm 1: MAA-NSGA-II for Low-Carbon Building 

Optimization 

Input: Initial population (𝑋⃗) 

Output: Final Pareto-optimal front of low-carbon design solutions 
(𝐹) 

Begin 

Initialize 𝑋⃗ with random design vectors 

For each 𝑋⃗ in Population do 

Evaluate 𝑓1(𝑋⃗), 𝑓2(𝑋⃗), 𝑓3(𝑋⃗) 

For each agent 𝑚 

Compute agent utility: 𝜙𝑗(𝑋⃗) 

End For 

Compute global fitness: Φ(X⃗ᵢ) ← ∑ⱼ=1ᵐ (ωⱼ × φⱼ(X⃗ᵢ)) 
End For 

For 𝑡 =  1 to 𝐺 do 

Perform Non-Dominated Sorting on 𝑃𝑡 
Calculate Crowding Distance 

Select Parent Set using Tournament Selection 

Generate Offspring 𝜙𝑗  using Crossover and Mutation 

Evaluate objectives and agent utilities for 𝜙𝑗  

Select Next Generation 𝑃𝑡+1 

End For 

Extract final Pareto Front (𝐹) 

End 

E. AI-Assisted Energy Prediction 

After optimization of parameters, refined building design 
parameters, dynamic energy consumption predictions are made 
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through an AI-assisted approach using the SqueezeNet model, 
ensuring the best possible accuracy in predicting operational 
energy usage, which is the direct cause of carbon emissions in 
the building environment. The overall architecture of the 
proposed SqueezeNet framework is shown in Fig. 3. 

 
Fig. 3. Architecture of the SqueezeNet for building energy prediction. 

The high-dimensional spatiotemporal datasets were 
considered for training of this model, wherein each input sample 
represents some operational state of a building over time. The 
data is in three-dimensional tensor form, U ∈ ℝ𝑇×𝑍×𝐹 , where 𝑇 
is the number of time steps, and 𝑍 corresponds to spatial zones 
inside the building, such as rooms or floors. Also, 𝐹 represents 
feature channels detailing contextual variables, including 
temperature, occupancy levels, lighting usage, HVAC 
operations, and daylighting contribution. The first convolutional 
layer in the model extracts low-level spatial features F0 
according to Eq. (8): 

F0 = 𝜎(W0 ∗ U + b0)  (8) 

Here, W0 learned weights of the convolutional filters, b0 is 
the bias term, ∗ is the convolution operator, and 𝜎 is the ReLU 
operator used as an activation function to add non-linearity. 
These extracted features are the basis on which the subsequent 
layers of the model will extract more complicated building 
dynamics. 

One of the main aids of the model is the Fire modules, which 
cut down model complexity to a huge extent while maintaining 
its performance. Each module includes a squeeze layer with 1 ×
1  convolutions that reduce the number of input channels, 
followed by an expand layer that applies both 1 × 1 and 3 × 3 
convolutions. Thus, the Fire module F𝑖  can be computed as 
follows in Eq. (9): 

F𝑖 = 𝜙(Conv1×1(F𝑖−1)‖Conv3×3(F𝑖−1))      (9) 

Here, || represents concatenation, and 𝜙  is a function that 
merges the expanded feature maps from both convolution paths. 
This modular design enables SqueezeNet to drastically reduce 
parameter count and computation time when integrated within 
large-scale BIM systems for energy prediction. 

After passing through a stack of Fire modules, the final 
compressed feature representation F𝑛  is forwarded to a 
regression head with a fully connected output layer that predicts 

the total energy consumption 𝐸̀total. The regression function is 
formulated, as in Eq. (10): 

𝐸̀total = w𝑒
𝑇 ⋅ F𝑛 + 𝑏𝑒    (10) 

where, w𝑒 is the learned weight vector for regression, and 𝑏𝑒 
is the corresponding bias. This ensures that the model iteratively 
learns to minimize prediction error across diverse operating 
scenarios. Algorithm 2 presents the AI-assisted energy 
prediction using SqueezeNet. 

