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Abstract—This study presents the results of a series of
machine learning experiments conducted on Indonesian climate
data collected between 2010 and 2020. The findings offer a
comparative foundation for future research. Weather prediction
remains a significant challenge due to the complex interplay
of various climatic factors. Weather stations typically record
data at hourly or daily intervals, resulting in large volumes of
historical weather information. When appropriately processed,
this extensive dataset offers valuable opportunities for predictive
modeling. The study explores two primary approaches to
leveraging big data for weather forecasting. The first employs
a machine learning classification technique to predict categorical
weather conditions based on existing feature values. The second
utilizes time series forecasting to predict continuous weather
parameters using historical data. Multiple classification and
forecasting algorithms were evaluated and compared. Notably, the
year-on-year forecasting approach outperformed several modern
techniques, including deep learning, in terms of predictive
accuracy. Despite the application of deep learning, classification
models achieved a maximum accuracy of only 0.811. Forecasting
methods generally produced a mean absolute percentage error
(MAPE) of 3–4%. However, year-on-year forecasting—identified
through exploratory data visualization—reduced the prediction
error to below 1.6%. Another key contribution of this research
is the emphasis on the critical role of data visualization prior
to algorithmic modeling. The findings highlight the importance
of human intervention in the early stages of data analysis,
particularly for visual exploration and feature assessment.
Classification models were found to underperform due to overly
generalized feature representations. In contrast, forecasting
techniques, supported by informed human-guided preprocessing,
yielded more reliable and accurate results.
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I. INTRODUCTION

Weather is a natural phenomenon that is very difficult to
predict accurately. Many parameters affect weather changes,
such as temperature, humidity, air pressure, and wind speed
[1]. These factors are dynamic and challenging to predict
because they are filled with uncertainty and are very complex.
However, weather prediction is an important aspect that
significantly impacts various sectors, such as agriculture,
transportation, and disaster management [2], [3]. The need
for reliable predictions becomes even more critical as our
world becomes increasingly dependent on the weather [4].
Accurate information about future weather can help the public
and industry make the right decisions [5].

Weather prediction is done by using historical data
and atmospheric variables to make estimates of future
weather conditions. The weather prediction approaches

are diverse, ranging from simple statistical methods to
advanced technologies such as artificial intelligence (AI)
[6]. Classification and regression-based machine learning
modeling approaches can be used to scientifically analyze
extreme weather phenomena [7]. Currently, national weather
centers around the world use a numerical weather prediction
model that forecasts weather conditions based on the state
of the atmosphere. This model requires high computational
performance and takes many hours [8]. In the case of rainfall
prediction, accurate rainfall forecasting remains a challenge
due in part to the non-linear nature of rainfall. Prediction is
done using time series forecasting, which attempts to uncover
hidden patterns in the data and, using known values, predict
future data with a reasonable degree of accuracy [9]. Stochastic
models such as seasonal autoregressive integrated and moving
average with exogenous variable (SARIMAX) are widely used
for rainfall forecasting [10]. One branch of AI is machine
learning, which utilizes large amounts of data to recognize
complex and nonlinear relationships, making it highly effective
for generating predictions [11], [12]. Machine learning models
can be trained to create more accurate weather predictions
using historical data such as temperature, humidity, and air
pressure [13]. Machine learning methods and deep learning
techniques have proven their success in various fields and have
the potential to improve numerical weather prediction models
to produce faster and more accurate predictions [14].

Along with technology development, machine
learning-based weather prediction methods continue to
develop, ranging from traditional to complex methods [15].
Machine learning methods such as artificial neural network
(ANN), gradient boosting, and Random Forest (RF) can be
trained on historical data to detect patterns. For daily and
weekly rainfall prediction, categorical boosting (CatBoost),
extreme gradient boosting (XGBoost), and RF proved to be
the best performers with high accuracy and good pattern
capture ability [16].

Advanced technologies allow for the discovery of hidden
patterns that might otherwise go unnoticed, making optimal
use of available data [11]. In the context of improving
global climate model projections using statistical downscaling,
deep learning offers practical, scalable alternatives [17].
Nevertheless, each method comes with trade-offs in terms of
accuracy, efficiency, and data requirements.

For high-stakes applications such as natural disaster
prediction, extremely high accuracy is required, often under
constraints of limited resources. Achieving this depends on
the availability of both comprehensive climate data and
sufficient computational capacity [18]. Effective forecasting
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is foundational to building robust predictive systems [19].
This makes it essential for researchers to carefully select
suitable methods for each specific use case. Fortunately,
access to meteorological data is no longer a significant
barrier, with numerous publicly available datasets—both free
and paid—offered by various platforms. In Indonesia, the
meteorology, climatology, and geophysics agency (BMKG)
provides weather data that can be accessed with varying
levels of permission. However, access alone is insufficient;
meaningful insights can only be derived through appropriate
data processing techniques. The choice of method directly
influences the quality of the output.

