
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

An Adaptive Levy Flight Chicken Swarm
Optimization with Differential Evolution for

Function Optimization Problem

WEN-JUN LIU1, AZLAN MOHD ZAIN2, MOHAMAD SHUKOR BIN TALIB3, SHENG-JUN MA4

Faculty of Computing, Universiti Teknologi Malaysia, Skudai, 80310, Malaysia1,2,3

Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland, New Zealand4

Abstract—This study proposes an improved swarm algorithm,
Adaptive Levy Flight Chicken Swarm Optimization with Differ-
ential Evolution (ALCSODE), to overcome the low convergence
accuracy and imbalance between exploration and exploitation in
the original CSO algorithm. The method incorporates adaptive
perturbation based on individual differences and a differential
evolution mechanism into the rooster update process. An elitism
preservation strategy is also applied to enhance population
stability and information sharing. The algorithm is evaluated on
24 benchmark functions, including unimodal, high-dimensional
multimodal, and CEC2022 functions. Performance metrics such
as search trajectories and convergence curves are used to assess its
effectiveness. Experimental results show that ALCSODE achieves
a better exploration–exploitation trade-off and shows statistically
superior performance over seven classical algorithms, confirming
its potential as an effective tool for solving complex optimization
problems.

Keywords—Chicken swarm optimization; levy flight; differential
evolution algorithm; adaptive adjustment strategy; function opti-
mization

I. INTRODUCTION

As the dimensionality and complexity of real-world prob-
lems increase, optimization tasks exhibit diverse characteris-
tics, such as the coexistence of discrete and continuous vari-
ables, low- and high-dimensional settings, and both convex and
non-convex landscapes [1]. These challenges significantly limit
the effectiveness of traditional analytical and gradient-based
methods. In non-smooth, non-convex, or high-dimensional
search spaces, gradients are often difficult to compute, and
numerical methods are prone to local optima with slow conver-
gence, which severely hampers solution quality and efficiency.

To overcome these limitations, metaheuristic algorithms
have emerged as a powerful alternative. Inspired by natural
processes such as evolution and swarm intelligence, these algo-
rithms iteratively refine candidate solutions through stochastic
operations, offering derivative-free optimization and strong
adaptability [2]. Their core strength lies in the ability to
balance global exploration and local exploitation [3]: ex-
ploration aims to identify promising regions in the search
space, while exploitation focuses on refining existing solutions
toward the global optimum. The balance between exploration
and exploitation is crucial for achieving good optimization
performance. Excessive exploration may reduce convergence
speed, while excessive exploitation can lead to premature con-
vergence. Therefore, designing algorithms that can effectively
coordinate both aspects remains a central goal in metaheuristic

development. Generally, metaheuristic algorithms are catego-
rized into four major types: evolution-based, physics-based,
mathematics-based, and swarm intelligence-based methods.

The first category comprises general population-based
metaheuristic algorithms, which are inspired by biological
evolution and natural selection. These algorithms simulate
the competitive survival process within a population to it-
eratively improve solution quality. Representative methods
include Genetic Algorithms (GA) [4], Differential Evolution
(DE) [5], and Evolution Strategies (ES) [6]. They typically
employ operators such as selection, crossover, and mutation
to evolve the population, ensuring both diversity maintenance
and convergence toward superior solutions.

The second category consists of physics-inspired optimiza-
tion algorithms, which guide the search process by mimicking
natural physical phenomena such as thermodynamics, gravi-
tational force, and electromagnetic interactions. For instance,
Simulated Annealing (SA) [7] is based on the annealing
process of materials and helps the algorithm escape local
optima. The Gravitational Search Algorithm (GSA) [8] and
the Black Hole Algorithm (BH) [9] leverage mechanical
or astrophysical models to drive the search process. These
methods generally offer strong global search capabilities and
are well suited to high-dimensional and complex optimization
problems. Moreover, Harmony Search (HS) [10], inspired
by musical improvisation, seeks optimal solutions. Dynamic
Dimension Adjustment HS (DDA-HS) [11] adapts the search
space and employs an absorbing Markov chain to improve ex-
ploration–exploitation balance, enhancing fuzzy rule extraction
in neural networks for better classification and interpretability.

The third category includes mathematically inspired algo-
rithms, which regulate the search process through rigorous
mathematical strategies. The INFO [12] adopts an averaging-
based update mechanism and a vector combination strat-
egy to enhance convergence speed and local exploitation
performance, while alleviating premature convergence and
population stagnation. Similarly, the SHIO [13] incorporates
a guidance mechanism based on the average of historical
best solutions to balance exploration and exploitation, thus
improving global performance and avoiding local optima.

The fourth category, swarm intelligence-based optimization
algorithms, is inspired by collective foraging, migration, and
cooperative decision-making behaviors observed in biolog-
ical systems. These algorithms achieve global optimization
through simple interactions among individuals and local adap-

www.ijacsa.thesai.org 764 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

tive search without centralized control, exhibiting strong self-
organization, robustness, and parallelism [14].

In recent years, several novel algorithms have emerged in
this domain. The Snow Geese Algorithm (SGA) [15] models
global guidance and shortest path search by mimicking the
V-formation and energy-sharing strategies of migratory geese.
The Sled Dog Optimizer (SDO) [16] simulates sled dog team
formation and dynamic role-switching to construct a multi-
stage cooperative optimization mechanism. The HawkFish
Optimization Algorithm (HFOA) [17] incorporates dual-fitness
and vision-based dynamic strategies inspired by sex-switching
behavior, demonstrating both stability and efficiency in solving
multimodal problems. Classical swarm-based algorithms, in-
cluding Particle Swarm Optimization (PSO) [18], Ant Colony
Optimization (ACO) [19], Artificial Bee Colony (ABC) [20],
Artificial Fish Swarm Algorithm (AFSA) [21], and Bat Algo-
rithm (BA) [22], along with emerging variants such as Cuckoo
Search (CS) [23], Hybrid Harmony Search with Cuckoo Search
(HS-CS) [24], Krill Herd Optimization [25], Chaotic Fruit Fly
Optimization Algorithm [26], and Social Spider Optimization
[27], have found wide applications in fields such as computer
science [28], engineering design [29], machine learning [30],
image processing [31], and NP-complete problem solving [32].

The Chicken Swarm Optimization (CSO) algorithm [33]
is a swarm intelligence technique inspired by the hierarchical
structure and foraging behavior of chicken flocks. It assigns
individuals as roosters, hens, or chicks, each applying distinct
search strategies to achieve cooperative optimization and im-
prove its capability to locate the global optimum [34].

However, the original CSO algorithm faces several lim-
itations, such as a tendency to fall into local optima, slow
convergence speed, and high sensitivity to parameter settings.
To address these issues, various improved variants have been
proposed. To strengthen global exploration, Huang et al.
[35] introduce a global best-guided strategy combined with
dynamic inertia weight, significantly improving the search
capability of the swarm. To mitigate premature convergence,
Kong et al. [36] propose a dual-guidance mechanism in which
chicks learn from both hens and roosters, thereby enhancing
their ability to escape local optima. Shi and Gao [37] integrate
CSO with the Artificial Bee Colony (ABC) algorithm to
leverage ABC’s global search ability for better exploration-
exploitation balance. A hybrid strategy is also developed by
combining CSO with Particle Swarm Optimization (PSO) to
enhance information exchange and population diversity [38].
Zhang et al. [39] further propose L-QCSO by incorporating
Levy flight and quantum behavior, aiming to balance local ex-
ploitation and global exploration while improving convergence
accuracy. Lin et al. [40] enhance the robustness and precision
of CSO by modifying the position update rules for roosters
and hens. Theoretical advancements have also been made,
such as models based on Markov chains and convergence
analysis, which provide a reliable foundation for parameter
tuning and structural design [41]. In practical applications,
CSO is often combined with other optimization or learning
models. For example, Afzal et al. [42] present CSO-OEL
by integrating CSO with the Optimized Extreme Learning
Machine, resulting in improved convergence speed, stability,
and overall efficiency.

Despite the significant achievements of various optimiza-

tion algorithms in solving complex problems, the “No Free
Lunch” theorem [43] states that no single algorithm can
perform optimally across all problem domains. The perfor-
mance of an algorithm is generally problem-dependent, making
the NFL theorem a fundamental driving force behind the
development of problem-specific optimization strategies.

The Chicken Swarm Optimization (CSO) algorithm has
attracted attention for its simplicity and effective modeling
of social behavior. However, existing studies reveal persistent
limitations, including weak role coordination, slow conver-
gence in complex landscapes, and sensitivity to parameter
settings—often caused by the imbalance between exploration
and exploitation. These issues hinder the algorithm’s scalabil-
ity, adaptability, and solution quality in high-dimensional or
dynamic problems. To improve convergence accuracy and ad-
dress these limitations, this study draws on recent advances in
swarm intelligence and proposes that a high-performance opti-
mizer should integrate multi-strategy cooperation and adaptive
control mechanisms.

To enhance the scalability, robustness, and convergence be-
havior of the traditional Chicken Swarm Optimization (CSO),
this research proposes a novel algorithm, Adaptive Levy
Flight Chicken Swarm Optimization with Differential Evolu-
tion (ALCSODE). The main innovation of ALCSODE lies in
its strategic integration of multiple adaptive and cooperative
mechanisms, each designed to explicitly tackle key structural
deficiencies of CSO, rather than simply stacking heuristic
components. The contribution is a modular, coordinated op-
timization framework that strengthens global search capabili-
ties, improves role collaboration, and enhances adaptability to
complex landscapes.

Specifically, in the rooster phase, an adaptive differential
perturbation mechanism enhances global exploration through
individual difference vectors, supported by a fitness-based
step-size strategy that dynamically adjusts the search range
to balance exploration and exploitation. A non-inertia weight
mechanism further improves convergence stability by adapting
parameter intensity to the current search stage. In the hen
phase, a Levy flight strategy utilizes long-tailed jumps to
escape local optima and accelerate convergence. Additionally,
an elitism preservation and information-sharing mechanism
maintains diversity and guides inferior individuals toward high-
quality solutions, improving convergence without compromis-
ing population diversity. The scientific contributions of this
research are summarized as follows:

• The novelty of this study lies in the design of a new
optimizer, ALCSODE, which incorporates an adap-
tive differential perturbation mechanism, Levy flight
strategy, non-inertia weight adjustment, and elitism
preservation into the Chicken Swarm Optimization
(CSO) framework.

