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Abstract—Precise prediction of crop yield is essential for 

sustainable agriculture, resource maximization, and food security. 

As the use of IoT and Wireless Sensor Networks (WSNs) gains 

momentum, huge amounts of heterogeneous and time-series 

environmental data have become readily available from intelligent 

greenhouses. Despite this, it is still difficult to obtain meaningful 

insights from these data due to their high dimensionality, noise, 

and nonlinear temporal behavior. Traditional machine learning 

and statistical approaches usually fail to effectively capture static 

as well as sequential relationships, and most current models are 

difficult to tune hyperparameters and have problems with dealing 

with data heterogeneity and do not generalize across dynamic 

environments. To overcome these shortcomings, this paper 

introduces JellyNovaNet-JSO, a new hybrid deep learning 

architecture that integrates TabNet and BiLSTM architectures, 

designed using the Jellyfish Search Optimization (JSO) algorithm. 

The model exploits TabNet sparse attention for static feature 

modeling and the temporal memory of BiLSTM for time-series 

sensor data. The innovation is in utilizing attention-guided tabular 

learning with bidirectional temporal modeling, with a 

metaheuristic optimization layer to perform automatic 

hyperparameter tuning. Experimental outcomes based on real-

world IoT greenhouse data demonstrate that JellyNovaNet-JSO 

attains MAE of 0.012, RMSE of 0.017, R² of 0.991, and MAPE of 

1.89%, outperforming state-of-the-art CNN-LSTM, Random 

Forest, and SVM models substantially. In comparison with the 

prior approaches, JellyNovaNet-JSO enhances prediction 

accuracy by as much as 25% while ensuring scalability and 

robustness. This innovation provides a viable, interpretable, and 

deployable solution for precision agriculture, enabling smarter 

irrigation, climate control, and yield management. 

Keywords—IoT agriculture; crop yield prediction; BiLSTM; 

TabNet; jellyfish search optimization 

I. INTRODUCTION 

Accurate crop yield estimation is a key consideration in 
modern agriculture, as a valuable decision-making aid for 
farmers, policymakers, and stakeholders to rely on food 
production [1], resource deployment, and planning for 
marketing [2]. With the world's population increasing and 
agricultural land shrinking, crop yield maximization is needed 
to ensure food security and sustainable agricultural output [3]. 
Sufficient and reliable yield estimates enable risk avoidance of 
adverse weather conditions, infestation by pests, and other 
environmental factors that could seriously hinder agricultural 
output [4]. Furthermore, authentic predictions enable proper 
input management at minimal cost in the form of water, 
fertilizers, and pesticides, thereby reducing costs as well as 
environmental deterioration [5]. Advances in technology, 
especially the integration of Internet of Things (IoT) devices 

and Wireless Sensor Networks (WSNs), have revolutionized 
the ability to monitor real-time environmental parameters 
across large agricultural fields [6]. Such a proliferation of data 
availability, though, comes with the difficulty of extracting 
useful information from high-dimensional, time-series, and 
intricate data [3]. Hence, it becomes imperative to develop 
robust predictive models that can accommodate heterogeneous 
types of data and temporal patterns [5]. These models not only 
facilitate proactive crop management but also propel 
sustainable agrarian practice by optimizing the utilization of 
resources and minimizing wastage [7]. Therefore, enhancing 
the accuracy and reliability of crop yield prediction models 
remains a top agenda for agriculture research, driving 
developments in machine learning [8], deep learning, and 
optimization techniques tailored to the unique demands of 
smart agriculture [6]. 

While great potential of IoT and Wireless Sensor Networks 
resides in agriculture, accurate estimation of crop yields is 
stifled by numerous significant challenges [1]. One of the 
significant challenges is the complexity and heterogeneity of 
the environmental data perceived by the different sensors 
monitoring variables such as temperature, humidity, soil 
nutrient concentrations, and water levels [9]. They are likely to 
exhibit nonlinear relationships and interact with each other in 
intricate ways that are difficult to model with traditional 
statistical techniques [10]. Furthermore, the data tend to be 
high-dimensional and noisy and contain missing entries and 
measurement errors due to sensor imperfections or 
environmental perturbations [11]. Another principal challenge 
is to model temporal dependencies and dynamic patterns 
inherent in agriculture processes [1]. Crop development and 
yields are contingent upon time-series fluctuations in 
environmental variables, so models need to be capable of 
learning long and short-term dependencies in sequential data 
[12]. Seasonal variations, soil nutrient lag effects, and periodic 
irrigation cycles make the time-scale modeling task even more 
complicated. In addition, the integration of static tabular 
information (e.g., crop type, soil type) with sequential sensor 
data contributes to the difficulties encountered by predictive 
modeling [9]. These challenges call for advanced machine 
learning paradigms with the capacity to deal with 
heterogeneous time-dependent information that also demands 
interpretability and robustness [10]. Overcoming these 
challenges is central in the development of plausible crop yield 
prediction systems deployable in real-world smart farming 
contexts [13]. 

The emergence of the IoT and WSNs [9] has revolutionized 
the field of agriculture through continuous, real-time 
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monitoring of environmental parameters with unparalleled 
detail [14]. IoT is a network of physical objects with sensors, 
actuators, and communication modules which are connected 
with each other and communicate with the help of the internet 
or local networks [15]. In farming, IoT sensors track vital 
parameters including soil moisture, temperature, humidity, 
light levels, and nutrient content, and present farmers with 
accurate data to facilitate optimal crop care[16]. Additionally, 
WSN are spatially distributed nodes of sensors that wirelessly 
interface to a central gateway, allowing for flexible and 
extensible data collection in large-scale farms or contained 
environments such as greenhouses[17]. WSNs have the benefit 
of simple deployment, low power requirements, and 
environmental challenge resistance, thus being well suited for 
agricultural monitoring[18]. The combination of IoT and WSN 
technologies produces rich, multivariate, and time-stamped 
data that represents dynamic interactions between crop and 
environment[18], [19]. This richness in data provides the 
foundation for building advanced predictive models to enhance 
yield forecasting, resource management, and sustainable 
agriculture[20], [21], [36]. 

To address the issues concerned with crop yield prediction 
from heterogeneous and time-series farm data, this research 
presents JellyNovaNet-JSO, a new hybrid model that combines 
synergistically the merits of TabNet and Bidirectional Long 
Short-Term Memory (BiLSTM) networks, fine-tuned by the 
Jellyfish Search Algorithm (JSA). TabNet, being interpretable 
and having the capacity to effectively process tabular data, 
excels at capturing significant features from static or non-
temporal environmental conditions such as water levels and soil 
moisture. On top of that, BiLSTM captures temporal 
dependencies and bidirectional contextual information from 
sequential sensor inputs such as temperature and humidity 
across time, which are crucial in modeling crop growth 
dynamics. The combination of these two architectures enables 
the model to utilize both static and sequential data modalities in 
an optimal manner and hence improves prediction accuracy. To 
further optimize model performance, the Jellyfish Search 
Algorithm as a bio-inspired metaheuristic search approach is 
employed in tuning major hyperparameters such as learning 
rates, layer dimensions, and batch setup. This optimization not 
only improves convergence but also avoids local minima, 
resulting in a robust and reliable crop yield prediction model 
ready for use in real-world smart agriculture scenarios. 