This paper presents a preliminary investigation into weather
prediction using machine learning, serving as a baseline for
future studies. The dataset includes weather observations from
192 stations across Indonesia, covering the period from 2010
to 2020. To the best of the authors’ knowledge, no previous
studies have applied machine learning to this specific dataset.
While several Indonesian studies post-2020 have explored
weather prediction, they either utilize different data or are
not published in international languages. For example, [20]
focused on Jakarta’s historical weather trends; [21] used gated
recurrent units (GRU)and XGBoost with data from the Juanda
Meteorology Station in Sidoarjo; [22] applied support vector
machine (SVM) to Perak’s maritime data; and [23] used
Extreme Gradient Boosting on data from Semarang. Other
works, such as [24] and [25], focused on rainfall forecasting in
Banten and clustering analysis of weather patterns in Denpasar,
respectively. Studies like [26] and [27] also applied various
algorithms including SVM, autoregressive integrated moving
average (ARIMA), and long short-term memory (LSTM) to
local weather data.

Several additional studies make use of BMKG data with
different objectives. For instance, [28] emphasized dataset
quality control without employing machine learning, while
[29] and [30] applied machine learning to Himawari-8 satellite
data. [31] analyzed weather sentiment using text data from
X (formerly Twitter), and [32] applied machine learning
techniques to earthquake detection. Earlier work, such as
[33], predated the dataset used in this study. Other notable
studies include [34], which combined satellite, radar, and
rain gauge data for ensemble-based rainfall estimation, though
these datasets are not publicly available.

This paper extends the authors’ prior research [35],
[36], [37], [38], [39], [40]. This research focuses on
exploring a range of machine learning approaches—from
traditional to modern—to optimize data utilization. These
approaches are grouped into three categories: traditional,
conventional, and modern. By applying different methods to
the same dataset, the study demonstrates how methodological
choices can significantly influence outcomes. Early tests
using several machine learning models yielded promising
but not outstanding results, prompting further investigation.
Subsequent analysis of time series data revealed recurring
annual patterns through data visualization. This observation led
to the implementation of a year-on-year forecasting strategy.
Data aggregation was also conducted on weekly, monthly,
and quarterly scales to enhance pattern recognition and model
performance.

The remainder of the paper is organized as follows: Section

II describes the research methodology; Section III presents
the results and discussion, including the data visualization
process that guided the forecasting technique; and Section IV
concludes with key findings and suggestions for future work.

A. Original Contribution

This research makes several original contributions,
including:

• Exploring the utilization of weather station data
provided by the Indonesian Meteorology and
Geophysics Agency.

• Testing the application of this data to predict weather
using a classification approach, which incorporates
three methods: traditional, conventional, and modern.

• Evaluating the effectiveness of the data for forecasting
by implementing three different approaches: statistical
methods, machine learning, and deep learning.

• Highlighting the importance of data visualization prior
to further utilization.

This contribution has not been addressed in previous
studies, particularly due to the specificity of the data available.

II. METHOD

This study comprised several key stages, including data
collection, preprocessing, model training, and performance
evaluation. The dataset used in this research was sourced
from the BMKG, an open-access public data provider. The
dataset included essential meteorological parameters such
as temperature, humidity, rainfall, wind direction, and solar
intensity.

Data preprocessing involved handling missing values using
both backward fill and forward fill techniques, followed
by normalization to ensure consistency and improve model
performance. An overview of the research workflow is
illustrated in Fig. 1.

Following preprocessing, the cleaned dataset was used
to train three machine learning models, each representing a
different generation of predictive approaches. These include:
k-nearest neighbors (KNN), representing traditional machine
learning, SVM, representing conventional techniques, and
LSTM, representing modern deep learning methods.

After training, each model was evaluated based on its
predictive performance using four key metrics: accuracy,
precision, recall, and F1-score. These metrics were used
to identify the most effective model among KNN, SVM,
and LSTM. Additionally, variations in the dataset were
tested to examine their influence on model performance and
generalizability.

A. Dataset Description

The data used in this study were sourced from two
publicly available datasets on Kaggle. The primary dataset was
“Climate Data Daily IDN” (IND), available at [41], contained
daily weather observations from 192 weather stations across
Indonesia, spanning a 10-year period from 2010 to 2020. The
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Fig. 1. Research diagram.