• The proposed ALCSODE algorithm addresses key
limitations of the original CSO, including weak role
coordination, premature convergence, and sensitivity
to parameter settings caused by the imbalance between
exploration and exploitation.

• A modular, adaptive optimization framework is de-
veloped, with each component designed to enhance

www.ijacsa.thesai.org 765 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

global exploration, convergence stability, and role col-
laboration in complex search spaces.

• The algorithm’s core strategies are formally described
and mathematically modeled to ensure transparency
and reproducibility.

• ALCSODE is evaluated on 24 benchmark functions,
covering unimodal, multimodal, and the CEC2022
test suite, to verify its scalability and effectiveness in
diverse optimization scenarios.

• Comparative experiments with seven established meta-
heuristic algorithms show that ALCSODE consistently
achieves superior performance and robustness in most
test cases.

The remainder of this study is organized as follows: Section
II reviews the standard CSO and DE algorithms; Section III
details the implementation steps of ALCSODE; Section IV
presents the simulation experiments and analysis; and Section
V summarizes the whole manuscript and outlines future re-
search directions.

II. RELATED WORK AND BACKGROUND ALGORITHMS

Several swarm intelligence algorithms have been proposed
in recent years, among which the Chicken Swarm Optimization
(CSO) and the Differential Evolution (DE) algorithms are
widely used due to their strong optimization capability. This
section briefly introduces the basic principles of the standard
CSO and DE algorithms, which form the foundation of our
proposed ALCSODE method.

A. The Chicken Swarm Optimization

Swarm intelligence algorithms have demonstrated remark-
able advantages in solving complex optimization problems.
The Chicken Swarm Optimization (CSO) algorithm achieves
efficient search performance by simulating the hierarchical be-
havior of chicken groups [34]. In this algorithm, the population
is categorized into three distinct roles: roosters (leaders), hens,
and chicks, which correspond to exploration, cooperation, and
following behaviors, respectively.Typically, individuals with
the best fitness values are assigned as roosters, while those
with the worst fitness values are designated as chicks. The
remaining individuals act as hens. The entire chicken swarm is
further divided into several subgroups, each led by one rooster
accompanied by a number of hens and chicks. To enhance
the algorithm’s adaptability in solving complex multimodal
problems, the identities of individuals and the parent–child
relationships are periodically redefined.

Let N be the total number of chickens, and RN , HN ,
CN , and MN denote the number of roosters, hens, chicks,
and mother hens, respectively. The search space is defined as
RD. The position of the i-th individual in the j-th dimension
at iteration t is denoted by xt

i,j , where i ∈ [1, . . . , N],
j ∈ [1, . . . , D], and t is the current iteration. The position
of roosters is updated using a random walk and competition
mechanism, formulated as follows [see Eq. (1) and Eq. (2)]:

xt+1
i,j = xt

i,j(1 +N (0, σ2)), (1)

Fig. 1. The flowchart of ALCSODE algorithm.

σ2 =

{
exp

(
fk−fi
|fi|+ϵ

)
if fk > fi,

1 otherwise,
(2)

www.ijacsa.thesai.org 766 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

where, fi represents the fitness of the current rooster,fk
is the fitness of a randomly selected rooster, andϵ is a small
constant used to avoid division by zero.

For hens, their position update combines leadership from
the roosters and social learning. The corresponding update
equation is defined as follows [see Eq. (3)]:

xt+1
i,j = xt

i,j + c1r1(x
t
r,j − xt

i,j) + c2r2(x
t
m,j − xt

i,j), (3)

where, xt
r,j denotes the position of the leading rooster,

xt
m,j represents the position of another randomly selected

hen, c1 and c2 are learning factors (typically defined as
c1 = exp(fi/fr), c2 = exp(fm − fi)), and r1, r2 ∈ [0, 1]
are random numbers.

As for the chicks, they strictly follow the movement of the
mother hens. The update equation is as follows [see Eq. (4)]:

xt+1
i,j = xt

i,j + F (xt
h,j − xt

i,j). (4)

where, xt
h,j denotes the position of the hen, and F ∈ (0, 2]

is the following step size factor.

B. The Differential Evolution Algorithm

Differential Evolution (DE [44]) is a population-based
stochastic optimization algorithm proposed by Storn and Price
in 1997. It is an important branch of evolutionary computation.
The core idea of DE is to simulate the mutation, crossover,
and selection operations in biological evolution to efficiently
search for the global optimal solution in continuous space. The
DE algorithm begins by initializing a fixed-size population,
with each individual representing a candidate solution in the
solution space (referred to as a target vector). The optimiza-
tion process then iteratively refines the solution, gradually
approaching the optimal one. During the mutation step, the
algorithm generates mutation vectors using differential opera-
tions. Common strategies include generating mutation vectors
by linearly combining three random individuals (DE/rand/1)
and introducing the global best solution to guide mutation
(DE/rand-to-best/1), which helps overcome the limitations of
traditional mutation methods in genetic algorithms (GA [4]).
In the crossover phase, the mutation vectors and target vectors
are probabilistically mixed to create trial vectors, enhancing
population diversity. Finally, a greedy selection strategy is
used to retain individuals with better fitness for the next
generation, continuously improving the solution quality. The
DE algorithm is widely applied in single-objective and multi-
objective optimization, combinatorial optimization, and engi-
neering problems due to its simple structure, few parameters,
and high efficiency.

III. THE PROPOSED ALCSODE METHOD

In this section, we present our Adaptive Levy Flight
Chicken Swarm Optimization with Differential Evolution al-
gorithm, termed ALCSODE, whose detailed pseudocode is
provided in Algorithm 1 and overall workflow is illustrated in
Fig. 1. For clarity and focus, our method follows the standard
CSO framework for initialization and role assignment.

The algorithm is divided into four core components,
highlighting two innovative improvements: 1) The adaptive
perturbation-based differential evolution strategy for rooster
behavior updating. 2) The elitism preservation mechanism to
improve global robustness.

A. Adaptive Perturbation-Based Differential Evolution for
Rooster Behavior Updating

In Chicken Swarm Optimization (CSO) algorithms, rooster
behavior plays a pivotal role in guiding population exploration
and maintaining swarm diversity, as documented in founda-
tional studies [45]. However, traditional updating mechanisms
exhibit significant limitations: 1) single-strategy search sus-
ceptibility to local optima causing premature convergence, 2)
insufficient spatial perturbation, and 3) fixed parameters lack-
ing environmental adaptability [46]. To address these issues,
our study proposes a method integrating individual adaptability
perturbation with the differential evolution algorithm [5]. We
use the differential information among individuals to guide
the search to high-quality regions. The adaptive perturbation
dynamically adjusts the search step size based on individual
fitness. This synergy balances global exploration and local
exploitation, avoiding search imbalance from single-strategy
approaches. Additionally, parameters can adaptively adjust
their intensity, enabling effective regulation of search efforts
at different stages. The detailed method is introduced in the
following section.

1) Calculation of adaptive differential mutation vector:
To enhance global exploration in early stages and intensify
local exploitation in later phases, this study introduces an
adaptive update strategy for the scaling factor F and crossover
probability CR in Differential Evolution. Let t denote the
current iteration and T the maximum iterations, with initial
values F0 and CR0. The adaptive update equations are defined
as Eq. (5) and Eq. (6):

Ft = F0

(
1− t

T

)θ

+ Fmin, (5)

CRt = CR0

(
1− t

T

)θ

+ CRmin, (6)

where, CRmin and Fmin are both set to 0.1, and θ > 0
controls the decay rate. This adaptive mechanism ensures
larger step sizes and higher mutation probabilities during initial
phases, facilitating escape from local optima, while progres-
sively decreasing parameters promote stable convergence as
iterations advance.

Using differential evolution, our method leverage informa-
tion from other population individuals to guide global search
directions. Three distinct individuals are randomly selected
from the population, denoted as xr1 , xr2 , xr3 . The differen-
tial evolution mutation vector is constructed as follows [see
Eq. (7)]:

dt+1
i = xt

r1 + Ft

(
xt
r2 − xt

r3

)
. (7)

where, t denotes the iteration, Ft represents the adaptive
scaling factor. dt

i provides a new search direction based

www.ijacsa.thesai.org 767 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

on population differential information. This step effectively
utilizes inter-population differential information to introduce
diversity in global search, facilitating exploration of potential
optimal regions.

2) Calculation of individual-adaptive perturbation factor:
Individual-specific perturbations are applied to candidate solu-
tions (representing rooster behaviors in the swarm) to enhance
search capabilities of inferior individuals. Let fi denote the
fitness of the i-th individual and fb the best fitness in the
population. The perturbation standard deviation σi is defined
as Eq. (8):

σ2
i =

{
1, fi ≤ fb

exp
(

fb−fi
|fi|+ε

)
, fi > fb

(8)

where, ε represents a minimal positive constant to prevent
division by zero. The perturbation step size δi is then sampled
from a normal distribution with zero mean and variance σ2

i ,
as in Eq. (9):

δi ∼ N
(
0, σ2

i

)
. (9)

Fitness-adaptive perturbation adjustment enables inferior
individuals to receive larger perturbations, facilitating escape
from local optima, while superior individuals maintain stabil-
ity, ensuring convergence quality.

3) Updating the roosters behavior: Integrating global dif-
ferential search information with current rooster states, the next
generation is generated as follows. Let xt

i denote the current
individual position. With a trade-off parameter β, the next
generation vector is defined as Eq. (10):

xt+1
i = αdt+1

i + δi x
t
i, (10)

where, α ∈ (0,∞) controls the relative weight between
global exploration and local exploitation. dt+1

i represents the
differential evolution mutation vector computed by Eq. (7),
while δi denotes the adaptive perturbation factor calculated
from Eq. (9).

To prevent excessive localization of new solutions, a
component-wise crossover strategy is employed for dimension-
by-dimension position updating. For each dimension j, the
next generation rule is defined as Eq. (11):

x
′t+1
i,j =

{
xt+1
i,j , if rand(0, 1) ≤ CRt or j = jrand

xt
i,j , otherwise

(11)

where, CRt denotes the crossover probability calculated
by the Eq. (6), and jrand ensures at least one dimension is
updated.

By integrating the differential evolution mutation vector
with individual-specific perturbations and updating the rooster
vector through component-wise crossover, this strategy main-
tains population diversity while effectively balancing global
exploration and local exploitation, thereby enhancing conver-
gence speed and stability.