This research makes the following key contributions: 

1) Introduced a novel hybrid model, JellyNovaNet-JSO, 

which combines the TabNet architecture with BiLSTM 

networks. The model is optimized using the Jellyfish Search 

Algorithm (JSO) to improve the accuracy and efficiency of crop 

yield prediction in IoT-enabled greenhouse environments. 

2) Leveraged real-time data collected from IoT-based 

sensors and wireless sensor networks deployed in a smart 

greenhouse to model crop growth patterns and predict yield. 

3) Incorporated advanced data preprocessing techniques, 

including timestamp conversion, feature scaling, and temporal 

feature engineering. These methods enhance the model's ability 

to learn from both static and temporal features, improving 

prediction accuracy. The BiLSTM component of the proposed 

hybrid model captures bidirectional temporal dependencies in 

time-series sensor data. This is essential for modeling complex, 

long-term, and short-term crop growth patterns, which are 

influenced by changing environmental conditions. 

4) Conducted a thorough estimation of the model using 

several performance metrics, including MSE and R², to assess 

the accuracy of crop yield predictions. The approach is 

validated through the prediction of crop yields in a real-world 

IoT-enabled greenhouse setup. 

The rest of this paper is structured as follows: 

 Section II summarizes recent publications on IoT and 
ML/DL-based crop yield prediction, citing current 
drawbacks. 

 Section III formulates the problem statement and states 
the main goals encompassing scalability, heterogeneity 
of data, adaptability, and tuning. 

 Section IV presents the envisioned JellyNovaNet-JSO 
hybrid model, including its architecture, elements 
(TabNet, BiLSTM), preprocessing pipeline, and JSO 
optimization. 

 Section V offers results of experiments, such as 
evaluation measures, attention analysis, ablation 
analysis, and performance comparisons with other 
models. 

 Section VI summarizes the study and proposes 
directions for future work such as real-time deployment 
and multi-location validation. 

II. RELATED WORKS 

N. Chandiraprakash et al. [14] created a crop yield 
forecasting model that combined real-time IoT sensor data with 
state-of-the-art ML algorithms, such as LSTM and Random 
Forest, to facilitate better adaptation to climatic variability. 
They also investigated the integration of CNN with LSTM to 
achieve higher spatial-temporal prediction accuracy. They had 
a user-friendly interface as part of actionable farmer insights for 
precision agriculture. Rath et al. [22] suggested a precision 
farming methodology based on the use of real-time wireless 
sensor network data for enhanced accuracy in crop yield 
forecasting. Their model incorporates sensor feeds on a 
continuous basis through a mobile app, providing timely 
prediction and real-time data gathering capabilities. The 
research discusses the advantages of utilizing sensor-assembled 
data from many users for improving model training. Haritha et 
al. [23] worked on a supervised machine learning method of 
crop prediction based on climatic and soil factors like humidity, 
temperature, and nutrient levels. They tested various classifiers 
like Naïve Bayes, AdaBoost, Decision Tree, and Voting 
Classifier and determined that the Decision Tree algorithm 
ranked highest with 99.4% accuracy. The work is centered on 
enhancing prediction accuracy to help farmers in selecting 
crops in fluctuating climatic conditions. Çeti̇ner et al. [3] 
suggested a hybrid deep model of LSTM and CNN to 
automatically predict crop yields with major parameters like 
water consumption, exposure to sunlight, fertilizers, pesticides, 
and fields of cultivation. Their model provided good predictive 
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power with an R² measure of 89.71 along with low error 
metrics, establishing competitiveness for state-of-the-art 
methods. 

Prathap et al. [24] investigated an IoT-based intelligent 
agriculture system to enhance crop yield prediction and 
automated monitoring to minimize human involvement. Their 
method combines sensors and cameras to monitor yield levels, 
uploading real-time data to the cloud for analysis. A hybrid 
deep learning algorithm is used in the study to improve 
prediction accuracy in smart agriculture systems. Sensor 
reliability and integration of data issues still exist for fully 
automated systems. Gupta and Nahar et al. [25] created a hybrid 
machine learning system with IoT data for crop yield 
prediction, incorporating preprocessing, feature extraction, and 
classification steps. The two-level approach utilizes aKNCN for 
classifying soil quality and ELM with an improved BOA for 
predicting yields. The model revealed better accuracy and 
reduced errors on soil datasets with varied evaluation measures. 
Manikandababu et al. [26] examined how machine learning 
algorithms and IoT technologies can be integrated to improve 
crop production prediction in precision agriculture. They 
employed sensor and drone data measuring crop health, 
weather, and soil moisture for informing models. This method 
allows farmers to make informed decisions regarding pest 
control, fertilization, and irrigation, increasing yield accuracy. 
N. Mohana Priya et al. [27] conducted a study on the 
combination of ML and IoT for the optimization of irrigation 
management based on real-time sensor readings of temperature, 
humidity, soil moisture, and water level. They compared 
models with SVM resulting in the highest accuracy of pump 
operation prediction. The study showcases the capability of IoT 
and ML to make adaptive, data-driven control of irrigation for 
better water use efficiency.  Pérez et al. [28] created a tomato 
crop forecasting system combining AI, sensor networks and 
IoT to balance resource utilization and improve forecasting 
yield. The framework included distributed sensors, IoT 
gateways, and cloud-based recurrent neural network models 
that were trained on environmental information and tested with 
harvest data. Their model had an average prediction error of 
3.2% over a period of four weeks, reflecting high accuracy. 

Kumar et al. [29] implemented an ensemble ML model for 
crop prediction from IoT sensor data gathered using the PLX-
DAQ tool, integrating algorithms. Their ensemble method has 
a very high accuracy of 97.45% for early crop yield prediction. 
Their work showcases the strength of an IoT and ML 
integration for maximizing data-driven decisions in agriculture 
amid the threats posed by climate change. Yet, the dependency 
on sensor integration and data quality continues to be a 
bottleneck in sweeping adoption. Krithika et al. [30] explored 
DL model applied for crop yield prediction based on real-time 
agricultural datasets. The experiments showed that although all 
models were promising, LSTM was most accurate because it 
can learn temporal dependencies in the data. The research 
underscores the importance of improving ML models further to 
improve attempts in mitigating challenges brought by natural 
disasters. Rastog et al. [31] proposed an AI and ML approach 
with Python to improve crop yield prediction and assist farmers 
in the Indian subcontinent by leveraging IoT and Cyber-
Physical systems. Their research is intended to tackle food 

security issues by making timely predictions of yield, moisture, 
and weather conditions. The research endeavors to enhance 
prediction accuracy through sophisticated learning algorithms 
on authentic agricultural datasets. 