TABLE I. FEATURE DESCRIPTION

Feature Description

Tn min temperature (°C)

Tx max temperature (°C)

Tavg avg temperature (°C)

RH avg avg humidity (%)

RR rainfall (mm)

ss duration of sunshine (hour)

ff x max wind speed (m/s)

ddd x wind direction at maximum speed (°)

ff avg avg wind speed (m/s)

ddd car most wind direction (°)

station id station id which record the data. Detail of the station
can be found in station detail.csv

RainToday rain status

second dataset was “Semarang daily climate data 2020-2023”
(SMG), accessible at [42], provided daily weather station data
from Semarang, Central Java, covering the years 2020 to 2023.

As summarized in Table I, the combined datasets consist
of 11 features and a total of 590,261 observations—589,266
from weather stations across Indonesia between 2010 and
2020, and 1,355 from the Semarang station between 2020
and 2023. Fig. 2 illustrates the dataset characteristics. To
facilitate classification-based weather prediction, a new binary
feature, RainToday, was derived by converting the numerical
rainfall measurement into categorical values (“Yes” if rainfall
occurred, “No” otherwise). Similarly, the RainTomorrow label
was generated by shifting the RainToday feature forward by
one day, representing the target variable for next-day rain
prediction.

B. Data Preprocessing

Data preprocessing was done to clean, organize, and
prepare raw data before being used to build machine learning
models on our data. This stage included removing irrelevant
data features such as date and station ID [16]. This step was
carried out in several stages, including filling in missing values,
outlier removal, normalization, and quantile transformation.
Performing data cleaning of unmeasured data by filling the
empty data. A normalization process was required to achieve
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Fig. 2. Characteristics of the data collected by BMKG over a 10-year period at 192 weather stations in Indonesia.

equal weight in each feature. In the research, this step aimed
to ensure that the difference in scale between features did
not affect the model’s performance. For example, if a feature
has a much more extensive range of values than others,
specific machine learning algorithms, such as KNN or SVM,
may give the feature a disproportionate weight. In addition,
quantile transformation was performed to obtain normally
distributed data to remove the skewness of the data to become
uniform, reducing the effect of outliers and improving model
performance [43].

C. Correlation Analysis

Correlation analysis is a method used to determine the
relationship between two variables. This correlation value
shows the strength of the relationship between the two and
how the two variables influence each other. This step is one
way that can be used in addition to the chi-square approach to
reduce the size of the feature dimension in machine learning
training. In this research, this step was implemented by only
training the model with closely related features.

D. Feature Selection

Feature selection is a processing technique used to reduce
the dimension of features. This technique is done by selecting
the features that have the most influence on the target to be
achieved. The goal is to reduce the training dimension so
that it can improve the model’s capabilities and speed up the
training process. Some methods, such as correlation analysis
and chi-square, were used to find the most influential features.

E. Data Train and Test

This study’s data underwent partitioning into training and
testing sets through the k-fold cross-validation technique where

k equals 10. The selection of this method was driven by its
ability to deliver dependable model performance assessments
while minimizing potential biases during data partitioning [43].
The method partitioned data into multiple subsets (folds),
enabling each data point to serve as training and testing
data. Employing this method mitigates potential bias from
utilizing a single data division. The evaluation results from
each fold underwent averaging to achieve a more stable
and reliable overall model performance than what single
evaluations provide.

K-fold cross-validation enables model testing across
multiple data subsets, which helps determine if the model
overfits or generalizes effectively to new data. This method
examines multiple data combinations to decrease the typical
variance seen in evaluation results when training and testing
rely on a single data subset. This method allows for a detailed
assessment of model performance across diverse datasets to
confirm its reliability.

The methodologies applied in training and testing for
classification models diverge from those used in forecasting
models. The forecasting model employed time-based split and
backward chaining methods to ensure data division while
preserving chronological order. The study applied a temporal
division method where data from 2010 to 2018 serves for
training while data from 2019 to 2020 is used for testing. The
backward chaining approach involved testing newer data after
training with older data, and then the training dataset expanded
backward while maintaining the same testing period.

F. Classification and Forecasting Model

This study implemented several algorithms: KNN,
SVM, LSTM, SARIMAX, and RF regressor. Classification
experiments included KNN, SVM, and LSTM, while
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forecasting experiments tested SARIMAX, RF regressor, and
LSTM.

KNN is a traditional machine learning algorithm that
can be used in classification and regression cases. This
algorithm compares the new data group to the existing dataset.
The difference is measured using distance metrics such as
Euclidean, Manhattan, or Minkowski. The grouped data is
measured by its distance from several nearest neighbors. Most
classes from several k are used as the grouping result. The k
value determined at the beginning greatly influences the results
that will be issued. A smaller k value can cause the model to
be more sensitive to differences in existing data. At the same
time, when the value is too large, the model will have difficulty
recognizing existing patterns.