Algorithm 2: AI-Assisted Energy Prediction Using 

SqueezeNet 

Input: Optimized Extract parameter vector (𝐹) 

Output: Predicted total energy consumption (in kWh) 

Begin 

Initialize model 

Load AI architecture with Fire Modules 

For each timestep 𝑡 from 1 to 𝑇 do: 

Extract U ← usage profile at time 𝑇 

Apply initial convolution U 

For each Fire Module 𝑖: 
              Perform squeeze operation → reduces 
input channels (𝐶𝑜𝑛𝑣1𝑥1) 
Perform expand operation →  parallel 𝐶𝑜𝑛𝑣1𝑥1  and 

𝐶𝑜𝑛𝑣3𝑥3 

Concatenate results to produce F𝑖 
End For 

Aggregate final feature vector F𝑛 from last Fire Module 

Compute predicted energy 𝐸̀total  

Return 𝐸̀total  

End For 

End 

This phase is crucial in the optimization of building energy 
systems and low-carbon architectural design through advanced 
simulation aided by AI. The system provides an energy usage 
predictor employing a forecast with the SqueezeNet model. 
Within it resides the power to make a prior judgment on the 
configurations that stand to be the least energy-consuming and 
environmentally sustainable design options. This will make 
data-driven decisions in the early stages of the design process 
and take the biggest potential for impact-control on CO₂ 
emissions away before construction begins. 

This intertwining of predictive modelling with BIM enables 
architects to create incremental design alternatives in a way that 
operational energy consumption, embodied carbon, indoor 
thermal comfort, as well as compliance with local standards are 
considered. It allows designers and engineers to further reduce 
operational carbon and energy while still maintaining occupant 
comfort, which is essential in designing and constructing low-
carbon and energy-efficient buildings. 

IV. RESULTS AND DISCUSSIONS 

This study contains the assessment and comparative analysis 
of the proposed framework for optimizing low-carbon building 
energy, developed and simulated using Python. Simulation 
parameters considered building geometry, material emission 
coefficient, HVAC configuration, insulation level, and solar 
orientation. Multi-objective optimization was used to balance 
energy efficiency and carbon reduction, while AI served as a 
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model to compress usage profiles for energy prediction. The 
framework identified the design configurations to lower total 
CO₂ emissions, proving its application in guiding the early 
design phase for carbon-conscious decisions. 

A. Dataset Description 

Carbon Majors Emissions Dataset, a globally recognized and 
authoritative source of historical carbon emission data. 
Emissions are broadly covered by the dataset from 1854 to date. 
Its peculiar dataset traces well beyond over 1.42 trillion tons of 
carbon dioxide equivalent (CO₂e) emissions, almost 72% of 
global fossil fuel and cement-related emissions since the dawn 
of the Industrial Revolution in 1751, hence ranking it as one of 
the most thorough repositories for emissions tracking and 
attribution. 

This dataset is developed for multidimensional analysis 
while including major variables such as. 

 Year of emission record, 

 Parent entity and its type (investor-owned, state-owned, 
or nation-state), 

 Commodity type (including Oil, Gas, various Coal types, 
and Cement), 

 Production quantity and units (million barrels, billion 
cubic feet, or million tons), 

 Total emissions (in MtCO₂e). 

The dataset is curated from producers ranked among the top 
122 in the globe in oil, gas, coal, and cement, such as: 

 75 investor-owned companies, 

 36 state-owned companies, and 

 11 nation-states. 

It comprises 82 oil producers, 81 gas producers, 49 coal 
producers, and 6 major cement producers. Apart from this, the 
dataset is also provided at a low, medium, and high level of 
granularity, which facilitates scaling analysis from aggregated 
trends to much finer emissions at the entity and commodity 
levels. It also facilitated carbon-aware decision-making via 
dynamic annotation and optimization of building components. 
Therefore, the dataset acts as a historical record and, 
concurrently, as an enabler of opposite-looking low-carbon 
design strategies in a data-driven building energy optimization 
framework. 