Although recent work shows substantial advancements in 
using IoT and machine learning for crop yield estimation and 
precision farming, some universal limitations are still prevalent. 
Computational complexity and scalability issues of hybrid 
CNN-LSTM models were noted by Chandiraprakash et al. [14]  
in large-scale implementations. Rath et al. [22] mentioned 
issues with handling heterogeneous sensor data and 
maintaining model scalability across various agricultural 
environments. Haritha et al. [23] pointed out that models based 
on fixed datasets could face challenges in coping with dynamic 
climatic conditions. Çeti̇Ner et al. [3] highlighted the reliance 
on precise parameter measurement and rigorous fine-tuning for 
consistent model performance. Prathap et al. [24] indicated 
challenges with sensor reliability and data integration as 
challenges to complete automation. Gupta and Nahar et al. 
[25]found that the use of hyperparameter tuning would restrict 
generalizability in various contexts of farming. Manikandababu 
et al. [26] had mentioned difficulties in large-scale deployment 
and integration of data. Mohana Priya et al. [27] reported 
misclassification error in irrigation control predictions in need 
of further tuning. Pérez et al. [28] showed high accuracy but 
recognized the necessity for strong system integration. Kumar 
et al. [29] and Rastog et al. [31]pointed to bottlenecks in sensor 
quality data and scalability challenges for mass 
implementation. Taken together, the studies point toward the 
fact that in addition to much encouraging work, challenges like 
heterogeneity of data, computational costs, reliability of 
sensors, robustness of models, and scalability need to be 
overcome to achieve the complete potential of IoT and ML in 
smart agriculture. 

III. PROBLEM STATEMENT 

In spite of remarkable progress in unifying IoT and machine 
learning for crop yield prediction, some urgent limitations 
obviate widespread use and performance. First, most models 
are computationally expensive and lack scalability when 
applied in practical large-scale agricultural settings [14]. 
Second, data heterogeneity and sensor unreliability issues 
impair input data quality and uniformity, degrading model 
robustness [22]. Third, the reliance on fixed or static datasets 
lowers the models' responsiveness to dynamic and rapidly 
evolving environmental conditions [23]. Lastly, most current 
models are sensitive to hyperparameters that need to be heavily 
tuned and fine-tuned, affecting generalizability across a wide 
range of farming contexts [25]. Such constraints warrant more 
effective, adaptive, and scalable precision agriculture solutions. 

Research Objectives 

 Develop a computationally efficient hybrid model that 
maintains high accuracy while enabling scalability for 
large-scale agricultural deployments. 

 Design robust data preprocessing and sensor fusion 
techniques to handle data heterogeneity and improve 
sensor data reliability. 
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 Incorporate dynamic learning mechanisms that adapt to 
changing environmental and climatic conditions in real-
time. 

 Implement an automated hyperparameter optimization 
framework to enhance model generalizability and 
reduce manual tuning efforts. 

IV. PROPOSED METHODOLOGY FOR CROP YIELD 

PREDICTION USING IOT AND WIRELESS SENSOR NETWORKS 

The methodology for crop yield prediction put forward uses 
a hybrid machine learning model, JellyNovaNet-JSO, that 
combines the TabNet and BiLSTM architectures, optimized 
using the JSO. The proposed methodology takes advantage of 
the robustness of both the TabNet model, specifically 
developed for effective processing of tabular and categorical 
data, and the BiLSTM model, which is able to recognize 
bidirectional temporal patterns in time-series data. The model 
initially handles static attributes such as soil nutrient content 
and actuator states through TabNet, whereas BiLSTM extracts 
the dynamic behavior of sequential sensor readings from IoT-
connected greenhouses. These models are then combined to 
merge spatial and temporal information so that accurate and 
efficient crop yield prediction can be supported. With 
timestamped features, feature scaling, and time series 
windowing, the hybrid method offers comprehensive modeling 
of environmental circumstances and their impacts on crop 
growth while providing a more robust setting for yield 
prediction in smart agricultural applications. Fig. 1 
demonstrates the step-by-step methodology for crop yield 
prediction using the JellyNovaNet-JSO hybrid model 
integrating IoT sensor data and machine learning techniques. 

A. Data Collection 

The dataset in the present research was obtained as part of 
research for the master's thesis carried out by Mohammed 
Ismail Lifta (2023-2024) at Tikrit University, Iraq [32]. The 
data was obtained from a mounted smart greenhouse that is 
equipped with advanced IoT-enabled sensors and actuators. 
Environmental conditions such as, humidity, temperature, 
water level, and soil nutrient concentrations (nitrogen, 
phosphorus, potassium) were sensed in real time through 
wireless sensor nodes placed around the greenhouse. Actuator 
status such as fan and pump ON/OFF signals were also 
recorded in order to express environmental control decisions. 
Data, spanning multiple months and comprising 37,923 

records, were remotely transmitted and stored via a cloud-
capable application linked to Google Sheets for real-time 
monitoring and regulation of the greenhouse climate. The high-
density, time-stamped, multivariate data are most suitable for 
modeling crop growth patterns and yield prediction using IoT 
and Wireless Sensor Network technologies. This Table I shows 
exemplary data of time-stamped sensor measurements read 
from the smart greenhouse. It further depicts actuator statuses 
reflecting the state of operation of the fan and watering pumps, 
capturing environmental conditions as well as control actions. 
The data corresponds to tomatoes grown in the smart 
greenhouse for four continuous months in 2023-2024. During 
preprocessing, minor issues were noted and handled: missing 
entries, sensor drift, and dropped packets. The complete dataset 
is available for reproducibility at: 

https://www.kaggle.com/datasets/wisam1985/iot-agriculture-
2024 

B. Data Preprocessing for JellyNovaNet-JSO Model 

Some preprocessing steps need to be carried out after 
having a clean dataset with one-hot encoded values captured 
from the smart greenhouse sensor network before being 
modeled efficiently using the JellyNovaNet-JSO hybrid 
architecture. The main tasks include timestamp conversion, 
feature scaling, temporal feature engineering, time series 
windowing, and separating the dataset into training and testing 
so that data leakage does not occur. 

 

Fig. 1. Methodology flow for crop yield prediction using JellyNovaNet-JSO 

hybrid model. 

TABLE I SAMPLE ENVIRONMENTAL AND ACTUATOR SENSOR DATA FROM SMART GREENHOUSE 

Date & Time Temperature (°C) Humidity (%) 
Water 

Level (%) 

N (0-

255) 

P (0-

255) 

K (0-

255) 

Fan actuator 

ON 

Watering plant 

pump ON 

Water pump 

actuator ON 

2024-02-08 
06:10:00 

41 63 100 255 255 255 1 1 1 

2024-02-08 

06:15:00 
41 59 100 255 255 255 1 1 1 

2024-02-08 
06:20:00 

41 62 100 255 255 255 1 1 1 

2024-01-18 

05:02:00 
37 62 100 255 255 255 1 1 1 

2024-01-18 
05:07:00 

37 63 100 255 255 255 1 1 1 

https://www.kaggle.com/datasets/wisam1985/iot-agriculture-2024
https://www.kaggle.com/datasets/wisam1985/iot-agriculture-2024


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

725 | P a g e  

www.ijacsa.thesai.org 

1) Timestamp conversion and temporal feature 

engineering: The dataset contains a critical Date and Time 

column representing the exact timestamp for each sensor 

reading. To leverage temporal patterns and seasonality effects 

in crop growth, this column must be converted into a datetime 

data type compatible with modeling frameworks as given in Eq. 