SVM is a classification algorithm that finds the best
hyperplane to separate categories in a dataset [44]. A
hyperplane is a line that maximizes the difference or distance
that divides between classes. Data that has little difference
with the hyperplane is called a support vector, where this
value plays a vital role in determining the position of the
hyperplane. Unlike other machine learning approaches, SVM
uses kernel functions to convert nonlinear problems into linear
problems and reduce the complexity of mapping. SVM reduces
the complexity of mapping and transforms nonlinear issues
into linear problems using kernel functions, in contrast to
other machine learning techniques. The advantage of SVM
in classifying is its ability to handle high-dimensional datasets
and is more resistant to overfitting conditions.

LSTM is an improvisation of the recurrent neural network
(RNN) designed to learn patterns in sequential data, such
as time series, text, or signals. LSTM was developed to
overcome the vanishing gradient problem in standard RNN
models and capture the data’s long-term effects [45]. LSTM is
helpful in various applications such as time series prediction,
text analysis, and speech recognition [46]. However, getting
optimal results requires much data and extended training.

SARIMAX is a statistical model used to predict datasets
with a time sequence. This model further develops ARIMA
model, which shows the influence of seasonal patterns
and external variables (exogenous variables). SARIMAX
combines auto-regressive components that can capture the
relationship between current data and past data. Integrated,
which eliminates the tendency of data changes. And moving
average, which estimates the relationship between observation
results and errors that occur in values some time ago [47]. The
seasonal component owned by SARIMAX considers recurring
patterns that occur at specific intervals to suit seasonal data
such as weather. In addition, external variables allow the model
to combine the influence of external factors to be more accurate
in predicting complex scenarios.

RF regressor is an ensemble learning-based machine
learning algorithm that combines multiple decision trees to
improve its ability to predict values [48]. In handling the
regression task, RF predicts a continuous target variable by
averaging the output of each decision tree. Each tree is trained
using random data to reduce overfitting and increase the
generality of predictions to new datasets. This algorithm’s
superiority in learning complex interactions between variables
makes it powerful in handling prediction tasks.

G. Model Evaluation Metrics

To compare the capabilities of each model, the model’s
capabilities need to be measured using several standard
metrics. This study used two different models, classification
and forecasting, which had different standards for measuring
performance. The classification model aimed to determine
data into specific categories, so the evaluation was based on
accuracy and probability. This was done by measuring each
model’s accuracy, precision, recall, and F1-Score values. On
the other hand, forecasting models aimed to predict values
based on historical data, so their evaluation was done using
error-based metrics [49]. This research used three metrics:
mean absolute error (MAE), root mean squared error (RMSE),
and mean absolute percentage error (MAPE). The three metrics
assessed the amount of deviation that occurs between the
predicted value and the actual value.

III. RESULT AND DISCUSSION

A. Dataset Statistics

Fig. 2 shows the characteristics of the data collected by
BMKG over 10 years at 192 weather stations in Indonesia.
Rain today was based on rainfall values, assuming that more
than 1 mm characterizes rainy conditions. The RainTomorrow
feature was the target feature, was obtained by looking at
the RainToday feature the next day. Some features had a
slope in their data distribution. This slope affected the model’s
ability to predict a value—a skewed data distribution results
in inconsistent value changes.

A feature can have a strong or weak effect on the
target feature. In linear model prediction, the data must have
normally distributed data to assume the value correctly. Each
change point in the independent variable has a different value
in non-normally distributed data. Sometimes, the independent
variable can have a significant or negligible effect on the target
variable. In addition, normalization of feature values is critical
to ensure that each feature has equal weight. This is to avoid
features that are too strong due to their values being too high,
so the value scale for each feature must be uniform, which can
be a scale of 0-1 or 0-100.

B. Data Preprocessing

1) Missing values: Missing values in the data affected
the learning process and impair the model’s accuracy. This
needed to be addressed to ensure optimal results. This was
addressed by using imputation techniques such as forward
or backward and median values. This step helped fill in
the blank values so the data becomes complete. Applying
backward and forward techniques was based on various data
covering weather conditions across Indonesia. Indonesia’s vast
territory includes water areas, mountains, highlands, lowlands,
and various other natural conditions that impact the diversity
of climatic conditions. The backward and forward techniques
ensure that filling in missing values refers to the same station
data rather than general weather conditions in Indonesia.