B. Levy Flight-Based Hen Behavior Optimization

To enable hen individuals to adaptively adjust search step
sizes based on fitness information during updating, dynamic
scaling factors are first constructed from fitness differences
between the current individual and two randomly selected
individuals. The scaling factors are defined as Eq. (12) and
Eq. (13):

λ1 = exp

(
fi − fl
|fi|+ ε

)
, (12)

λ2 = exp (fk − fi) , (13)

where, fi denotes the fitness of the current hen individual;
fl and fk represent the fitness values of randomly selected
individuals; ε is a small positive constant preventing division
by zero; λ1 and λ2 reflect the relative fitness advantage or
disadvantage of the current individual, providing dynamic
adjustment factors for subsequent position updating.

To enhance global exploration capability, the Levy flight
function is employed. Given the Levy parameter β, the scale
parameter σu is first calculated as Eq. (14):

σu =

Γ(1 + β) sin
(

πβ
2

)
Γ
(

1+β
2

)
β 2

β−1
2


1
β

, (14)

where, Γ(·) denotes the gamma function. The Levy flight
step size is calculated as Eq. (15):

L = σu

(
u2 + v2

) 1
2β , (15)

where, u and v are independent random variables following
the standard normal distribution; β denotes the Levy flight
parameter; L represents the random step size generated from
the Levy distribution, exhibiting heavy-tailed characteristics
that facilitate large-step.

Integrating the dynamic scaling factors and Levy flight
step size, the position updating equation for hen individuals
is defined as Eq. (16):

xt+1
i,j = xt

i,j + λ1 ρ1 L
(
xt
l,j − xt

i,j

)
+ λ2 ρ2 L

(
xt
k,j − xt

i,j

)
.

(16)

where, j denotes the dimension, t the iteration count, and
ρ1 and ρ1 are random numbers uniformly sampled from the
interval [0,1].

By integrating current hen and random individuals’ posi-
tion info with Levy-based step sizes, global exploration and
local exploitation are effectively combined. A dynamic scaling
factor gives personalized update magnitudes, and the Levy
step’s long-tail property boosts search jumps, aiding escape
from local optima and accelerating global convergence.

www.ijacsa.thesai.org 768 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7 (h) F8

(i) F9 (j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15 (p) F16

(q) F17 (r) F18 (s) F19 (t) F20

(u) F21 (v) F22 (w) F23 (x) F24

Fig. 2. Trajectory of the first particle in ALCSODE during optimization across 24 benchmark functions, illustrating its behavior at different stages.

www.ijacsa.thesai.org 769 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

C. Chick Behavior Updating

In this method, the standard CSO algorithm [33] for
updating chick behavior is adopted. For each chick (denoted as
individual i), a randomly selected leader individual (indexed as
r) serves as the reference during position updating. Random-
ness and update magnitude are regulated through the following
Eq. (17):

xt+1
i,j = xt

i,j + φ
(
pr,j − xt

i,j

)
. (17)

where, pr,j denotes the historical best position vector
of individual r, and φ represents a random scaling factor
regulating the update step size, ensuring appropriate stochastic
perturbation during updating.

TABLE I. UNIMODAL AND MULTIMODAL TEST FUNCTIONS OF 12
STANDARD BENCHMARKS

No Functions Interval Trait f(x)min

F1 Alpine [-100,100] Mulitimodal 0
F2 Elliptic [-100,100] Unimodal 0
F3 Schwefel2.22 [-100,100] Unimodal 0
F4 Sphere [-100,100] Unimodal 0
F5 Sum Squares [-100,100] Unimodal 0
F6 Ackley [-100,100] Mulitimodal 0
F7 Bent Cigar [-100,100] Unimodal 0
F8 Discus [-100,100] Unimodal 0
F9 Schaffer [-100,100] Mulitimodal 0

F10 Quartic [-100,100] Unimodal 0
F11 Griewank [-100,100] Mulitimodal 0
F12 Rastrigin [-100,100] Mulitimodal 0

TABLE II. TEST FUNCTIONS OF CEC2022

No Functions Interval Trait f(x)min

F13 Zakharov [-100,100] Unimodal 300
F14 Rosenbrock [-100,100] Mulitimodal 400
F15 Schaffer’s f6 [-100,100] Mulitimodal 600
F16 Non-Continuous Rastrigin [-100,100] Mulitimodal 800
F17 Levy [-100,100] Mulitimodal 900
F18 Hybrid Function 1(N=3) [-100,100] Hybrid 1800
F19 Hybrid Function 2(N=6) [-100,100] Hybrid 2000
F20 Hybrid Function 3(N=5) [-100,100] Hybrid 2200
F21 Composition Function 1(N=5) [-100,100] Composition 2300
F22 Composition Function 2(N=4) [-100,100] Composition 2400
F23 Composition Function 3(N=5) [-100,100] Composition 2600
F24 Composition Function 4(N=6) [-100,100] Composition 2700

D. The Elitism Preservation Mechanism

In most CSO and its variant methods, the stochastic nature
of individual behavior updating mechanisms (e.g., differen-
tiated strategies for roosters, hens, and chicks) may lead to
the loss of high-quality solutions, forcing the algorithm to
restart local search and significantly reducing convergence
efficiency. To address this, an elitism preservation strategy is
introduced to balance exploration-exploitation trade-offs: after
each iteration t, individuals with the best fitness are selected
to form an elite pool, replacing low-fitness individuals in
iteration t+ 1. This mechanism enhances population stability
through elite guidance while enabling non-elite individuals

TABLE III. PARAMETER SETTINGS

Algorithm Parameters
PSO c1 = c2 = 2.0, w = 0.8
SHIO Nbest = 3, Nworst = 1, a = 1.5
INFO cond1t = 0.05, cond2t = 0.05

CSO
RN = 0.2 × N , HN = 0.6 × N , CN = N − RN − HN ,

MN = 0.1 × HN , G = 10, F ∈ rand(0.4, 1)

L-QCSO
RN = 0.2 × N , HN = 0.6 × N , CN = N − RN − HN ,

MN = 0.1 × HN , G = 10, F ∈ rand(0.4, 1)

ICSO
RN = 0.2 × N , HN = 0.6 × N , CN = N − RN − HN ,
MN = 0.1 × HN , G = 10, F ∈ rand(0.4, 1), C = 0.4

ECSO
RN = 0.2 × N , HN = 0.6 × N , CN = N − RN − HN ,
MN = 0.1 × HN , G = 10, F ∈ rand(0.4, 1), k = 1000

ALCSODE
RN = 0.2 × N , HN = 0.6 × N , CN = N − RN − HN ,

MN = 0.1 × HN , G = 10, F ∈ rand(0.4, 1), F0 =0.8 ,CR0=0.9, η=0.1

to accelerate convergence toward elite solution regions via
information sharing, thereby optimizing global convergence
performance.

Algorithm 1 Adaptive Levy Flight Chicken Swarm Optimiza-
tion with Differential Evolution (ALCSODE)

Require: f(x), N , D, T , F0, Fmin, CR0, CRmin, θ, η,
[LB,UB], β, ε

Ensure: Best solution x∗ and fitness f(x∗)
1: Init: sample {xi}Ni=1∼U [LB,UB], eval. fi, set x∗

2: for t = 1 . . . T do
3: Elite: sort {xi} by fi, extract top ηN into E
4: Partition remaining into Roosters R, Hens H , Chicks

C
5: Compute Ft = F0(1− t

T)
θ + Fmin, CRt = CR0(1−

t
T)

θ + CRmin

6: for all i ∈ R do ▷ Rooster (Adaptive DE + Perturb)
7: pick distinct r1, r2, r3, set d = xr1+Ft(xr2−xr3)
8: σ2

i =1 if fi ≤ fmin else exp((fmin−fi)/(|fi|+ε))
9: sample δi∼N (0, σ2

i), form y = αd+ δixi

10: crossover [y,xi]
CRt−−−→ x′

i, replace if f(x′
i) < fi

11: end for
12: for all i ∈ H do ▷ Hen (Levy Flight)
13: pick l, k ̸= i, compute λ1, λ2, compute L
14: update x′

i , replace if improved
15: end for
16: for all i ∈ C do ▷ Chick (Follow Leader)
17: pick leader r, sample φ ∼ U(0, 1), set x′

i = xi +
φ(pr − xi), replace if f(x′

i) < fi
18: end for
19: Elite Replacement: inject E into worst slots
20: Update global best x∗

21: end for
return x∗, f(x∗)

E. Flowchart of the ALCSODE Algorithm

Following the introduction of the four sections above, the
detailed pseudocode of the ALCSODE algorithm is presented
in Algorithm 1, followed by the overall flowchart illustrated
in Fig. 1, the specific steps are then detailed as follows:

Step 1: Problem modeling and algorithm parameters initial-
ization. Define the objective function f(x), population size N ,
problem dimension j, initial scaling factor F0, initial crossover

www.ijacsa.thesai.org 770 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F1 (b) F2 (c) F3 (d) F4

(e) F5 (f) F6 (g) F7 (h) F8

(i) F9 (j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15 (p) F16

(q) F17 (r) F18 (s) F19 (t) F20

(u) F21 (v) F22 (w) F23 (x) F24

Fig. 3. Average fitness curve of all particles in ALCSODE during optimization, showing the population’s overall convergence trend.

www.ijacsa.thesai.org 771 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

TABLE IV. COMPARISON OF EXPERIMENTAL RESULTS FROM F1 TO F8

Function Algorithm Mean(dim=10) Std dev(dim=10) Best(dim=10) Mean(dim=50) Std dev(dim=50) Best(dim=50)