Dataset link: Carbon Majors Emissions Data. 

B. Performance of Emissions Analysis 

This section undertakes a thorough analysis of carbon major 
emissions data for high-emission materials and responsible 
entities. This analysis, by aggregating emissions from 
commodity types and ownerships of the entities, brings to light 
emission hotspots for low-carbon considerations in BIM design. 

 
Fig. 4. Time trends of Emissions vs. Production (1854–2024). 

Fig. 4 presents the historical average carbon emissions and 
production volume trends over time, from the Carbon Emissions 
dataset. This shows steep growth, especially post-1950, with 
production and emissions soaring with industrialization of fossil 
fuels. By 2024, average production had peaked at around 584 
units, while emissions reached nearly 140 MtCO₂e. This peak of 
carbon emissions and commodities helped these BIM-integrated 
decisions to lessen carbon impact through informed decisions 
for the choice of material and source of energy. 

 
Fig. 5. Historical surge in carbon emissions accumulation. 

Fig. 5 exhibits the long-term time trend of total emissions (in 
MtCOe) from 1850 to 2024. This indicates how emissions have 
a historical upward trend, becoming drastically steeper after 
1950. By 1975, total emissions surpassed 15,000, after which 
total emissions show even a sharper rise to finally breach the 
30,000 MtCO₂e mark by 2020. This corresponds to industrial 
time, and, thus, brings to attention the need for limiting 
emissions in the present design and policy framework. Both of 
these historical viewpoints are aware of the legacy emission 
loads and planning for data-driven pathways for building 
environment and energy systems. 

Fig. 6 displays the fine-grained analysis of different features 
contributing to carbon emissions. Product emissions MtCO₂ 
received the highest score of 0.200, followed by commodity type 
(~0.155), year (~0.125), and production value (~0.100). The 
fugitive methane emissions MtCO₂e (~0.090), total operational 
emissions MtCO₂e (~0.080), and parent entity (~0.080). Then 
there were lesser influential to be noted as own fuel use 
emissions MtCO₂ (~0.065), total emissions MtCO₂e (~0.060), 
and flaring emissions MtCO₂ (~0.050). It helps to elucidate 
where emphasis is placed in the emission-aware design 
decisions within the BIM frameworks, thus ensuring that the 
targeted mitigation measures are applied to high-impact 
contributors. 
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Fig. 6. Feature importance insight of influential drivers in carbon emissions. 

 
Fig. 7. Emission intensity by commodity – sectoral breakdown of carbon 

burden. 

Fig. 7 provides an analysis of total carbon emissions (in 
MtCO2e) by commodity type from the dataset. It reveals that Oil 
& NGL is the most carbon-intensive sector, with emissions of 
over 500,000, followed by Bituminous Coal at roughly 350,000 
and Natural Gas at around 270,000. The carbon emissions 
include Metallurgical Coal (~130,000), Sub-Bituminous Coal 
(~75,000), Anthracite Coal, Thermal Coal, and Lignite Coal, 
each emitting between 50,000. Finally, cement comes under 
40,000 MtCO2e. This helps in identifying the most carbon-
intensive sectors on which to focus the decarbonization 
interventions in commodity-specific policies and sustainable 
design practices. 

The embodied carbon emissions for construction materials 
are summarized in Table II, which shows the emission 
coefficient and corresponding embodied carbon values for 
cement, steel, and glass, with steel recording the highest carbon 
emissions among these materials. Table III shows total carbon 
emissions globally by parent entity type, thus stressing the 
implications of material choice in BIM systems, and the effects 
of organizational ownership on the assignment of global 
emissions accountability; therefore, this bears on material 
choice and emission governance strategies in sustainable 
infrastructure development. 