2) Data cleaning: Data cleaning was done by removing
features that were less relevant to use. This stage dealt with
handling missing values. The correct action could produce
an efficient dataset for machine learning. The dataset was

www.ijacsa.thesai.org 801 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

Fig. 3. Feature boxplot before removing outliers.
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Fig. 4. Feature boxplot after removing outliers.

customized according to the model used. In forecasting
models, time information was crucial. In addition, more effort
needed to be made to ensure that there was no missing data in
the time sequence to achieve optimal forecasting results. This
process also handled outliers that appear in the dataset. Using
the boxplot, we can see the values defined as outliers. This
was addressed using the interquartile range approach. Fig. 3
and Fig. 4 show the condition before and after outlier removal.
The data values after deletion were much more reasonable than
before. This ensures the dataset was used in a wide range of
conditions.

3) Normalization: Fig. 5 shows the difference between
before and after preprocessing. Each weather feature had

its range of values. For example, between temperature and
humidity, in this condition, humidity had a much larger value
than temperature; this needed to be avoided to ensure each
feature had equal weight. Large values had a significant impact
on the resulting model. To avoid features that were too strong
because their values were too high, the value scale of each
feature was normalized to a 0-1 scale.

4) Transformation: Some machine learning algorithms
can perform better when the numeric input variable in the
regression case has a standard probability distribution, such
as Gaussian (normal) or uniform distribution. This approach
is necessary to produce optimal output, especially in the
case of classification. The transformation used was a quantile
transformation that can transform numerical data into a normal
distribution. For this reason, a transformation was performed
to generalize the training dataset and solve it accurately using
the linear approach. Fig. 5 shows that the transformation stage
changes the distribution of previously widened data to the sides
or has skewness to be concentrated in the center and form a
bell.

C. Correlation Analysis

Correlation analysis illustrates the relationship between
good features; this step provides an overview of features
that contribute to the target variable, as in Fig. 6 and Fig.
7. Fewer data features provide an advantage in streamlining
training time so that the process can run faster. The range of
correlation values is between -1 and 1; 1 indicates the feature
shows a powerful relationship, while a value of -1 illustrates
a very weak relationship. Based on the evaluation using
matrix correlations, the features that were most related to the
target feature of tomorrow’s rain conditions were today’s rain
conditions (RainToday), today’s average humidity (RH Avg),
today’s rainfall (RR) and the direction of the wind (ddd x).
Features with low correlation values can be considered not to
be used because they do not significantly impact the final result
to reduce the dimensions of the features to shorten the training
process.

D. Feature Selection

Correlation analysis is one of the approaches in feature
selection. Another approach used is chi-square; the chi-square
score shows the value of the degree of importance of the
feature to the target feature as in Fig. 8. In this case, the
three features with the highest importance were RainToday,
RR, and RH avg. The order of these features was similar to
the correlation analysis results. Thus, the condition of rain
tomorrow was strongly influenced by these three features.
Based on correlation analysis and chi-square value, the number
of input features was reduced by focusing only on the
RainToday, RR, and RH avg features in predicting tomorrow’s
conditions.

E. Classification Model Performance

The dataset, after undergoing various preprocessing
techniques, was input into several machine learning models for
training and evaluation. To ensure the validity and robustness
of the evaluation process, a k-fold cross-validation technique
was employed, dividing the data into 10 folds. This method
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Fig. 5. Characteristics of the data collected by BMKG over a 10-year period at 192 weather stations in Indonesia after preprocessing.
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was applied to both the IND and SMG datasets. However, in
the merged condition (INDtoSMG)—where the IND dataset
serves as the training set and the SMG dataset as the test
set—k-fold cross-validation was not used.

Model performance was assessed using standard
classification metrics: accuracy, precision, recall, and F1-score.
The results, summarized in Table II, show that differences
in model performance across dataset variations were not

www.ijacsa.thesai.org 803 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

TnTxTavgRH_avgRR SS ff_xddd_xff_avgRain
Today

S
co

re

25000

20000

15000

10000

5000

0

Fig. 8. Feature selection using chi-square scores.

substantial. This indicates that, in general, the classification
capabilities of the models are comparable. However, a notable
exception was observed in the KNN-INDtoSMG model,
which achieved the highest accuracy score of 0.811. In this
scenario, the model was trained on the IND dataset and tested
on the SMG dataset, demonstrating that historical data can be
effectively used to predict future outcomes.