F1

PSO 1.2171e1 2.8476e1 4.2222 7.4153e2 1.2193e2 7.1206e2

CSO 8.0693 6.5431 6.2974 1.3867e2 4.0942e1 1.2089e2

L-QCSO 6.5275 4.3767 6.0746 1.6510e2 2.7145e1 1.5939e2

ICSO 1.3988 4.4637 5.6363e−1 6.2475e1 5.0660e1 4.1254e1

ECSO 1.6364e1 5.1912 1.5696e1 2.4910e2 3.6614e1 2.4635e2

SHIO 3.0936 2.6862 2.2920 1.1520e2 8.4097e1 8.3814e1

INFO 2.7377 9.2771 3.5371e−4 9.0033 4.0948e1 6.7776e−27

ALCSODE 2.4438e-2 3.6105e-1 5.5180e-174 8.6178e-2 1.0753 4.0827e-165

F2

PSO 2.0592e7 7.0560e7 1.3823e7 2.3792e9 6.6404e8 2.2575e9

CSO 6.1484e5 7.0106e6 1.3942e5 6.9277e7 8.0645e7 6.3069e7

L-QCSO 3.0958e5 4.6929e6 2.5306e3 9.9319e6 6.9314e7 3.4195e6

ICSO 7.3493e4 1.1988e6 4.5347e3 1.6017e7 6.6362e7 1.0614e6

ECSO 2.4478e6 2.1051e7 8.5139e5 1.7463e8 1.8639e8 1.6221e8

SHIO 1.4512e5 3.1824e6 3.0066e−129 8.7830e6 9.7354e7 3.8254e−36

INFO 2.5434e5 2.4428e6 1.0305e−49 1.0270e7 9.9802e7 7.0123e−48

ALCSODE 4.3809e4 9.9335e5 0.0000 1.7922e6 4.0895e7 0.0000

F3

PSO 5.0466e10 4.7825e11 4.3917e2 7.8276e77 1.0064e79 2.4860e8

CSO 2.0637e6 3.2371e7 3.6657e1 1.2770e62 4.0361e63 3.6083e2

L-QCSO 2.9970e8 6.7707e9 5.1316 4.4075e56 1.3931e58 3.2877e2

ICSO 2.5172e6 7.9539e7 2.1552e−1 1.6412e62 5.1874e63 5.4136e16

ECSO 1.0843e6 1.7605e7 7.3739e1 8.0613e60 1.8008e62 1.1096e36

SHIO 8.1182e8 1.9947e10 2.2337e−82 1.0701e53 1.9500e54 1.1586e-27
INFO 2.7265e7 8.4745e8 8.1567e−27 2.1412e42 6.7677e43 7.6097e−26

ALCSODE 1.2155e5 3.6764e6 3.0275e-246 9.8591 7.0672e-1 9.8327

F4

PSO 5.1901e2 3.3705e3 3.6445e1 1.4171e5 1.0273e4 1.3982e5

CSO 1.4060e2 2.8364e2 1.0768e2 4.0931e3 2.0681e3 3.9001e3

L-QCSO 2.1161e1 1.3107e2 9.2691 4.4675e3 1.1940e3 4.3806e3

ICSO 1.4684e1 2.3197e2 4.5753e−3 7.4711e2 3.1091e3 3.0651e−1

ECSO 2.2854e2 3.7754e2 1.8268e2 9.4319e3 3.4674e3 9.2133e3

SHIO 7.4621 9.6427e1 5.0667e−133 3.7651e2 3.0527e3 2.3577e−39

INFO 1.8716e1 2.0239e2 1.3674e−54 1.5604e2 1.5520e3 7.8158e−53

ALCSODE 1.5102e-2 1.9428e-1 5.0988e-321 4.8442e-1 1.3814e1 0.0000

F5

PSO 2.3160e4 1.3810e4 2.1276e4 2.7388e6 3.2382e5 2.6813e6

CSO 1.0870e3 1.6029e3 9.5040e2 1.1909e5 5.4754e4 1.1518e5

L-QCSO 2.8691e2 7.0381e2 2.3292e2 8.2984e4 3.0516e4 8.0998e4

ICSO 1.2231e2 1.6128e3 4.1939e−2 2.1288e4 7.5819e4 1.3021e1

ECSO 3.1497e3 1.3458e3 3.0072e3 2.7433e5 1.2475e5 2.6596e5

SHIO 1.2551e1 1.9611e2 9.8009e−130 6.0821e3 4.7958e4 1.5286e−38

INFO 9.1802 8.0626e1 7.0286e−54 4.3272e3 3.9028e4 4.4386e−51

ALCSODE 5.0307e1 1.0947e3 0.0000 1.5263e3 3.4385e4 0.0000

F6

PSO 2.0001e1 1.7293e-2 2.0000e1 2.0081e1 3.6345e−2 2.0069e1

CSO 9.9341 2.8200 8.6036 2.0000e1 8.9650e−1 1.7869e1

L-QCSO 3.1154 1.8389 2.7988 1.6499e1 7.7940e−1 1.6129e1

ICSO 7.9773 1.6355 7.7176 2.0072e1 4.3520e−1 1.9810e1

ECSO 1.4689e1 6.2106e−1 1.4612e1 1.9841e1 1.8158e-1 1.9807e1

SHIO 3.8085 1.7584 3.5751 7.6821 4.9520 5.5864

INFO 1.0991 3.9546 4.4409e-16 6.7263 9.3060 3.9968e−15

ALCSODE 3.2380e-2 3.4513e−1 4.4409e-16 5.2054e-2 5.5285e−1 4.4409e-16

F7

PSO 2.4477e8 1.8254e9 5.0589e4 1.2063e11 1.2824e10 1.1825e11

CSO 2.4465e8 2.1680e8 2.2719e8 4.6980e9 2.2347e9 4.5431e9

L-QCSO 4.8091e7 1.8254e8 3.8036e7 3.0407e9 1.2999e9 2.9397e9

ICSO 1.3758e7 1.9220e8 4.9460e3 5.9858e8 3.0465e9 3.1540e5

ECSO 5.0713e8 2.7607e8 4.8645e8 1.1830e10 3.0300e9 1.1643e10

SHIO 1.0690e7 1.5594e8 1.9939e−127 2.6346e8 2.1162e9 5.6676e−35

INFO 1.4142e7 1.7633e8 3.3738e−48 2.1443e8 3.2860e9 1.3765e−46

ALCSODE 6.1252e6 1.1558e8 0.0000 6.7484e7 1.3447e9 0.0000

F8

PSO 1.3858e5 1.5930e6 4.9400e4 2.1096e5 1.4863e5 1.9474e5

CSO 1.3100e4 3.5874e5 5.8645e2 1.1812e4 1.3979e4 1.0421e4

L-QCSO 7.7057e2 9.0170e3 9.7570e1 3.8709e3 1.6819e4 2.0931e3

ICSO 4.2348e3 2.7635e3 3.2313e3 2.3510e4 3.5057e4 1.8347e4

ECSO 1.9217e3 1.7315e3 1.6479e3 1.0926e4 8.4838e3 1.0063e4

SHIO 7.5133e1 1.0423e3 2.0267e−126 7.5092e2 5.7429e3 3.9283e−39

INFO 5.9024e3 1.5928e5 7.3494e−50 5.8405e3 2.4436e4 9.0716e−50

ALCSODE 1.1903e2 2.2259e3 0.0000 4.4433e2 9.1330e3 0.0000

probability CR0, elite ratio η, maximum iteration times T , and search domain range [LB,UB].

www.ijacsa.thesai.org 772 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

TABLE V. COMPARISON OF EXPERIMENTAL RESULTS FROM F9 TO F16

Function Algorithm Mean(dim=10) Std dev(dim=10) Best(dim=10) Mean(dim=50) Std dev(dim=50) Best(dim=50)

F9

PSO 2.1915e−3 2.3394e−2 0.0000 4.3981e−3 4.0932e−2 0.0000
CSO 1.2950e−3 1.0902e−2 0.0000 1.5582e−3 1.5368e−2 1.3605e−11

L-QCSO 2.8970e−4 4.1479e−3 0.0000 7.0125e−4 1.1484e−2 0.0000
ICSO 1.1525e−3 1.3775e−2 9.9178e−10 5.6907e−4 1.0126e−2 2.4241e−11

ECSO 2.0857e−3 1.8151e−2 2.5352e−6 1.5202e−3 8.8111e−3 7.5935e−8

SHIO 6.7496e−4 2.6408e−3 0.0000 9.3982e−4 7.2033e−3 0.0000
INFO 2.0511e−4 3.5885e−3 0.0000 1.2323e−3 1.1032e−2 0.0000

ALCSODE 3.8614e-5 1.2176e-3 0.0000 2.8502e-7 8.4581e-6 0.0000

F10

PSO 9.8715e6 8.7741e7 1.0265e4 1.5410e10 2.7870e9 1.4932e10

CSO 8.5630e4 1.5200e6 8.9011e2 1.4151e7 1.1050e8 8.4274e6

L-QCSO 2.3330e4 3.7674e5 1.9332e−1 9.5990e6 6.3321e7 5.5855e6

ICSO 6.1236e4 1.8500e6 1.5713e−3 2.0692e7 2.2624e8 2.4192e−1

ECSO 2.6265e5 1.6985e6 1.5588e5 4.9450e7 2.0985e8 3.4797e7

SHIO 5.3305e4 9.7508e5 2.1546e-5 1.1907e7 1.3905e8 2.6926e−3

INFO 2.5538e4 4.3033e5 3.8682e−4 2.4971e6 3.4058e7 1.1924e-3
ALCSODE 2.1052e4 5.5612e5 1.0986e−4 1.3696e2 3.1244e2 1.2381e2

F11

PSO 2.2655 6.9911e−1 2.1518 2.7139e1 3.5048 2.6552e1

CSO 4.0950e−1 1.2417e−1 3.9084e−1 2.0201 6.0190e−1 1.9773

L-QCSO 6.4440e−1 6.0465e−2 6.3673e−1 2.2367 2.4165e−1 2.2226

ICSO 1.0660e−1 1.5407e−1 8.4411e−2 4.2695e−1 1.0284 2.2509e−2

ECSO 1.1209 8.1574e−2 1.1151 2.3045 5.6463e−1 2.2648

SHIO 1.6011e−1 1.2006e−1 1.1470e−1 2.0404e−1 1.0539 0.0000
INFO 1.5093e−1 2.8325e−1 2.4612e−2 2.6216e−1 5.6060e−1 0.0000

ALCSODE 1.3474e-3 2.7760e-2 0.0000 1.5361e-3 2.9620e-2 0.0000

F12

PSO 4.0863e2 3.3017e3 2.3099e1 1.3827e5 1.2042e4 1.3592e5

CSO 4.8146e2 2.9826e2 4.5710e2 3.7476e3 2.0547e3 3.5948e3

L-QCSO 1.4756e2 1.5853e2 1.2427e2 7.2951e3 1.0877e3 7.2002e3

ICSO 3.0308e2 1.7108e2 2.8938e2 4.8178e3 2.5093e3 4.4025e3

ECSO 5.0184e2 5.2995e2 4.6734e2 7.1712e3 3.7697e3 6.9471e3

SHIO 5.3312e1 1.9080e2 3.5870e1 1.1539e3 2.1315e3 8.4338e2

INFO 2.7375e1 2.0187e2 0.0000 2.2399e2 1.1400e3 0.0000
ALCSODE 6.2019 1.2584e2 0.0000 1.3460e2 2.4440e1 1.3308e2