(1) 

Timestamp 
𝑖
=  datetime(Date \& Time 𝑖 )  (1) 

This conversion enables extraction of granular temporal 
features such as hour of day, day of month, month, and day of 
week, which can serve as additional predictors to improve 
model performance. These features are mathematically derived 
from the timestamp as given in Eq. (2). 

 Hour 
𝑖
=  Timestamp 

𝑖
.hour 

 Day 
𝑖
=  Timestamp 

𝑖
.day 

 Month 
𝑖
=  Timestamp 

𝑖
.month

 DayOfWeek 
𝑖
=  Timestamp 

𝑖
.weekday 

  (2) 

Incorporating these gyclic temporal components allows the 
model to capture daily and seasonal variations inherent in 
environmental and crop growth data. 

2) Feature scaling for continuous variables: The 

continuous sensor features, including temperature, humidity, 

water level, and soil nutrient concentrations (nitrogen, 

phosphorus, potassium), span different numerical ranges. To 

prevent features with larger scales from leading the learning 

process and to accelerate convergence during training, feature 

scaling is necessary. The Min-Max scaling technique 

normalizes these features to a fixed range [0,1], using Eq. (3). 

𝑥𝑖
′ =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
     (3) 

where 𝑥𝑖 is the actual feature value, and 𝑥min , 𝑥max  are the 

min and max values of that feature across the dataset. 

3) Sequence windowing for time-series modeling with 

BiLSTM: BiLSTM networks need sequential input data that 

capture temporal dependencies. To convert the continuous 

sensor data into appropriate time-series format, a sliding 

window approach was applied. With a defined window size ω, 

consecutive segments of the dataset were extracted as input 

sequences, as shown in Eq. (4). 

𝑆𝑡 = [𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑤−1]    (4) 

where 𝑆𝑡 is the sequence input at time step 𝑡 and 𝑥𝑖 is the 
feature vector at timestamp 𝑖. 

The target label (e.g., crop yield or environmental condition 
at +𝑤  ) can be associated with each sequence, enabling 
supervised learning. The choice of window size balances 
capturing long-term dependencies without making the 
sequence overly large, typically ranging from 5 to 30-time steps 
depending on data frequency. 

4) Train-validation-test split: To simulate real-world 

forecasting and prevent data leakage, the dataset is split 

chronologically rather than randomly. The data are divided into 

three subsets, given in Eq. (5). 

{

 Training set :  first 70%

 Validation set :  next 15%

 Test set :  final 15%

   (5) 

Such time-based splitting confirms that the model is tested 
on future unseen data, mimicking actual deployment scenarios 
in crop yield prediction. 

The data preprocessing pipeline caters to the requirements 
of JellyNovaNet-JSO, that is, it transforms cleaned one-hot 
encoded raw data into an appropriate format. The steps 
involved are timestamp parsing, temporal feature generation, 
normalization of continuous variables, creation of sequential 
windows for BiLSTM input, and finally the time-aware 
train/test split. Thus, the hybrid model can indeed grasp the 
complexities involved in spatio-temporal patterns of an IoT-
enabled greenhouse environment to finally provide correct crop 
yield estimations. 

Pseudocode: Data Preprocessing for JellyNovaNet-JSO 

Input: RawDataset.csv  # IoT-based greenhouse sensor 

data 

Output: Preprocessed training, validation, and test sets 

 

BEGIN 

 

1. Load Dataset 

   Dataset ← read_csv("RawDataset.csv") 

 

2. Timestamp Conversion 

   For each record in Dataset: 

       Timestamp_i ← to_datetime (Dataset ["Date & 

Time”] [i]) 

 

3. Temporal Feature Engineering 

   For each Timestamp_i: 

       Hour_i       ← Timestamp_i. hour 

       Day_i        ← Timestamp_i.day 

       Month_i      ← Timestamp_i. month 

       DayOfWeek_i ← Timestamp_i. weekday 

   Append Hour, Day, Month, DayOfWeek as new 

columns to Dataset 

 

4. Feature Scaling using Min-Max Normalization 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 8, 2025 

726 | P a g e  

www.ijacsa.thesai.org 

   For each continuous feature f ∈ {Temperature, 

Humidity, WaterLevel, N, P, K}: 

       f_scaled ← (f - min(f)) / (max(f) - min(f)) 

   Replace original features with scaled features 

 

5. Sequence Windowing for Time-Series Input 

   Define window_size w 

   Sequences ← [] 

   Labels ← [] 

   For i from 0 to (length (Dataset) - w): 

       Sequence ← Dataset [i: i+w] 

       Label ← Dataset [i + w] ["Crop_Yield"] 

       Append Sequence to Sequences 

       Append Label to Labels 

 

6. Chronological Train-Validation-Test Split 

   total_samples ← length (Sequences) 

   train_end ← 0.70 * total_samples 

   val_end ← 0.85 * total_samples 

 

   TrainSet ← Sequences  

   Train Labels ← Labels  

 

   ValSet ← Sequences  

   ValLabels ← Labels  

 

   TestSet ← Sequences  

   TestLabels ← Labels  

 

7. Return TrainSet, ValSet, TestSet and corresponding 

labels 

 

END 

C. Model Development 

To apply the JellyNovaNet-JSO model a Jellyfish Search 
Optimized variant of TabNet and BiLSTM for precise crop 
yield forecasting. The suggested JellyNovaNet-JSO model is a 
hybrid DL system combining the features of TabNet and 
BiLSTM networks, JSO-optimized to improve the precision of 
crop yield forecasting in IoT-based greenhouse setups. The 
model starts with a TabNet layer, which is particularly suited to 

process the heterogeneous tabular and categorical features like 
nutrient contents (N, P, K), actuator states (fan/pump ON/OFF), 
and engineered temporal variables (hour, day, month). TabNet 
applies a sparse attention mechanism to softly select relevant 
features at every decision step in order to make the model 
interpretable and learn efficiently from high-dimensional 
structured data. In parallel to this, the BiLSTM module handles 
the sequential input from time-series sensor reading data (e.g., 
water level, temperature, humidity) formatted into sliding 
windows. The BiLSTM can model intricate bidirectional 
temporal relationships, allowing the model to learn past and 
future contextual patterns affecting crop development. The 
features from TabNet and BiLSTM are then input into a layer 
of feature fusion, where they are concatenated and optionally 
smoothed by dense layers to facilitate cross-modal interaction 
between static tabular knowledge and dynamic temporal 
patterns. Lastly, the fused representation is input into a fully 
connected output layer that predicts the final continuous crop 
yield. This hybrid architecture guarantees that the model is 
efficiently able to capture the spatial and temporal complexities 
of IoT greenhouse data, while JSO integration further boosts 
the performance of the model using smart hyperparameter 
tuning. 

1) TabNet block: Static and Temporal Feature Modeling 

Using Sparse Attention. 