TABLE II. CLASSIFICATION MODEL PERFORMANCE

Method Dataset Accuracy Precision Recall F1-Score

KNN IND 0.661 0.597 0.546 0.570

SMG 0.663 0.630 0.605 0.616

INDtoSMG 0.811 0.790 0.768 0.779

SVM IND 0.686 0.636 0.637 0.637

SMG 0.672 0.655 0.570 0.608

INDtoSMG 0.685 0.636 0.635 0.635

LSTM IND 0.692 0.661 0.588 0.622

SMG 0.657 0.642 0.545 0.585

The KNN operates by identifying the K most similar
data points in the training set and predicting the target class
based on the majority class of these neighbors. Choosing an
odd value of K is crucial to avoid tie situations and ensure
a deterministic outcome. The strong performance of KNN
suggests that the algorithm successfully captured data patterns
relevant to prediction, particularly in the INDtoSMG transfer.

The success of KNN in the INDtoSMG scenario might also
be attributed to the inclusion of Semarang (SMG) weather data
within the broader IND dataset. Although the datasets were
collected in different years, the underlying weather patterns
in the Semarang region may have remained sufficiently
consistent, allowing the model to generalize well.

In principle, modern methods—including those based
on ANN and deep learning—are expected to outperform
traditional approaches due to ongoing advancements. These
methods have demonstrated superior accuracy across numerous
applications. However, the observed insignificant performance
difference between conventional and modern models in this
study raises important considerations.

Model performance is influenced not only by the
architecture but also by the quality of the dataset and the

features used. In many cases, feature selection plays a decisive
role in achieving high accuracy. Generic features that do not
reflect specific weather phenomena can lead to suboptimal
predictions. Moreover, employing models that are misaligned
with the problem type may further degrade performance. For
instance, the LSTM model, typically suitable for time-series
forecasting, was included in classification-based comparisons,
potentially contributing to its relatively poor performance.

Weather prediction is inherently complex due to the
highly dynamic and non-linear nature of atmospheric systems.
The three key features used in this study—RainToday,
RR (rainfall), and RH avg—are all related to moisture
content, a crucial indicator in rain prediction. However,
these surface-level variables are outcomes of more complex
environmental interactions. For example, humidity is
influenced by temperature, which in turn depends on solar
radiation, itself affected by factors such as cloud cover and
time of day. These interdependencies are difficult to capture
from surface-level observations alone.

Another limitation is the temporal resolution of the dataset.
The data used in this study was collected on a daily basis,
meaning that only daily summaries of weather conditions are
available. Such granularity may overlook important short-term
fluctuations—e.g., shifts in humidity or temperature—that
could occur within a single day and are crucial for accurate rain
prediction. These intra-day variations are likely to be masked
in daily aggregates.

Improving prediction accuracy may require either the
acquisition of higher-resolution (e.g., hourly) data or the
application of advanced feature engineering techniques. For
instance, incorporating temperature or humidity at specific
times of day (e.g., 6 a.m. or 5 p.m.) could provide a more
nuanced representation of the daily weather cycle. However,
implementing such strategies is constrained by limited access
to fine-grained climate data.

This is seen from the results obtained; no matter how good
the model is built or how sophisticated the approach is, the
features used remain one of the crucial factors that determine
the ability of machine learning. Representation learning is an
essential first step in finding machine learning solutions to
some instances. In utilizing data, the proper representation, the
right technique, and the correct model tuning are mandatory
to achieve optimal solutions.

F. Visualization of Repeating Patterns

Utilization of weather datasets using a classification
approach produced poor results based on the accuracy value.
The reason is that the weather features used are too general.
More specific weather features with a smaller scale are
needed for better results. For this reason, the data was
utilized using other approaches that may obtain better results.
This section discusses the exploration of machine learning
models in forecasting weather parameters. The exploration was
conducted on various time scales, ranging from daily, weekly,
monthly, quarterly, to yearly, to understand how the model
adapts to changes in patterns over different periods. In this
experiment, the dataset used had a daily resolution, so it was
necessary to aggregate the data to a broader time range to suit
the needs of the analysis. The aggregation process was carried
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out by calculating each weather parameter’s average value or
sum at various predetermined time scales. Fig. 9(a) shows
a graph of the average temperature from the results of this
aggregation, which shows a recurring pattern that occurs every
year. This pattern shows a tendency that arises or a seasonal
trend so that it can be used to improve forecasting accuracy.
The model can capture changes that occur more effectively
through this understanding to produce more accurate forecasts.
This tendency was also seen on a monthly time scale, as in
Fig. 9(b) The graph shows that temperature tends to increase
at the beginning and end of the year. At the same time, it
tended to decrease in the middle of the year. This pattern
shows that weather forecasting is possible if the model can
learn trends that occur over time, which is the goal of machine
learning. With this foundation, the authors applied machine
learning to study the patterns and build models to predict future
temperatures. This exploration used various approaches, from
statistical models such as SARIMAX to deep learning-based
models such as LSTM.
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Fig. 9. Average temperature dynamics for 2010-2020 on a weekly (a) and
monthly (b) scale.