F13

PSO 1.4231e4 4.4013e3 1.3391e4 1.5764e5 2.2018e4 1.5286e5

CSO 8.5161e2 1.0744e3 7.7142e2 2.6140e7 7.9264e8 7.5380e3

L-QCSO 2.9007e3 2.8382e3 2.6788e3 1.2193e4 1.6243e4 1.0348e4

ICSO 5.9110e2 1.3715e3 3.0002e2 3.9556e6 1.1438e8 1.4113e4

ECSO 1.1083e3 3.7852e2 1.0808e3 1.3757e4 8.8871e4 9.2386e3

SHIO 3.5886e2 3.8100e2 3.0000e2 1.9168e4 1.0995e5 6.8916e2

INFO 6.3154e2 2.5764e3 3.0000e2 2.4158e3 6.6430e3 3.0000e2
ALCSODE 3.5761e2 1.2225e3 3.0201e2 4.1672e2 3.1668e3 3.0686e2

F14

PSO 4.3204e2 2.2300e2 4.0918e2 2.2040e4 4.6964e3 2.1181e4

CSO 4.2989e2 2.3438e1 4.2754e2 1.3786e3 4.1279e2 1.3488e3

L-QCSO 4.0247e2 2.6004e1 4.0011e2 6.9569e2 2.9382e2 6.3642e2

ICSO 4.0208e2 2.2963e1 4.0030e2 5.5840e2 4.9277e2 4.1015e2

ECSO 4.4100e2 4.1539e1 4.1380e2 1.6100e3 6.0620e2 1.5690e3

SHIO 4.0976e2 1.1963e1 4.0665e2 4.8056e2 6.2838e2 4.0000e2
INFO 4.0083e2 5.9497 4.0000e2 4.3623e2 3.8766e2 4.0000e2

ALCSODE 4.0065e2 1.0023e1 4.0000e2 4.1052e2 1.6400e2 4.0000e2

F15

PSO 6.3579e2 8.2919 6.3446e2 6.8799e2 1.0618e1 6.8505e2

CSO 6.0600e2 3.2536 6.0528e2 6.1918e2 3.2556 6.1854e2

L-QCSO 6.0093e2 2.3546 6.0060e2 6.2087e2 2.2176 6.2060e2

ICSO 6.0352e2 2.3401 6.0324e2 6.1784e2 4.0763 6.1697e2

ECSO 6.1522e2 2.2993 6.1402e2 6.2467e2 3.4395 6.2439e2

SHIO 6.0255e2 2.7280 6.0208e2 6.1064e2 6.0517 6.0847e2

INFO 6.0070e2 2.5381 6.0000e2 6.0121e2 5.1117 6.0000e2
ALCSODE 6.0015e2 2.0986 6.0000e2 6.0016e2 2.3491 6.0000e2

F16

PSO 8.2662e2 5.4037 8.2600e2 1.1815e3 2.3858e1 1.1780e3

CSO 8.0007e2 7.6322e−1 8.0000e2 8.1058e2 6.1036 8.1000e2

L-QCSO 8.0005e2 5.4844e−1 8.0000e2 8.1039e2 3.2107 8.1000e2

ICSO 8.0004e2 6.4170e−1 8.0000e2 8.1348e2 6.6564 8.1300e2

ECSO 8.0008e2 1.1140 8.0000e2 8.2844e2 6.9513 8.2800e2

SHIO 8.0001e2 1.4784e-1 8.0000e2 8.0102e2 6.2935 8.0000e2
INFO 8.2100e2 8.6180e−1 8.1200e2 8.1040e2 4.2054 8.1000e2

ALCSODE 8.0001e2 3.0299e−1 8.0000e2 8.0021e2 4.3630 8.0000e2

www.ijacsa.thesai.org 773 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

TABLE VI. COMPARISON OF EXPERIMENTAL RESULTS FROM F17 TO F24

Function Algorithm Mean(dim=10) Std dev(dim=10) Best(dim=10) Mean(dim=50) Std dev(dim=50) Best(dim=50)

F17

PSO 2.6326e3 5.6572e2 2.5372e3 2.7243e4 8.5072e3 2.4246e4

CSO 9.2941e2 8.7053e1 9.2097e2 1.8570e3 7.6056e2 1.7195e3

L-QCSO 9.0734e2 5.1628e1 9.0183e2 1.8656e3 3.1121e2 1.8282e3

ICSO 9.2844e2 6.9121e1 9.2023e2 1.5213e3 9.5674e2 1.4210e3

ECSO 9.5393e2 1.3974e2 9.4287e2 3.0568e3 9.3457e2 2.9835e3

SHIO 9.0695e2 5.4043e1 9.0026e2 4.5717e3 1.2557e3 3.8546e3

INFO 9.0316e2 4.5299e1 9.0000e2 9.8810e2 7.7951e2 9.0032e2

ALCSODE 9.0121e2 2.6958e1 9.0000e2 9.2830e2 5.4272e2 9.0000e2

F18

PSO 1.5642e7 1.7129e8 1.0142e4 2.1166e10 5.6262e9 2.0352e10

CSO 3.8821e5 4.3947e6 1.8530e3 1.4970e9 7.8855e8 1.4391e9

L-QCSO 7.7114e5 1.4315e7 1.8059e3 2.6978e9 5.0931e8 2.6678e9

ICSO 1.5312e5 2.7530e6 2.1249e3 4.6877e7 7.9032e8 4.0565e4

ECSO 2.0135e6 2.2907e7 2.1130e3 1.1210e9 1.5212e9 1.0253e9

SHIO 4.8034e5 1.4679e7 1.8004e3 7.0391e7 7.6071e8 1.8015e3

INFO 9.7803e5 1.2583e7 1.8005e3 3.8950e7 3.7818e8 1.8015e3

ALCSODE 3.1144e5 9.1831e6 1.8004e3 8.8508e6 1.7131e8 1.8014e3

F19

PSO 2.0669e3 2.1771e1 2.0637e3 1.1338e4 7.4889e3 1.0181e4

CSO 2.0217e3 1.7799e1 2.0194e3 2.9263e3 2.0822e3 2.7509e3

L-QCSO 2.0083e3 5.8092e1 2.0038e3 3.3907e3 4.2409e3 3.0374e3

ICSO 2.0476e3 2.5859e1 2.0457e3 2.5364e3 1.1565e3 2.1599e3

ECSO 2.0585e3 6.9333e1 2.0415e3 3.1794e3 4.5674e3 2.9015e3

SHIO 2.0213e3 1.6653e1 2.0190e3 3.4178e3 4.1336e3 2.1328e3

INFO 2.0040e3 2.8061e1 2.0000e3 2.5296e3 3.1631e3 2.0009e3
ALCSODE 2.0026e3 6.0033e1 2.0006e3 2.1070e3 3.0972e3 2.0009e3

F20

PSO 3.1400e3 2.2436e3 2.9085e3 3.9415e4 1.7860e4 3.6786e4

CSO 2.2278e3 7.7401e1 2.2209e3 5.9860e3 7.0967e4 3.5996e3

L-QCSO 2.2176e3 1.5813e2 2.2093e3 4.7364e3 9.5444e3 3.9668e3

ICSO 2.2103e3 1.1385e2 2.2038e3 4.5770e3 2.9931e3 2.6551e3

ECSO 2.3216e3 1.6637e2 2.3078e3 4.7201e3 2.9933e3 4.4365e3

SHIO 2.2094e3 4.3933e1 2.2015e3 2.9708e3 1.5570e3 2.3036e3

INFO 2.2117e3 8.6726e1 2.2001e3 4.4880e3 1.0877e4 2.2021e3

ALCSODE 2204.03632 7.9725e1 2.2000e3 2.7890e3 2.4339e3 2.2004e3

F21

PSO 1.2330e8 7.9524e8 6.5777e6 3.1866e10 2.3750e9 3.1437e10

CSO 8.9897e7 7.8170e7 8.3546e7 1.1761e9 5.2367e8 1.1365e9

L-QCSO 1.2882e7 5.8898e7 1.5843e6 7.8225e8 2.6790e8 7.6479e8

ICSO 2.7389e6 5.7325e7 4.2223e3 1.7390e8 7.6455e8 7.0218e4

ECSO 3.2675e7 9.7277e7 2.5080e7 1.4227e9 6.9794e8 1.3683e9

SHIO 3.7806e6 5.4935e7 2.5000e3 9.2896e7 7.0122e8 2.5000e3
INFO 3.3374e6 3.4619e7 2.5000e3 4.0015e7 4.0280e8 2.5000e3

ALCSODE 5.4514e5 1.0724e7 2.5000e3 1.4465e7 2.7567e8 2.5000e3

F22

PSO 2.6580e3 2.3430e2 2.6236e3 6.7897e3 2.7290e3 6.0614e3

CSO 2.5191e3 2.4691e1 2.5159e3 2.9446e3 3.1401e2 2.8995e3

L-QCSO 2.5091e3 1.6583e1 2.5061e3 2.9955e3 1.2763e2 2.9810e3

ICSO 2.5139e3 2.2874e1 2.5113e3 2.7975e3 3.0825e2 2.7530e3

ECSO 2.5249e3 4.2371e1 2.5226e3 3.2843e3 4.9190e2 3.2497e3

SHIO 2.5127e3 1.5887e1 2.5104e3 3.5894e3 4.6065e2 3.4663e3

INFO 2.5082e3 2.3643e1 2.5030e3 2.5465e3 2.0419e2 2.5156e3
ALCSODE 2.5039e3 1.8663e1 2.5030e3 2.5247e3 1.6702e2 2.5156e3

F23

PSO 7.0138e3 4.7479e4 5.0129e3 9.9541e4 9.9534e5 3.8218e4

CSO 3.1115e3 5.3457e2 3.0597e3 1.7654e4 2.5887e5 5.8710e3

L-QCSO 3.6831e3 6.8820e2 3.1785e3 4.5210e3 5.2698e3 3.8771e3

ICSO 2.9424e3 3.0850e2 2.8207e3 9.3559e4 2.5690e6 9.3078e3

ECSO 3.1238e3 3.2901e2 3.0977e3 5.8154e3 1.8505e3 5.6269e3

SHIO 2.9200e3 4.3141e2 2.8208e3 6.1869e3 5.3195e3 2.8485e3

INFO 2.9486e3 8.6845e2 2.8207e3 1.0965e4 5.4872e4 2.8236e3

ALCSODE 2.9199e3 3.0715e3 2.8207e3 3.1587e3 7.3032e3 2.8218e3

F24

PSO 7.8219e7 5.9782e8 4.7312e4 9.0122e9 3.6756e9 8.3934e9

CSO 3.0742e7 5.4115e7 2.6376e7 7.6600e8 4.7189e8 7.2143e8

L-QCSO 2.0039e7 3.6293e7 5.3834e6 1.1190e9 4.8782e8 1.0777e9

ICSO 3.0929e6 4.9371e7 1.2905e4 3.5972e8 9.6735e8 5.8719e4

ECSO 4.8070e7 5.1804e7 4.0272e7 1.0143e9 1.0010e9 9.3863e8

SHIO 1.7249e6 2.2613e7 2.9522e3 1.4510e8 8.2402e8 2.9614e3
INFO 2.2004e6 1.8753e7 2.9522e3 4.0366e7 2.9775e8 2.9614e3