The TabNet block is used to process the tabular and 
categorical features of IoT sensor data and temporal encodings. 
They consist of static variables such as soil nutrient content (N, 
P, K), actuator states (fan ON/OFF, water pump state), and 
engineered time-based features like hour, day, month, and day 
of the week - all of which are pivotal in comprehending crop 
growth dynamics in smart greenhouses. Fig. 2 shows the 
TabNet architectural diagram and their components are 
explained briefly given below. 

 

Fig. 2. TabNet architectural diagram. 

Input Representation: 

Let the input feature vector be represented as in Eq. (6). 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ ℝ𝑛    (6) 
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where each 𝒙𝒊 corresponds to a scaled and encoded feature 
(e.g., N, P, K, actuator state, hour, day, etc.), and 𝒏 is the entire 
number of tabular features. 

a) Feature transformer: Each input is passed through a 

feature transformer, which contains fully connected layers, 

batch normalization, and non-linear activation functions. This 

layer learns complex feature interactions and generates a richer 

representation of the input. For a layer 𝒍, the transformation can 

be described as in Eq. (7). 

𝐻(𝑙) = 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝑊(𝑙)𝐻(𝑙−1) + 𝑏(𝑙)))   (7) 

Where, 𝑊(𝑙) 𝑎𝑛𝑑 𝑏(𝑙)  are weights and biases at layer 𝑙 , 

𝐵𝑁(⋅) denotes batch normalization, 𝐻(0) = 𝑋 

The output 𝐻(𝐿) of the final transformer layer is used as the 
latent feature embedding for downstream fusion. 

b) Sparse attentive masking: To focus on the most 

relevant features at each decision step, TabNet incorporates a 

sparse attention mechanism. This mechanism generates feature 

masks 𝑀𝑖  using the softmax and sparsemax functions. For a 

decision step 𝑖, the mask is computed as using Eq. (8). 

𝑀𝑖 = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃𝑖−1 ⋅ 𝐻(𝑖))                     (8) 

Here, 𝐻(𝑖) is the transformer output at step 𝒊,  𝑷𝒊−𝟏  is the 

prior scale that limits the reuse of features (to promote sparsity), 
sparsemax (-) encourages hard selection of features, improving 
interpretability. 

The masked input passed to the next decision step is given 
by Eq. (9). 

𝑋𝑖 = 𝑀𝑖 ⊙ 𝑋     (9) 

where ⊙ denotes element-wise multiplication. 

c) Decision and aggregation: TabNet processes multiple 

decision steps 𝑇, where each step outputs a partial decision 𝐷𝑖  

that contributes to the final output given in Eq. (10) and Eq. (11) 

𝐷𝑖 = 𝜙(𝐻𝑖),  for 𝑖 = 1…𝑇   (10) 

𝑌TabNet = ∑  𝑇
𝑖=1  𝐷𝑖   (11) 

where 𝜙 is a decision layer (e.g., linear transformation), and 

𝑌TabNet  is the final embedding output of the TabNet block. The 

result is a high-level latent feature embedding 𝑌TabNet ∈ ℝ𝑑 , 

where 𝑑  is the output dimension. These embedding captures 
complex, high-level relationships between the input features 
and will be later fused with the BiLSTM output for final 
prediction. 

This TabNet block plays a critical role in modeling the non-
sequential, structured feature space using sparse attention, 
ensuring both efficiency and interpretability, which are highly 
valuable in agricultural and loT applications. The output is 
forwarded to the fusion layer, where it is combined with the 
sequential BiLSTM representation for comprehensive crop 
yield forecasting. 

2) BiLSTM block: Modeling Temporal Dependencies in 

Sensor Data. 

The BiLSTM block in JellyNovaNet-JSO is considered to 
process the time-series data collected from the IoT-based 
greenhouse environment, such as temperature, humidity, water 
level, and other sequential features. These sensor readings are 
inherently temporal and exhibit short-term and long-term 
dependencies, which are critical for accurately modeling plant 
physiological responses and predicting final crop yield. 
Let the multivariate time-series input for a given window be 
given in Eq. (12). 

𝑆𝑡 = [𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑤−1]    (12) 

Where, 𝑤 is the window size, 𝑥𝑖 ∈ ℝ𝑗 is the feature vector 
at time 𝑖 , and 𝑓  is the number of continuous sensor features 
(e.g., temperature, humidity, water level, N, P, K). 

This sequence captures both the temporal variation and 
feature evolution over a fixed period. 

 

Fig. 3. BiLSTM- Architectural diagram. 

Fig. 3 shows the architectural diagram of BiLSTM. Unlike 
traditional LSTM which processes sequences in a forward 
direction, BiLSTM reads input from both past and future 
directions, combining two LSTM outputs as given in Eq. (13). 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗; ℎ⃖⃗𝑡]     (13) 

Where, ℎ𝑡
⃗⃗  ⃗  is the hidden state from the forward LSTM 

(processing 𝑥𝑡  to 𝑥𝑡+𝑤−1  ), ℎ⃖⃗𝑡  is from the backward LSTM 
(processing 𝑥𝑡+𝑤−1 to 𝑥𝑡 ), [; ] denotes concatenation. 

Each LSTM unit at time step 𝑡 operates with the following 
internal equations: 
Let 𝑥𝑡  be the input vector at time 𝑡, and let ℎ𝑡−1, 𝑐𝑡−1 be the 
earlier hidden and cell states. The gates and memory update are 
computed as using the following Eq. (14), (15), (16), (17), (18) 
and (19) 

Let 𝑥𝑡  be the input vector at time step t, and ℎ𝑡−1, 𝑐𝑡−1 
represent the previous hidden state and cell state, respectively. 
The LSTM unit operates by regulating the flow of information 
using three gates: forget gate, input gate, and output gate, along 
with an internal cell state update mechanism. 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)(Forget gate )   (14) 
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The forget gate 𝑓𝑡 decides which information from the 
previous cell state should be discarded. It is computed using a 
sigmoid activation function applied to the linear transformation 
of the concatenated vector ℎ𝑡−1, 𝑥𝑡, with associated weights 𝑊𝑓 

and bias 𝑏𝑓. The output is a vector of values between 0 and 1, 

indicating the degree of forgetting. 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)(Input gate )     (15) 

Which additional data should be added to the cell state is 
determined by the input gate. It makes use of a sigmoid 
activation, just like the forget gate. The same input is subjected 
to a tanh activation with weights and bias in parallel to create 
the candidate cell state. This candidate state is an example of 
possible new content that could be included. 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (Candidate cell state) (16) 

The new cell state is then updated by joining the scaled old 
cell state 𝒇𝒕 ⊙ 𝒄𝒕−𝟏 + 𝒊𝒕 ⊙ 𝒄̃𝒕 and the scaled candidate state 
𝒊𝒕 ⊙ 𝒄̃𝒕 denotes element-wise multiplication. This update 
mechanism allows the model to selectively retain or overwrite 
memory. 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 (Updated cell state) (17) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)(Output gate)    (18) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡) (Hidden State)  (19) 

Where 𝜎(⋅)  is the sigmoid function, tanh( ⋅  ) is the 
hyperbolic tangent function, O is the element-wise 
multiplication, 𝑊∗  and 𝑏∗  are weight matrices and biases for 
each gate. Both forward and backward passes compute their 
own set of hidden states, which are then concatenated to form a 
bi-directional context vector. 