G. Forecasting Model Performance

To evaluate the performance of each model, this research
used MAE, RMSE, and MAPE evaluation metrics to measure
the error rate between the predicted and actual values. In
addition, we investigated the effect of the amount of historical
data on model accuracy by varying the dataset during the
training process. This variation was done by gradually adding
historical data, starting from 2018 to 2010, as shown in Fig.
10. Through this approach, we aimed to understand to what
extent the amount of historical data can improve the model’s
predictive ability and reduce the error rate in temperature
forecasting.

Fig. 10(a) shows the results of temperature forecasting
using the SARIMAX model using 2018-2019 data in the
training process to predict 2020 data. The blue line was the
data used in the training process, the red line was the predicted
data, and the green line was the actual data. Based on the
pattern of training data values, it can be expected at a glance
that the maximum and minimum values will widen following
the training data pattern. It turns out that the predicted data
does not match the actual data, but the model can capture the
patterns.

Fig. 10(b) shows the results of temperature forecasting
using the SARIMAX model based on the 2010-2018 dataset.
With more data in the training process, the model must
recognize more common patterns in each period. However, this
can also increase the risk of overfitting or underfitting if the
model is not well-regulated. Based on the results shown, the
model can identify trends and patterns, although there is still a
slight deviation in the prediction of temperature values. Further
parameter optimization can help improve the model’s accuracy
and stability in capturing the temperature change dynamics.

The results of the dataset variation in nine experiments
are shown in Table III. From these results, it can be seen
that the amount of data used affected the performance of the
model. Adding historical data improves forecasting accuracy
by allowing the model to recognize long-term patterns better.
However, in some cases, the model experienced underfitting,
which was characterized by higher error values due to its
inability to capture complex patterns in the data. Therefore,
choosing the optimal amount of data becomes crucial in
achieving a balance between generalization and prediction
accuracy.

H. Forecasting Year-Over-Year Model Performance

Fig. 9 shows the temperature changes from 2010-2020 that
form a pattern from year to year. Based on that, this research
utilized the existing data for a broader period and compare it on
a Year on Year (YoY) basis. The daily data was aggregated into
weekly, monthly, quarterly, and annual data. The data was then
fed into the SARIMAX, RF regressor, and LSTM models. This
approach provides much better prediction results, as shown in
Table III. Using annual data from 2010-2018, the 2019-2020
weather data could be accurately predicted with an error value
of less than 5%. To further confirm these results, we forecasted
monthly and quarterly data at 192 stations in Indonesia.

Fig. 11 shows the visualization of the experimental results.
The results showed that the evaluation values were stable
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Fig. 10. Temperature forecasts using the SARIMAX model with different
amounts of historical data.

across various data variations, so the model performance was
stable. Like the classification model, the three forecasting
models performances did not significantly difference, while
the LSTM model achieved the best performance based on the
MAPE parameter.

The evaluation results indicate that the SARIMAX model
can recognize temperature change patterns from historical
data quite well. The model successfully made predictions
with an error rate of 4% with an average difference to the
actual value of 1.14 degrees Celsius, as seen in Table III.
These results indicated that SARIMAX can predict long-term
temperature reasonably well. Although errors still occur, this
can be reduced with further optimization.

Based on performance measurements, the evaluation shows
that the RF model could recognize the pattern better than
SARIMAX. The model had an error rate of 3% with an
average difference of 0.8 degrees Celsius. These results
indicated that the RF model can predict temperature more
accurately because of its advantage in recognizing non-linear
relationships. Further optimization includes selecting more
relevant features and setting parameters that may improve the
capabilities of this model.

The evaluation results of the LSTM model show that
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Fig. 11. Forecasting performance of the SARIMAX, RF regressor and
LSTM models using quarterly (a) and monthly (b) data.

the model could capture temperature patterns and produced
predictions with an error of 3% with an average difference of
0.87 degrees Celsius. This indicates that LSTM can utilize
long-term information better than other models because its
architecture is designed to handle time series data with
long-term dependencies.

In addition, researchers varied the amount of historical data
used in the training process, which was carried out gradually
from one year earlier. The aim was to determine the effect
of the amount of historical data on prediction accuracy. The
results showed that model performance increased with the
increase in the historical data used in the training process.

However, although adding historical data increases
accuracy, several aspects must be considered. LSTM models
require more extended training than statistical and decision
tree-based models such as SARIMAX and RF. In addition,
choosing the optimal amount of historical data is crucial, as
too much data can cause the model to become too complex
and prone to overfitting.