ALCSODE 9.6401e5 2.5747e7 2.9522e3 5.8906e7 5.0165e8 2.9614e3

www.ijacsa.thesai.org 774 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

TABLE VII. WILCOXON TEST RESULTS FOR BEST VALUES WITH FIXED ITERATIONS

Dim PSO CSO L-QCSO ICSO ECSO SHIO INFO ALCSODE
Wilcox Rank Wilcox Rank Wilcox Rank Wilcox Rank Wilcox Rank Wilcox Rank Wilcox Rank Rank

F1 10 + 5 + 7 + 6 + 3 + 8 + 4 + 2 1
50 + 8 + 5 + 6 + 3 + 7 + 4 + 2 1

F2 10 + 8 + 6 + 4 + 5 + 7 + 2 + 3 1
50 + 8 + 6 + 5 + 4 + 7 + 3 + 2 1

F3 10 + 8 + 6 + 5 + 4 + 7 + 2 + 3 1
50 + 7 + 5 - 4 + 6 + 8 - 1 - 2 3

F4 10 + 6 + 7 + 5 + 4 + 8 + 2 + 3 1
50 + 8 + 5 + 6 + 4 + 7 + 3 + 2 1

F5 10 + 8 + 6 + 5 + 4 + 7 + 2 + 3 1
50 + 8 + 6 + 5 + 4 + 7 + 3 + 2 1

F6 10 + 8 + 6 + 3 + 5 + 7 + 4 = 1 1
50 + 8 + 5 + 4 + 7 + 6 + 3 + 2 1

F7 10 + 5 + 7 + 6 + 4 + 8 + 2 + 3 1
50 + 8 + 6 + 5 + 4 + 7 + 3 + 2 1

F8 10 + 8 + 5 + 4 + 7 + 6 + 2 + 3 1
50 + 8 + 6 + 4 + 7 + 5 + 3 + 2 1

F9 10 = 1 = 1 = 1 + 7 + 8 = 1 = 1 1
50 = 1 + 6 = 1 + 7 + 8 = 1 = 1 1

F10 10 + 7 + 6 + 5 + 4 + 8 - 1 + 3 2
50 + 8 + 6 + 5 - 3 + 7 - 2 - 1 4

F11 10 + 8 + 5 + 6 + 3 + 7 + 4 + 2 1
50 + 8 + 5 + 6 + 4 + 7 = 1 = 1 1

F12 10 + 3 + 7 + 5 + 6 + 8 + 4 = 1 1
50 + 8 + 4 + 7 + 5 + 6 + 3 - 1 2

F13 10 + 8 + 5 + 7 + 4 + 6 - 1 - 1 3
50 + 8 + 4 + 6 + 7 + 5 + 3 - 1 2

F14 10 + 6 + 8 + 3 + 4 + 7 + 5 = 1 1
50 + 8 + 6 + 5 + 4 + 7 = 1 = 1 1

F15 10 + 8 + 6 + 3 + 5 + 7 + 4 = 1 1
50 + 8 + 5 + 6 + 4 + 7 + 3 = 1 1

F16 10 + 8 = 1 = 1 = 1 = 1 = 1 + 7 1
50 + 8 + 2 + 2 + 6 + 7 = 1 + 2 1

F17 10 + 8 + 6 + 4 + 5 + 7 + 3 = 1 1
50 + 8 + 4 + 5 + 3 + 6 + 7 + 2 1

F18 10 + 8 + 5 + 4 + 7 + 6 = 1 + 3 1
50 + 8 + 6 + 7 + 4 + 5 + 2 + 2 1

F19 10 + 8 + 4 + 3 + 7 + 6 + 4 - 1 2
50 + 8 + 5 + 7 + 4 + 6 + 3 = 1 1

F20 10 + 8 + 6 + 5 + 4 + 7 + 3 + 2 1
50 + 8 + 6 + 5 + 4 + 7 + 3 + 2 1

F21 10 + 6 + 8 + 5 + 4 + 7 = 1 = 1 1
50 + 8 + 7 + 5 + 4 + 6 = 1 = 1 1

F22 10 + 8 + 6 + 3 + 5 + 7 + 4 = 1 1
50 + 8 + 4 + 5 + 3 + 6 + 7 = 1 1

F23 10 + 8 + 5 + 7 = 1 + 6 + 4 = 1 1
50 + 8 + 6 + 4 + 7 + 5 + 3 + 2 1

F24 10 + 5 + 7 + 6 + 4 + 8 = 1 = 1 1
50 + 8 + 5 + 7 + 4 + 6 = 1 = 1 1

Avg 7.25 5.43 4.75 4.56 6.64 2.58 1.77 1.22
Final 8 6 5 4 7 3 2 1

Step 2: Population initialization based on the normal distri-
bution, calculate the fitness using the objective function f(x),
and record the optimal value.

Step 3: Elite selection. Select top η ∗ N individuals. The
residual population is categorized into roosters, hens, and
chicks based on fitness hierarchy.

Step 4: Adaptive perturbation-based differential evolution
for rooster behavior updating. First, the adaptive differential
mutation vector is computed using the adaptive scaling factor
Ft through Eq. (7). Then, the individual-adaptive perturbation
factor δi is calculated, where inferior individuals receive larger
perturbations through a fitness-dependent variance σ2

i , sampled
from a zero-mean normal distribution as defined in Eq. (9).
Finally, the differential evolution mutation vector is combined
with the current rooster vector controlled by the adaptive
perturbation factor δi to generate the next generation, as
defined in Eq. (10). Additionally, a component-wise crossover
strategy prevents excessive localization by updating positions
dimension-by-dimension, as defined in Eq. (11).

Step 5: Levy flight-based hen behavior optimization. By
leveraging the Levy flight algorithm concept, hen behavior is
updated in Equation 16 through the integration of dynamic
scaling factors λ1, λ2 and Levy flight step size L.

Step 6: Chick behavior updating. For each chick i, a

randomly selected leader r serves as the reference for position
updating in Eq. (17).

Step 7: The fitness values of the population in the new state
are evaluated by f(x), with updates occurring only if the new
fitness is better than the previous value. Additionally, the elite
strategy replaces the current worst-performing individuals.

Step 8: Termination condition. The algorithm terminates if
the maximum iteration count is reached, outputting the optimal
solution; otherwise, the process returns to Step 3.

F. Time Complexity Analysis

The time complexity of the proposed Adaptive Levy Flight
Chicken Swarm Optimization with Differential Evolution al-
gorithm is analyzed with respect to the population size N ,
problem dimensionality Dim, fitness evaluation cost f(Dim),
and the maximum number of iterations T . In each iteration, the
algorithm updates the positions of all individuals—including
roosters, hens, and chicks—through vector operations such as
mutation, adaptive perturbation, crossover, and Levy flight-
based steps, each requiring O(Dim) computations per indi-
vidual and resulting in an overall O(N × Dim) complexity.
Fitness evaluations for all individuals contribute an additional
cost of O(N×f(Dim)) per iteration. Although elitism preser-
vation involves selecting elite individuals and replacing low-
fitness ones, which may require sorting with a complexity

www.ijacsa.thesai.org 775 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

of O(N logN), this cost is generally minor compared to the
dominant vector updates and fitness evaluations. Consequently,
the total time complexity per iteration can be approximated by
combining these main components as O(N ×Dim)+O(N ×
f(Dim)), and over T iterations, the overall time complexity
is O

(
T ×N× (Dim+f(Dim))

)
. This formulation highlights

that the computational cost of ALCSODE scales linearly with
population size, problem dimensionality, and the complexity of
fitness evaluation, demonstrating its suitability for large-scale
and high-dimensional optimization problems.

IV. SIMULATION EXPERIMENT

To validate the effectiveness of the proposed ALSCODE
algorithm, extensive experiments are conducted on 24
benchmark functions, including unimodal functions, high-
dimensional multimodal functions, and the CEC2022 test suite
[47]. This section first presents the experimental configurations
and parameter settings of the comparative methods, followed
by an analysis and verification of the algorithm’s effectiveness
based on the experimental results.

A. Experimental Setup

The experiments are conducted on a Windows 11 system
equipped with a 2.9 GHz CPU and 16 GB of RAM, using
Python 3.10 as the programming environment. The ALSCODE
algorithm is evaluated on 24 benchmark functions, includ-
ing 8 unimodal functions, 9 multimodal functions, 3 hybrid
functions, and 4 composition functions. Detailed information,
including function names, search ranges, and theoretical global
optima, is provided in Table I and Table II, the latter corre-
sponding to the standard CEC2022 benchmark.

The experimental comparison includes the standard Particle
Swarm Optimization (PSO) algorithm inspired by bird flock-
ing behavior [48], the standard Chicken Swarm Optimization
(CSO) algorithm [33], along with three of its variants (L-
QCSO [39], ICSO [36], and ECSO [49]), as well as the
metaheuristic algorithms INFO [12] and SHIO [13], which
serve as baseline methods. To ensure a fair comparison, all
algorithms adopt the same configuration: a population size of
50, a maximum of 1000 iterations, and search spaces of 10 and
50 dimensions. Each algorithm is executed 30 times on each
benchmark function, and the average performance is recorded.
Additional parameter settings are provided in Table III.

B. Qualitative Results and Discussion of ALCSODE

The qualitative experiments are conducted on the two-
dimensional versions of benchmark functions to visually ob-
serve the search behavior of the ALSCODE algorithm. For
each test function, two types of diagrams are provided: one
illustrating the trajectory of the first particle in the first
dimension, and the other depicting the average fitness of
the particle swarm. The former reflects the search dynamics
of a representative particle, while the latter indicates the
convergence trend of the entire population.