Temporal Embedding Vector 

The BiLSTM processes the full sequence 𝑆𝑡 and generates 
hidden states at each time step. These are often aggregated 
using: 

 Last hidden state: ℎ𝑡+𝑤−1 

 Mean pooling: ℎavg =
1

𝑤
∑  𝑡+𝑤−1

𝑖=𝑡 ℎ𝑖 

 Attention mechanism  

The resulting temporal feature embedding 𝐻BiLSTM ∈ ℝ𝑑 

captures the dynamics and dependencies in the greenhouse 
environment over time. The BiLSTM block transforms sliding 
sequences of time-series sensor data into high-level temporal 
embeddings, effectively capturing both short- and long-term 
dependencies and bidirectional influences on crop behavior. 
This temporal representation 𝐻BiLSTM  is later fused with the 

TabNet output in the next stage for unified modeling and yield 
prediction. 

3) Fusion layer and output prediction layer: The Fusion 

Layer in the JellyNovaNet-JSO architecture is responsible for 

combining the latent embeddings produced by the TabNet 

block (handling tabular and static features) and the BiLSTM 

block (handling timeseries sensor sequences). This fusion 

enables the model to integrate spatial, categorical, and temporal 

dependencies to make an informed prediction about crop yield. 

The outputs of the TabNet and BiLSTM are concatenated to 

create a single feature vector that incorporates both static and 

temporal dependencies. This fused representation is projected 

through one or more dense layers with relaxed linear unit 

(ReLU) activation which help smooth interactions of variables 

while accentuating cross-modal interactions. Lastly, a linear 

output layer will map this enriched representation into the 

predicted crop yield, using both static tabular features and 

continuous temporal dynamics of the sensor demand to produce 

next-harvest predictions. 

a) Fusion layer: Concatenation of Latent 

Representations 

Let, 𝑧TabNet ∈ ℝ𝑑1  be the feature embedding output from 

the TabNet branch. 𝑧BILSTM ∈ ℝ𝑑2  be the temporal embedding 

from the BiLSTM block. 

These two vectors are concatenated into a unified feature 
representation, given in Eq. (20). 

𝑧fused = [𝑧TabNet ; 𝑧BILSTM ] ∈ ℝ𝑑1+𝑑2   (20) 

This fused vector contains both: Static environmental 
context (e.g., nutrient levels, actuator states, timestamp-derived 
features) and Temporal dynamics (e.g., historical patterns in 
temperature, humidity, water content, etc.). 

b) Fully connected output layer: Yield Prediction: The 

fused vector is passed over one or more fully connected (dense) 

layers with non-linear activations (typically ReLU), followed 

by a final linear layer to produce the crop yield prediction, given 

in Eq. (21) and Eq. (22) 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊1𝑧fused + 𝑏1)   (21) 

 𝑦̂ = 𝑊2ℎ1 + 𝑏2            (22) 

Where, 𝑊1,𝑊2 are the weights of the dense layers, 𝑏1, 𝑏2 
are the corresponding biases,  𝑦̂  is the predicted crop yield 
output (a scalar for regression). 

Since crop yield prediction is a regression problem, the 
model is trained by minimalizing the MSE between the 
predicted and actual yield values, using Eq. (23). 

ℒ𝑀𝑆𝐸 =
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2   (23) 

Where, 𝑦𝑖  is the actual crop yield for the 𝑖th  example, 𝑦̂𝑖 is 
the predicted yield, 𝑁 is the total number of training samples. 

To prevent overfitting during training, additional techniques 
such as L2 regularization, Dropout, or Batch Normalization can 
be applied in the dense layers. The Fusion Layer integrates 
TabNet and BiLSTM representations, and the Output Layer 
translates this fused knowledge into an accurate prediction of 
crop yield. This stage finalizes the learning pipeline of the 
JellyNovaNet-JSO model and enables it to reason over both 
spatial and temporal cues in the environment. 

Pseudocode: JellyNovaNet-JSO Model Development  

Input:  
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  X_tabular   ← Tabular input features (N, P, K, actuator 

states, timestamp features) 

  X_sequence ← Time-series input (e.g., temperature, 

humidity, water level) 

  y_true      ← Ground truth crop yield 

 

Output: 

  y_pred      ← Predicted crop yield 

 

BEGIN 

 

1. Initialize TabNet parameters (weights, masks) 

 

2. For each decision step i = 1 to T: 

     H_i ← FeatureTransformer(H_{i-1}) 

     M_i ← SparseMax(P_{i-1} ⋅ H_i) 

     X_i ← M_i ⊙ X_tabular 

     D_i ← DecisionLayer(H_i) 

 

3. Y_TabNet ← Sum of all D_i (i = 1 to T) 

 

4. For each sample in X_sequence: 

     Generate sequence window S_t of size w 

 

5. Pass S_t through BiLSTM: 

     Forward_LSTM → → → 

     Backward_LSTM ← ← ← 

 

6. Concatenate forward and backward hidden states: 

     h_t ← [h_t_forward; h_t_backward] 

 

7. Temporal Embedding ← MeanPooling or 

LastHiddenState(h_t) 

 

8. fused ← Concatenate (TabNet, Temporal Embedding) 

 

9. h1 ← ReLU (W1 ⋅ z_fused + b1) 

 

10. y_pred ← W2 ⋅ h1 + b2 

 

11. Compute Loss (Mean Squared Error): 

 

12. Apply backpropagation to minimize L_MSE 

 

13. Use JSO to tune: 

      - Learning rate 

      - TabNet decision steps 

      - BiLSTM units 

      - Dropout rate 

      - Batch size 

END 

V. RESULTS AND DISCUSSION 

The JellyNovaNet-JSO model was implemented using 
Python 3.10 with TensorFlow and PyTorch backend on a 
system with an NVIDIA RTX 3080 GPU, 32 GB RAM. Key 
hyperparameters such as learning rate, window size, and 
number of decision steps in TabNet were optimized using the 
JSO algorithm. Table II shows the optimal hyperparameter 
values selected for the JellyNovaNet-JSO model. These values 
were fine-tuned to achieve the best performance in predicting 
crop yield. 

TABLE II OPTIMAL HYPERPARAMETER VALUES FOR JELLYNOVANET-
JSO MODEL 

Hyperparameter Optimal Value 

Learning Rate 0.0025 

TabNet Decision Steps 5 

BiLSTM Units 128 

Batch Size 64 

Dropout Rate 0.3 

Window Sizea 10 

A. Evaluation Metrics 

To measure the prediction performance of the 
JellyNovaNet-JSO model in a real-world smart greenhouse 
environment using IoT and WSN data, the following evaluation 
metrics were applied: 

1) MAE: In this research, a low MAE indicates that the 

JellyNovaNet-JSO model makes very small average errors, 

showcasing its ability to generalize well to unseen yield values 

across environmental conditions, expressed in Eq. (24). 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|    (24) 

2) RMSE: RMSE emphasizes that the model not only 

maintains small average errors but also avoids large outliers-

critical for yield-sensitive decisions in automated greenhouses. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)
2     (25) 

𝑅2 Score  

Indicates the proportion of the variance in the dependent 
variable that is foreseeable from the independent variables. 