TABLE II.  CARBON QUANTIFICATION FROM CONSTRUCTION MATERIALS 

Material 
Emission 

Coefficient 
Quantity 

Embodied Carbon 

(MtCO₂e) 

Cement 0.95 1000 950.0 

Steel 2.10 500 1050.0 

Glass 1.40 200 280.0 

TABLE III.  TOTAL EMISSIONS BY PARENT TYPE 

Parent Type Percentage of Total Emissions 

Nation State 36.3% 

State-owned Entity 32.7% 

Investor-owned Company 31.0% 

C. Performance Evolution 

Here, evaluate the aggregate performance of the SqueezeNet 
integrated optimization framework in minimizing carbon 
emissions and energy use. It measures improvements through 
simulation and establishes that data-driven design choices 
greatly improve the environmental performance of a building 
initial stages of planning. 

 
Fig. 8. Multi-objective trade-off between cost and carbon emission across 

optimization modes. 

Fig. 8 analyzes cost (in millions) and carbon emission (in 
tons) across different optimization modes, based on the 
proposed BIM-integrated framework using an MAA-NSGA-II 
approach. Mode 3, thus optimized, recorded the lowest carbon 
emissions (~1155 tons) at a fairly low cost (~570.25 million), 
setting an almost-best trade-off. Equally, Mode 5 yields the most 
expensive costs (~571.45 million), albeit emissions were 
slightly reduced (~1165 tons), allowing engineers to select the 
most sustainable and cost-efficient configurations available for 
early-stage building design. 

Fig. 9 compares the actual energy consumption data against 
predictions from the AI model. With almost exact values, the 
model proved its ability to accurately interpret patterns of energy 
consumption from building design parameters and profiles, thus 
validating its use in early-stage building design for the 
estimation of operational energy. This predictive capability 
favors the implementation of early-phase optimizations of 
energy systems toward a low-carbon design strategy. 
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Fig. 9. Energy usage prediction accuracy using SqueezeNet. 

 
Fig. 10. Prediction error plot of energy consumption. 

Fig. 10 shows the distribution of energy consumption 
prediction errors, highlighting the actual and predicted energy 
use for the various building configurations. The low clustered 
error values point to high model precision and minimal error in 
energy load prediction and thus reflect the model's capability of 
capturing complicated energy behavior patterns. Such a low 
error in prediction instils confidence in the designed framework, 
with attention to energy-efficient considerations in the building 
design process while being carbon-conscious. 

 
Fig. 11. Training and validation loss curve of the energy consumption. 

Fig. 11 represents the training and validation-loss 
development of the DL model for building energy consumption 
prediction. The training loss gauges the ability of the model to 
fit the training data and turns out to be 0.00354. The validation 
loss, however, is slightly higher at 0.09634, yet it indicates that 
the predictive capabilities are good and no extensive overfitting. 

Through monitoring the changes in losses during the model 
training, it attains a trade-off between accuracy providing 
reliable energy consumption forecasting for building energy 
optimization tasks. 

 
Fig. 12. Training and validation of MAE evolution. 

Fig. 12 shows the training and validation Mean Absolute 
Error (MAE) of the model in predicting building energy 
consumption. This MAE considers the average magnitude of 
errors in prediction and ignores their direction. An overall MAE 
of 0.0212 shows that the model predicted energy consumption 
values to the actual energy consumption with high reliability. 

 
Fig. 13. Training and validation MSE analysis. 

Fig. 13 shows the evolution of training and validation of 
Mean Squared Error (MSE) during the model training process. 
It quantifies the average squared difference between predicted 
and actual values, thus giving an indication of model accuracy. 
The research records an overall final MSE of 0.0376, showing 
that this predictive model for building energy consumption 
performs well in predicting the energy use of low-carbon 
building design. 