Fig. 2 shows the trajectory of the first particle in the first
dimension, which serves to evaluate the algorithm’s behavior at
different stages, particularly whether it exhibits abrupt move-
ments in the early iterations and stabilizes in later stages. This
figure consists of 24 subplots, each representing the trajectory

corresponding to a specific benchmark function. For example,
Fig. 2a illustrates the trajectory for the F1 function (Alpine).
According to the study by Berg et al. [50], an effective
population-based algorithm performs wide-range exploration
in the early phase and gradually shifts to local exploitation
to achieve high-quality solutions. As shown in the figure, the
first particle in ALSCODE exhibits a significant and abrupt
movement exceeding 50% of the search space in the early
phase, indicating that the algorithm fully utilizes population
diversity and individual differences to escape local optima
and conduct global exploration. As the iterations proceed, the
particle’s movement amplitude gradually decreases and the
trajectory becomes smoother. This progressive stabilization is
attributed to ALSCODE’s adaptive perturbation mechanism,
which dynamically adjusts the step size of the movement
vector based on particle fitness, thereby narrowing the search
range and guiding particles toward more promising regions for
enhanced local exploitation.

The convergence curves of average fitness in Fig. 3 further
validate this behavior. All test functions exhibit a consistently
decreasing trend, indicating that the overall solution quality of
the population improves continuously throughout the optimiza-
tion process. This result confirms that ALSCODE effectively
optimizes the swarm’s search behavior and significantly en-
hances the accuracy of the approximated optimal solutions.

In summary, Fig. 2 and Fig. 3 jointly demonstrate that
ALSCODE maintains a well-balanced dynamic between ex-
ploration and exploitation. The large-scale fluctuations in the
early stage enhance diversity and global coverage, while the
gradually decreasing fluctuations in the later stage ensure con-
vergence and fine-tuning. Ultimately, the particle trajectories
on nearly all benchmark functions converge to a stable point,
verifying that ALSCODE achieves a smooth transition from
global exploration to local exploitation and exhibits strong
convergence performance and robustness.

C. ALCSODE Statistical Results and Comparison with Other
Algorithms

Functions F1 to F24 (including the CEC2022 test suite) are
evaluated under 10-dimensional and 50-dimensional settings.
Experiments are based on data obtained from 30 independent
runs for each function, and performance metrics include the
best value, mean value, and standard deviation. The results are
summarized in Table IV, Table V, and Table VI, where the best
results for each function are highlighted in bold.

To comprehensively validate the performance of the
ALSCODE algorithm, it is compared with the classical
Chicken Swarm Optimization (CSO) and its three variants
L-QCSO, ICSO, and ECSO, as well as representative meta-
heuristic algorithms from outside the domain, including PSO,
INFO, and SHIO. Fig. 4 to Fig. 7 present the convergence
curves of a randomly selected run among the 30 executions. To
reduce visual clutter, only the top-performing or representative
algorithms are shown: L-QCSO and ICSO among chicken
swarm algorithms, and INFO and SHIO among metaheuris-
tic algorithms. This choice facilitates a clearer comparison
of convergence behavior. Comparative results indicate that,
under different dimensional conditions, ALSCODE exhibits
significant advantages in solution accuracy, result stability, and
convergence efficiency.

www.ijacsa.thesai.org 776 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

Fig. 4. Performance comparison of convergence curve on F1-F12 test functions in 10D.

www.ijacsa.thesai.org 777 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F13 (b) F14 (c) F15

(d) F16 (e) F17 (f) F18

(g) F19 (h) F20 (i) F21

(j) F22 (k) F23 (l) F24

Fig. 5. Performance comparison of convergence curve on F13-F24 test functions in 10D.

www.ijacsa.thesai.org 778 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

Fig. 6. Performance comparison of convergence curve on F1-F12 test functions in 50D.

www.ijacsa.thesai.org 779 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

(a) F13 (b) F14 (c) F15

(d) F16 (e) F17 (f) F18

(g) F19 (h) F20 (i) F21

(j) F22 (k) F23 (l) F24

Fig. 7. Performance comparison of convergence curve on F13-F24 test functions in 50D.

www.ijacsa.thesai.org 780 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

1) Evaluation of unimodal banchmark: Unimodal func-
tions F2, F3, F4, F5, F7, F8, F10, and F13 contain only a
single global optimum and no local optima, making them ideal
benchmarks for evaluating the development capabilities of op-
timization algorithms. According to the comparison of Mean,
Standard Deviation, and Best results in both 10-dimensional
and 50-dimensional cases, ALCSODE successfully reaches
the global optimum on F2, F5, and F8, and demonstrates
the best performance on all functions except F10 and F13.
Compared to other competing algorithms, ALCSODE exhibits
superior convergence accuracy and stability on these unimodal
functions. Overall, the simulation results clearly indicate that
ALCSODE possesses a significant performance advantage in
unimodal function optimization tasks.

2) Evaluation of multimodal banchmark: Functions F1,
F6, F9, F11, F12, F14, F15, F16, and F17 are typical high-
dimensional multimodal functions that contain not only a
primary global optimum but also multiple local optima, making
them well-suited for evaluating the exploration capability of
optimization algorithms. Tables IV to VI present the optimiza-
tion results of the proposed algorithm ALCSODE compared
with seven other competing algorithms on these functions.
Benefiting from its strong exploration ability, ALCSODE is
able to locate the global optimum for functions F9, F11, F12,
F14, F15, F16, and F17 after identifying the promising regions.
In the optimization of F1 and F6, ALCSODE also demon-
strates superior performance. The simulation results indicate
that ALCSODE exhibits satisfactory exploration capability
in accurately scanning the search space and avoiding local
optima.

3) Evaluation of CEC 2022 benchmark: CEC2022 serves
as an effective benchmark for evaluating the performance of
optimization algorithms and their ability to solve complex
optimization problems. It requires algorithms to handle multi-
modality, multi-scaled landscapes, and fused complex function
shapes. The test suite consists of 12 benchmark functions, in-
cluding unimodal, multimodal, hybrid, and composition func-
tions. Specifically, F13 is a unimodal function; F14–F17 are
multimodal functions; F18–F20 are hybrid functions (which
may exhibit either unimodal or multimodal characteristics);
and F21–F24 are composition functions with multimodal
properties. Tables V and VI present the optimization results
of the proposed ALCSODE algorithm compared with seven
competing algorithms on the CEC2022 benchmark set. The
results show that ALCSODE achieves the global optimum for
F14, F15, F16, F17, and F20. For F18, F19, F21, F22, F23,
and F24, ALCSODE outperforms all competitors except for
F19 in the 10-dimensional case, where the global optimum is
not fully reached. Overall, ALCSODE demonstrates superior
optimization performance in most test cases compared to the
other algorithms.

4) Statistical analysis: To provide a clear and intuitive
comparison of algorithmic performance, the non-parametric
Wilcoxon signed-rank test is employed to assess the statistical
significance of the results. Using the best convergence value
as the evaluation criterion, statistical analysis is conducted
based on the average outcomes from 30 independent runs,
aiming to systematically examine the effectiveness of ALC-
SODE. In the test outcomes, a “+” symbol indicates that
ALCSODE performs better than the compared algorithm, “-

” indicates relatively lower performance, and “=” denotes
no significant difference. The “Rank” column represents the
relative ranking in terms of solution accuracy. As shown in
Table VII, ALCSODE performs competitively across most of
the twelve benchmark functions. Although ALCSODE does
not achieve the best performance among all algorithms on
F3, F10, F12, and F13 in the 10-dimensional case, and on
F10, F13, and F19 in the 50-dimensional case, slightly inferior
to INFO or SHIO, it exhibits significant advantages on the
remaining functions, attaining 85.5% (41 out of 48) of the best
convergence results. Furthermore, the Wilcoxon rank-sum test
is applied to validate the consistency of performance rankings
across different dimensions. The overall results indicate that
ALCSODE demonstrates strong competitiveness among all the
compared algorithms and exhibits advantages in convergence
accuracy from a statistical perspective.

D. Scalability and Stability Analysis of ALCSODE

This subsection analyzes the scalability and stability of
ALCSODE. For scalability analysis, ALCSODE is tested on
functions F1 to F24 under 10-dimensional and 50-dimensional
settings, with the simulation results presented in Tables IV to
VI. The analysis shows that although the performance of all
algorithms declines as the dimensionality increases from 10 to
50, ALCSODE experiences a relatively smaller performance
drop, demonstrating strong robustness. It continues to achieve
the same optimal convergence accuracy on several functions
as in the 10-dimensional case. In contrast, traditional PSO and
CSO algorithms exhibit significant performance degradation
in high-dimensional spaces. Other CSO variants, as well as
metaheuristic algorithms such as INFO and SHIO, show mod-
erate performance but are more sensitive to initial settings, with
greater convergence fluctuations and a higher risk of premature
convergence.

In terms of algorithmic stability, ALCSODE generally ex-
hibits lower standard deviations compared to other algorithms.
For instance, in both 10-dimensional and 50-dimensional ex-
periments, ALCSODE achieves the smallest standard deviation
values in most cases for functions F1, F2, F3, F4, F9, F11, F12,
F13, and F21. This indicates a lower sensitivity to initial con-
ditions and stronger resistance to random disturbances, which
is particularly important for maintaining stable convergence in
noisy engineering optimization environments.

V. CONCLUSION AND FUTURE WORK

This study proposes Adaptive Levy Flight Chicken Swarm
Optimization with Differential Evolution (ALCSODE) to over-
come traditional CSO limitations like local optima entrapment,
weak perturbation, and fixed parameters. ALCSODE enhances
exploration and exploitation balance by introducing an adap-
tive differential perturbation in the rooster phase, combined
with fitness-based step-size control and a non-inertia weight
strategy. The hen phase applies dynamic scaling and Levy
flights to improve local optima escape and convergence speed.
An elitism preservation mechanism maintains diversity and
guides solutions via information sharing. The mathematical
modeling of ALCSODE and descriptions of its steps and
strategies are also presented.

The performance of ALCSODE is validated on 24 bench-
mark functions, including unimodal, multimodal, and the

www.ijacsa.thesai.org 781 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

CEC2022 test suite. Results on unimodal functions demon-
strate ALCSODE’s strong exploitation ability, effectively con-
verging toward the global optimum. For multimodal functions,
ALCSODE exhibits robust exploration capability, success-
fully escaping local optima and locating the primary opti-
mal regions. To comprehensively evaluate its effectiveness,
ALCSODE is compared with seven well-known algorithms,
including PSO, CSO, L-QCSO, ICSO, ECSO, SHIO, and
INFO. Experimental results indicate that ALCSODE achieves
superior balance between exploration and exploitation, out-
performing these competitors and delivering more competitive
optimization results.