𝑅2 = 1 −
∑  (𝑦𝑖−𝑦̂𝑖)

2

∑  (𝑦𝑖−𝑦‾)2
   (26) 

3) MAPE: Expresses prediction accuracy as a percentage, 

making it easier to interpret relative performance. A MAPE 

value demonstrates high reliability of JellyNovaNet-JSO for 

operational use, where even small forecasting errors can affect 

resource allocation and yield estimation. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑  𝑛

𝑖=1 |
𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|   (27) 

After fine-tuning using the JSO, the JellyNovaNet-JSO 
model achieved outstanding predictive accuracy on the test set. 

TABLE III MODEL EVALUATION METRICS 

Metric Value 

MAE 0.012 

RMSE 0.017 

R² Score 0.991 

MAPE 1.89% 

Table III shows the model evaluation metrics, these indicate 
that the model arrests almost 99.1% of yield variance with 
exceptionally low prediction errors, making it viable for real-
world smart farming deployment. 

With little difference between expected and actual values, 
the model's accuracy and efficacy in predicting crop 
productivity show its dependability for practical precision 
agriculture applications. The JellyNovaNet-JSO model's 
anticipated crop yields and the actual observed yields are 
contrasted in Fig. 4. 

 

Fig. 4. Predicted vs. Actual crop yield. 

The distribution of prediction errors (Actual – Predicted) for 
crop yield estimation shown in Fig. 5. The histogram is sharply 
centered around zero, indicating that the JellyNovaNet-JSO 
model maintains minimal error variance. This supports the 
model’s low MAE and RMSE values and confirms its 

robustness for accurate yield forecasting in smart greenhouse 
environments. 

 

Fig. 5. Histogram of prediction errors for JellyNovaNet-JSO model. 

Fig. 6 illustrates the model’s loss over 20 training epochs. 
The training and validation losses converge smoothly without 
significant divergence, indicating stable learning. The absence 
of overfitting validates the use of a 0.3 dropout rate and 
effective hyperparameter tuning via the JSO, contributing to the 
model’s generalization performance. 

 

Fig. 6. Training and validation loss curve of JellyNovaNet-JSO model. 

4) Feature importance from TabNet attention: Nutrient and 

humidity sensors had the strongest influence. Actuator signals 

also contributed to prediction by contextualizing environment 

control states. Table IV presents the feature importance scores 

(IoT + Actuator Features), and Fig. 7 illustrates them. 

TABLE IV FEATURE IMPORTANCE SCORES (IOT + ACTUATOR FEATURES) 

Feature Importance Score 

Nitrogen (N) 0.215 

Humidity 0.192 

Temperature 0.177 

Water Level 0.151 

Phosphorus (P) 0.116 

Potassium (K) 0.099 

Fan Actuator State 0.026 

Pump Actuator State 0.024 
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Fig. 7. Feature importance vs. Score. 

5) BiLSTM temporal impact analysis: BiLSTM effectively 

captured greenhouse microclimate rhythms, especially 

temperature and water level shifts during day/night cycles. 

Table V showing average attention scores for time-series 

features. 

TABLE V BILSTM TEMPORAL CONTRIBUTION SCORES 

Sensor Avg BiLSTM Score 

Temperature 0.301 

Humidity 0.283 

Water Level 0.208 

NPK Time Patterns 0.208 

This Fig. 8 presents the average contribution scores of key 
time-series sensor features learned by the BiLSTM component. 
Temperature and humidity were identified as the most 
influential features, followed by water level and NPK time 
patterns. The visualization approves that BiLSTM effectively 
captures greenhouse microclimate rhythms, emphasizing its 
role in modeling temporal dependencies critical to correct yield 
prediction. 

 

Fig. 8. BiLSTM temporal contribution scores for sensor features. 

Fig. 9 shows the variation in predicted crop yields over 
actual crop yields year by year. This figure also illustrates the 
model's performance for different years, showing the ability of 
the JSO JellyNovaNet model to respond to altering 
environmental conditions and forecast crop yield accurately. 
The prediction was close to actual yields, providing evidence 
that the model can capture temporal dependencies and growth 
trends in crops with changes over time, serving real-time 
agricultural decision-making effectively. 

 

Fig. 9. Predicted vs. Actual crop yield over time. 

This Fig. 10 demonstrates the normalized trends of key 
environmental sensor features temperature, humidity, and 
water level plotted alongside the actual crop yield across a 14-
day period in January 2024. The left Y-axis denotes the 
normalized values of the sensor features, while the right Y-axis 
shows actual yield in kilograms. The visualization highlights 
how yield dynamics closely follow environmental fluctuations, 
demonstrating the importance of temporal feature modeling in 
greenhouse settings and justifying the use of BiLSTM for 
learning time-dependent patterns in JellyNovaNet-JSO. 

 

Fig. 10. Sensor feature trends vs. Actual yield over time. 

6) Ablation study: Component Contribution 

Both TabNet and BiLSTM were essential; the model 
degrades by ~250% (MAE increase) without JSO optimization, 
given in Table VI below. 
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TABLE VI ABLATION RESULTS 

Model Variant MAE RMSE R² Score 

Full JellyNovaNet-
JSO 

0.012 0.017 0.991 

Without JSO 

Optimization 
0.028 0.037 0.962 

Without TabNet 0.034 0.042 0.948 

Without BiLSTM 0.046 0.054 0.933 

 

Fig. 11. Hyperparameter optimization path using JSO. 

Fig. 11 illustrates the reduction in validation MAE over 30 
iterations of Jellyfish Search Optimization. The steady 
convergence toward a minimum MAE of 0.012 highlights the 
effectiveness of JSO in fine-tuning key hyperparameters such 
as learning rate, window size, TabNet decision steps, and 
BiLSTM units. The JSO algorithm is used for optimization on 
key hyperparameters such as learning rate, TabNet decision 
steps, BiLSTM hidden units, dropout, batch size, and time 
window size. The JSO is able to adaptively guide the search 
process and therefore refocus on different parts of the 
hyperparameter space, minimizing local minima solutions and 
providing a more stable convergence than either manual grid 
search or random search. Consistent improvements across all 
evaluation metrics was a sign of JSO effectiveness to enhance 
robustness of model performance. The optimization process 
significantly improved performance, as validated by the 250% 
MAE degradation observed when JSO was removed. This 
confirms that utilizing JSO optimization does in fact reduce 
prediction error considerably and better stabilizes convergence 
pace. The model would still stabilize but in more epochs and 
often converge to local minima that were suboptimal. This 
demonstrates that automated metaheuristic tuning is 
advantageous over manual tuning. 