In Fig. 14, the coefficient of determination (R² score) of the 
predictive model gives the proportion of variance of the 
observed data explained by the AI model. Along with this, the 
RMSE (Root Mean Squared Error) measure how far the 
observation values are from the predicted ones. Thus, the model 
achieved an overall R² score of 0.9814 and the RMSE of 0.1060, 
showing excellent predictive accuracy that confirms the 
reliability of the data-driven framework to produce accurate 
energy consumption. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

718 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 14. Model performance evaluation using R² score and RMSE. 

The above outcomes present the comprehensive analysis of 
the performance of the proposed framework. For the sake of 
further interpretation of such results in light of relevant studies 
and practical usage, the following section includes the 
discussion. 

V. DISCUSSION 

A. Comparative Analysis 

In this study, the comparative evolution reveals consistent 
improvements with regard to energy prediction accuracy and 
carbon reduction, confirming the efficacy of the data-driven AI 
optimization process through the development stages. 

TABLE IV.  COMPARATIVE EVALUATION OF AI MODELS FOR CARBON 

EMISSION PREDICTION 

Models MAE MSE RMSE R² score 

GAN [34] 0.2600 - - 86.00 

LSTM [35] 46.10 4570.14 67.60 96.00 

GB [36] 24.06 - 35.18 91.00 

SqueezeNet 0.0212 0.0376 0.1060 98.14 

Table IV provides a comparative analysis between the 
proposed AI-driven method and state-of-the-art techniques, such 
as GANs (Generative Adversarial Networks), LSTMs (Long 
Short-Term Memory), and GBs (Gradient Boosting), for the 
prediction of carbon emissions from energy consumption 
forecasts. Compared to these models, the AI-based framework 
proposed model outperforms them tremendously. In particular, 
the SqueezeNet-based prediction had the lowest MAE, MSE, 
and RMSE values, along with the highest R² score, proving 
superior accuracy. Moreover, the integration with MAA-NSGA-
II provides multi-objective optimization that balances cost, 
energy use, emissions, and comfort at the same time, which most 
existing models fail to address. This accommodation of the 
model to low-carbon building design through emission 
forecasting, to the efficient integration in SqueezeNet to account 
for complex temporal dependencies. 

VI. CONCLUSION 

This study effectively developed and implemented an 
intelligent and data-driven framework that integrates BIM with 

the SqueezeNet architecture for exact prediction and 
optimization of building energy consumption. This framework 
further supports low-carbon construction strategies by allowing 
the early-stage evaluation of design alternatives, based on the 
carbon major's emissions dataset. The model was enhanced by 
incorporating MAA-NSGA-II to balance two conflicting 
objectives, such as maximization of energy efficiency and 
minimization of emissions. This analysis revealed that an MAE 
of 0.0212, an MSE of 0.0376, and an R² of 0.9814 were 
achieved, indicating an impressive accuracy in prediction and 
generalization capacity. These results are even better than the 
conventional models, further supporting the energy performance 
superiority of the proposed method. The framework showcased 
its practical effect by reducing carbon emissions by 1155 tons 
while achieving cost savings of about 570.25 million, 
confirming that it offers both environmental and economic 
advantages. The comparative analysis also highlighted its 
superiority over GAN, LSTM, and GB models, establishing the 
framework as both highly accurate and computationally 
efficient. This integrated framework comprises reduced 
computational complexity due to AI-based design 
considerations, emission feedback aimed at BIM integration, 
and robust Multi-objective optimization for sustainable 
architectural decision-making. This work ultimately presents the 
novel, scalable, and interpretable method inherently applicable 
to different building typologies, thus assisting in the world shift 
towards low-carbon city development and climate action 
decisiveness. Yet, this study does have some limitations since it 
was primarily validated against historical emission datasets and 
simulations. How it performs on operational real-time data or 
under extremely diverse regional contexts still needs to be 
tested. Future work will improve the framework by using more 
detailed data and real-time sensors, adding better comfort 
models for different users and climates, improving occupant 
behavior prediction with AI, and applying the approach to 
groups of buildings or whole districts for sustainable city 
planning. 
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