However, the integration of multiple mechanisms, such
as differential computation, dynamic step adjustment, and
elitism preservation, may increase computational complexity,
potentially affecting efficiency in large-scale or real-time op-
timization. Future research may focus on enhancing inter-
module synergy, developing automated parameter adjustment
mechanisms to reduce hyperparameter sensitivity, and explor-
ing dimensionality reduction or decomposition strategies to
improve efficiency in high-dimensional problems.

REFERENCES

[1] S. Mirjalili, “The ant lion optimizer,” Advances in engineering software,
vol. 83, pp. 80–98, 2015.

[2] R. G. Rakotonirainy and J. H. van Vuuren, “Improved metaheuristics for
the two-dimensional strip packing problem,” Applied Soft Computing,
vol. 92, p. 106268, 2020.

[3] S.-H. Liu, M. Mernik, D. Hrnčič, and M. Črepinšek, “A parameter
control method of evolutionary algorithms using exploration and ex-
ploitation measures with a practical application for fitting sovova’s mass
transfer model,” Applied Soft Computing, vol. 13, no. 9, pp. 3792–3805,
2013.

[4] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature
review,” in 2019 International Conference on Machine Learning, Big
Data, Cloud and Parallel Computing (COMITCon). IEEE, 2019, pp.
380–384.

[5] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[6] H.-G. Beyer, “Evolution strategies,” Scholarpedia, vol. 2, no. 8, p. 1965,
2007.

[7] S. Kirkpatrick, C. Gelatt, M. Vecchi et al., “Optimization by simulated
annealing. science. v220,” Lever & B. Richards (1994) The applications
of generic planning architecture to ight allocation CHIC deliverable,
vol. 4, no. 3, 1983.

[8] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa: a gravitational
search algorithm,” Information sciences, vol. 179, no. 13, pp. 2232–
2248, 2009.

[9] H. R. Bouchekara, “Optimal design of electromagnetic devices using
a black-hole-based optimization technique,” IEEE Transactions on
Magnetics, vol. 49, no. 12, pp. 5709–5714, 2013.

[10] F. Qin, A. M. Zain, and K.-Q. Zhou, “Harmony search algorithm
and related variants: A systematic review,” Swarm and Evolutionary
Computation, vol. 74, p. 101126, 2022.

[11] F. Qin, A. M. Zain, K.-Q. Zhou, and D.-B. Zhuo, “Hybrid weighted
fuzzy production rule extraction utilizing modified harmony search and
bpnn,” Scientific Reports, vol. 15, no. 1, p. 11012, 2025.

[12] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, and A. H.
Gandomi, “Info: An efficient optimization algorithm based on weighted
mean of vectors,” Expert Systems with Applications, vol. 195, p. 116516,
2022.

[13] H. N. Fakhouri, F. Hamad, and A. Alawamrah, “Success history
intelligent optimizer,” The Journal of Supercomputing, vol. 78, no. 5,
pp. 6461–6502, 2022.

[14] A. Chakraborty and A. K. Kar, “Swarm intelligence: A review of
algorithms,” Nature-inspired Computing and Optimization: Theory and
Applications, pp. 475–494, 2017.

[15] A.-Q. Tian, F.-F. Liu, and H.-X. Lv, “Snow geese algorithm: A novel
migration-inspired meta-heuristic algorithm for constrained engineering
optimization problems,” Applied Mathematical Modelling, vol. 126, pp.
327–347, 2024.

[16] G. Hu, M. Cheng, E. H. Houssein, A. G. Hussien, and L. Abualigah,
“Sdo: A novel sled dog-inspired optimizer for solving engineering
problems,” Advanced Engineering Informatics, vol. 62, p. 102783, 2024.

[17] A. Alkharsan and O. Ata, “Hawkfish optimization algorithm: A gender-
bending approach for solving complex optimization problems,” Elec-
tronics, vol. 14, no. 3, p. 611, 2025.

[18] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international Conference on Neural Networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[19] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[20] R. Akbari, A. Mohammadi, and K. Ziarati, “A novel bee swarm
optimization algorithm for numerical function optimization,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 15, no. 10,
pp. 3142–3155, 2010.

[21] F. Pourpanah, R. Wang, C. P. Lim, X.-Z. Wang, and D. Yazdani,
“A review of artificial fish swarm algorithms: Recent advances and
applications,” Artificial Intelligence Review, vol. 56, no. 3, pp. 1867–
1903, 2023.

[22] X.-S. Yang, “A new metaheuristic bat-inspired algorithm (2010),”
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010),
pp. 65–74, 2023.

[23] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009
World Congress on Nature & Biologically Inspired Computing (NaBIC).
IEEE, 2009, pp. 210–214.

[24] S. Ye, K. Zhou, A. M. Zain, F. Wang, and Y. Yusoff, “A modified
harmony search algorithm and its applications in weighted fuzzy
production rule extraction,” Frontiers of Information Technology &
Electronic Engineering, vol. 24, no. 11, pp. 1574–1590, 2023.

[25] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-inspired
optimization algorithm,” Communications in nonlinear science and
numerical simulation, vol. 17, no. 12, pp. 4831–4845, 2012.

[26] M. Mitić, N. Vuković, M. Petrović, and Z. Miljković, “Chaotic fruit fly
optimization algorithm,” Knowledge-based systems, vol. 89, pp. 446–
458, 2015.

[27] J. James and V. O. Li, “A social spider algorithm for global optimiza-
tion,” Applied Soft Computing, vol. 30, pp. 614–627, 2015.

[28] J. Yang, L. Qu, Y. Shen, Y. Shi, S. Cheng, J. Zhao, and X. Shen, “Swarm
intelligence in data science: applications, opportunities and challenges,”
in International Conference on Swarm Intelligence. Springer, 2020,
pp. 3–14.

[29] J. R. Manne, “Swarm intelligence for multi-objective optimization
in engineering design,” in Advanced Methodologies and Technologies
in Artificial Intelligence, Computer Simulation, and Human-Computer
Interaction. IGI Global, 2019, pp. 180–194.

[30] T. Nakane, N. Bold, H. Sun, X. Lu, T. Akashi, and C. Zhang,
“Application of evolutionary and swarm optimization in computer
vision: a literature survey,” IPSJ Transactions on Computer Vision and
Applications, vol. 12, no. 1, p. 3, 2020.

[31] M. Xu, L. Cao, D. Lu, Z. Hu, and Y. Yue, “Application of swarm intel-
ligence optimization algorithms in image processing: A comprehensive
review of analysis, synthesis, and optimization,” Biomimetics, vol. 8,
no. 2, p. 235, 2023.

[32] S. Almufti, “Using swarm intelligence for solving nphard problems,”
Academic Journal of Nawroz University, vol. 6, no. 3, pp. 46–50, 2017.

[33] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A brief
review of nature-inspired algorithms for optimization,” ArXiv Preprint
ArXiv:1307.4186, 2013.

[34] S. Deb, X.-Z. Gao, K. Tammi, K. Kalita, and P. Mahanta, “Recent
studies on chicken swarm optimization algorithm: a review (2014–
2018),” Artificial Intelligence Review, vol. 53, pp. 1737–1765, 2020.

www.ijacsa.thesai.org 782 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

[35] X. Huang, C. Ye, and J. Zheng, “Chicken swarm optimization algorithm
of hybrid evolutionary searching strategy,” Computer Engineering and
Applications, vol. 54, no. 7, pp. 176–181, 2018.

[36] D. Wu, F. Kong, W. Gao, Y. Shen, and Z. Ji, “Improved chicken
swarm optimization,” in 2015 IEEE International Conference on Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER).
IEEE, 2015, pp. 681–686.

[37] X. Shi and Y. Gao, “Hybrid algorithm based on chicken swarm
optimization and artificial bee colony,” Journal of Hefei University of
Technology (Natural Science), vol. 41, no. 5, pp. 589–594, 2018.

[38] A. Meng, Z. Li, H. Yin, S. Chen, and Z. Guo, “Accelerating particle
swarm optimization using crisscross search,” Information Sciences, vol.
329, pp. 52–72, 2016.

[39] J. Zhang, K. Xia, and Z. Yin, “Quantum chicken swarm optimization
with levy flight and its application in parameter optimization of random
forest,” in 2019 3rd International Conference on Electronic Information
Technology and Computer Engineering (EITCE). IEEE, 2019, pp. 864–
867.

[40] M. Lin, Y. Zhong, J. Lin, and X. Lin, “Enhanced chicken swarm
optimisation for function optimisation problem,” International Journal
of Wireless and Mobile Computing, vol. 15, no. 3, pp. 258–269, 2018.

[41] D. Wu, S. Xu, and F. Kong, “Convergence analysis and improvement
of the chicken swarm optimization algorithm,” IEEE Access, vol. 4, pp.
9400–9412, 2016.

[42] M. Z. Afzal, F. Wen, N. Saeed, and M. Aurangzeb, “Enhanced state
of charge estimation in electric vehicle batteries using chicken swarm
optimization with open ended learning,” Scientific Reports, vol. 15,

no. 1, p. 10833, 2025.
[43] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[44] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2010.

[45] X. Meng, Y. Liu, X. Gao, and H. Zhang, “A new bio-inspired algorithm:
chicken swarm optimization,” in Advances in Swarm Intelligence: 5th
International Conference, ICSI 2014, Hefei, China, October 17-20,
2014, Proceedings, Part I 5. Springer, 2014, pp. 86–94.

[46] S. Deb, X.-Z. Gao, K. Tammi, K. Kalita, and P. Mahanta, “Recent
studies on chicken swarm optimization algorithm: a review (2014–
2018),” Artificial Intelligence Review, vol. 53, pp. 1737–1765, 2020.

[47] D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li, M. Mavrovouniotis,
T. T. Nguyen, S. Yang, and X. Yao, “Ieee cec 2022 competition on
dynamic optimization problems generated by generalized moving peaks
benchmark,” arXiv preprint arXiv:2106.06174, 2021.

[48] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A.
Summakieh, and S. Mirjalili, “Particle swarm optimization: A com-
prehensive survey,” IEEE Access, vol. 10, pp. 10 031–10 061, 2022.

[49] F. Han, Q. Zhao, Z. Du et al., “Enhanced chicken swarm algorithm
for global optimization,” Application Research of Computers, vol. 36,
no. 8, pp. 2317–2319, 2019.

[50] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the sixth international symposium
on micro machine and human science. IEEE, 1995, pp. 39–43.

www.ijacsa.thesai.org 783 | P a g e