7) IoT and WSN-specific insights: The integration of IoT 

devices and WSNs within the smart greenhouse infrastructure 

provided a robust foundation for real-time data acquisition, 

environmental monitoring, and responsive actuation. The 

following metrics summarize the operational efficacy of the 

deployed WSN system given in Table VII below. 

TABLE VII WSN TRANSMISSION AND SENSOR RELIABILITY STATISTICS 

Parameter Value 

Avg Sensor Uptime 98.9% 

Packet Loss Rate <1.2% 

Avg Transmission Latency 125 ms 

Daily Energy per Node 2.1 mWh 

These values indicate that the deployed WSN is both highly 
reliable and energy-efficient, with minimal communication 
delays and near-continuous sensor availability. The low packet 
loss rate ensures that the data used for modeling is minimally 
affected by transmission errors or dropouts, which is crucial for 
accurate yield prediction and real-time feedback control. 

 

Fig. 12. Yield vs. actuator state heatmap. 

This Fig. 12 presents a heatmap visualization of the average 
crop yield under various combinations of actuator states 
specifically the ON/OFF states of the fan and water pump 
systems within the greenhouse. Environments with Fan = ON 
and Pump = ON yielded 10–12% more on average, indicating 
effective climate control via IoT/WSN. 

8) Performance comparison: The superior performance of 

the proposed JellyNovaNet-JSO model compared to baseline 

and state-of-the-art approaches given in Table VIII. While 

existing models demonstrate reasonable accuracy, they fall 

short in fully capturing the complex temporal and tabular 

patterns present in IoT-based agricultural data. In contrast, 

JellyNovaNet-JSO leverages a hybrid BiLSTM and TabNet 

architecture, optimized using the Jellyfish Search Algorithm, 

enabling it to achieve significantly better generalization and 

predictive reliability. This specifies the model’s efficiency in 

addressing the challenges of dynamic environmental variability 

and heterogeneous feature representation, making it a strong 

resolution for real-world crop yield prediction. The variation in 

comparative results arise from disparity in crop type, 

differences in environmental conditions and sensor definitions 

between datasets. JellyNovaNet-JSO can be trained with 

heterogeneous input that contain static and sequential features. 

As a result, JNN-JSO is expected, to be more robust and 

accurate than models that only utilize tabular or sequential data. 
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TABLE VIII ACCURACY COMPARISON OF BIOCHEM-TFT WITH BASELINE 

AND STATE-OF-THE-ART MODELS 

References R² Score 

Proposed JellyNovaNet-JSO 0.991 

[3] 89.71 

[33] 0.97 

[34] 0.79 

[35] 0.986 

  

VI. DISCUSSION 

The performance of the introduced JellyNovaNet-JSO 
model illustrates remarkable improvements in the area of data-
driven precision agriculture. Through the incorporation of 
BiLSTM and TabNet into a single hybrid framework and 
optimization of the hyperparameters with the JSO algorithm, 
the model reaches outstanding prediction accuracy. In 
particular, the model achieves an MAE of 0.012, an RMSE of 
0.017, and an R² score of 0.991, which means that more than 
99% of crop yield variance is correctly accounted for by the 
model. One of the strongest points in JellyNovaNet-JSO is its 
capability to learn both spatial and temporal dependencies. 

The TabNet block efficiently extracts and understands static 
and categorical information like soil nutrient levels and actuator 
positions, whereas the BiLSTM block learns long- and short-
term temporal patterns from continuous sensor readings like 
temperature, humidity, and water level. Combining the two 
modalities leads to a robust model able to understand intricate 
interactions characteristic of greenhouse crop cultivation 
environments. 

The combination of IoT and WSN was found to be essential 
in propelling model performance. In comparison with baseline 
models utilizing only tabular data or sequential data, 
JellyNovaNet-JSO showed up to a 25% increase in predictive 
capability when using detailed IoT data and hybrid modeling. 
Sensors of soil nitrogen (N), humidity, and temperature were 
specifically found to be the key drivers of the yield prediction 
process, in keeping with actual agricultural dependencies. 

Additionally, the model also utilizes actuator state data (fan 
and pump ON/OFF) that are the greenhouse's internal climate 
control systems. It is found during analysis that the situations in 
which both the fan and water pump were ON always resulted in 
greater crop yields. This observation highlights the value of 
active regulation of microclimate for optimizing crop 
productivity and justifies the use of actuator signal information 
in the model pipeline. 

In terms of deployment, the low latency, high sensor 
availability, and energy conservation of the WSN mean that 
such a system is not only reliable, but also feasibly scalable in 
real-world agricultural use. The high dependability and 
robustness of data transmission further attest to the workability 
of real-time implementation in intelligent greenhouses. 

In short, the JellyNovaNet-JSO model offers a very 
accurate, interpretable, and deployable solution for smart 
agriculture. Despite JellyNovaNet-JSO's high accuracy, the 
study's generalisability may be limited because it only used one 
greenhouse dataset. The hybrid architecture increases 

computational complexity, and the extremely high R2 score 
suggests the possibility of overfitting. Scalability and sensor 
reliability remain challenges in real-world deployment. With its 
close integration of IoT and WSN infrastructures, along with 
deep learning and optimization methods, JellyNovaNet-JSO 
represents a cutting-edge tool for precision crop yield 
prediction. 

VII. CONCLUSION AND FUTURE SCOPE 

This paper introduced JellyNovaNet-JSO, which is a hybrid 
deep learning-based framework consisting of TabNet and 
BiLSTM architectures fine-tuned using the JSO algorithm for 
accurate crop yield prediction in IoT-based greenhouse setups. 
Through the effective integration of tabular and sequential 
sensor data, the system captures both static and temporal 
dependencies required to describe advanced agricultural 
conditions. The inclusion of JSO significantly enhances model 
performance through automatic hyperparameter tuning, 
achieving superior results with MAE (0.012), RMSE (0.017), 
R² (0.991), and MAPE (1.89%). The proposed model 
outperforms traditional methods with good generalization, 
interpretability, and scalability. The fusion of WSN and IoT 
with deep learning not only enhances yield prediction but also 
enables real-time decision-making for intelligent agricultural 
systems. Feature importance analysis and temporal impact 
analysis also validate the applicability of environmental factors 
in agricultural productivity. 

Future research can extend this work in several directions: 

 Cross-regional validation to test model adaptability in 
diverse agro-climatic zones. 

 Real-time deployment using edge computing or 
microcontroller-based platforms for on-site inference. 

 Integration with weather APIs and satellite imagery for 
improved forecasting accuracy. 

 Incorporation of crop variety and phenological data for 
multi-crop scalability. 

 Energy-efficient model pruning and quantization for 
lightweight deployment in resource-constrained 
environments. 

These advancements would further solidify JellyNovaNet-
JSO as a comprehensive solution for precision agriculture in 
evolving environmental contexts. In the future, we will be 
conducting tests on multiple regions and crop types, merging 
satellite and weather data for more comprehensive 
representation, and testing model compression techniques to 
facilitate lighter-weight model usage in real time so that the 
models can be run on IoT devices. Robust handling of sensor 
failures would also be created to make sure scalability can occur 
in precision agriculture. 
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