Using daily data to predict daily weather over the next year
resulted in a significant error rate, where the expected pattern
deviated significantly from the actual data. This indicates that
daily data can directly affect the model’s ability to capture
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weather patterns, especially since high daily fluctuations can
make recognizing long-term trends with wider data variations
challenging.

Based on the analysis of the weather data in time sequence
using visualization, it is seen that the weather parameter
values show a sinusoidal pattern that repeats within a year,
reflecting the existence of seasonal trends that can be utilized
for forecasting. This finding inspires an alternative approach to
predicting using the YoY method, where weather data for the
same period in previous years is used as a reference to predict
values for the following year in the same week, month, or
quarter.

To apply this approach, daily data was first aggregated into
broader weekly, monthly, quarterly, and yearly time scales.
This experiment focused on monthly, quarterly, and annual
data, where weather data from the same month or quarter
from previous years were used as training data. This approach
aimed to improve the stability of the model by reducing the
noise from daily fluctuations and emphasizing more obvious
seasonal patterns.

With better results, the experiment was conducted on one
weather feature, TX, at one weather station in Indonesia. The
YoY mechanism was applied to 192 stations in Indonesia
to validate the model performance further. With limited
resources, the experiment was conducted on only one
feature by forecasting monthly and quarterly using three
machine-learning models. The results of the experiment are
summarized in Fig. 11 and Table IV.

Based on Table IV, LSTM performs best overall,
especially on monthly data with a MAPE value of 0.012744,
demonstrating its ability to model complex patterns. LSTM
also excels on annual and quarterly data with MAPE values
of 0.006747 and 0.010244, respectively, making it the most
reliable method for various time scales. SARIMAX, as
a statistical model, excels in annual data with a MAPE
of 0.008620, showing its superiority in capturing obvious
seasonal patterns. However, there is a decrease in performance
on monthly data because it is difficult to learn more complex
patterns. Meanwhile, RF Regressor can show reasonably
consistent results on each time scale, showing the best
performance on quarterly data but not as good as LSTM.

LSTM is the most accurate method, especially on quarterly
and monthly data. The SARIMAX model is more suitable for
annual data with more apparent seasonal patterns. At the same
time, RF Regressor can be used as a simpler alternative but is
not as accurate as LSTM.

Based on the results obtained, the performance of each
model can be seen even though it has almost the same
performance. In terms of time scale, the error that occurs on
a quarterly scale is much smaller than on a monthly scale.
This is because the pattern of value changes on a quarterly
scale tends to be more stable than the changes that occur on
a monthly scale, which tends to be more volatile.

The results show that the YoY approach significantly
impacts forecasting performance. The idea was obtained after
the weather data visualization stage. Standard pre-processing
processes such as missing value, transformation, and
normalization are insufficient to direct the machine to learn.

The right approach is needed to obtain optimal results. This
is obtained through a good understanding of the data. Data
visualization is essential in obtaining ideas to direct the
machine to produce optimal solutions, as shown in Fig. 9.

TABLE III. FORECASTING MODEL PERFORMANCE

Method MAE RMSE MAPE

SARIMAX 1.142 1.152 0.037
RF regressor 0.796 1.075 0.026
LSTM 0.861 0.874 0.028

TABLE IV. FORECASTING YEAR-ON-YEAR MODEL PERFORMANCE

Method Series MAE RMSE MAPE

SARIMAX Year 0.229 0.088 0.009
Quartal 0.345 0.187 0.013
Month 0.422 0.286 0.016

RF regressor Year 0.268 0.129 0.010
Quartal 0.342 0.202 0.013
Month 0.410 0.289 0.015

LSTM Year 0.178 0.074 0.007
Quartal 0.278 0.127 0.010
Month 0.347 0.206 0.013

I. Classification vs. Forecasting

The choice between classification and forecasting depends
on the available dataset and the purpose. Classification
and forecasting approaches are often used to interpret
future conditions, especially weather. Classification categorizes
conditions like future weather, while forecasting provides
continuous values like temperature or rainfall. Understanding
the available data is an essential factor in determining the
optimal solution. There is no fair way to compare classification
and forecasting, only based on the desired goal. Based on the
dataset available in this study, the forecasting approach is a
more appropriate step in utilizing the available data. If forced
to use the classification approach, the dataset may accurately
predict the weather on a broader time scale, such as weekly,
by including weather features on certain days.

IV. CONCLUSION

Weather forecasting is difficult due to the complexity
of the interactions that occur. A machine learning approach
with proper feature engineering and representation is essential
to achieve maximum results. The results of classification
and forecasting using three generations of machine learning
show insignificant differences, so the initial stage of model
development, such as feature engineering, is crucial. Model
selection must also consider other factors, such as training
time, computational efficiency, and ease of implementation.
This aspect is essential in cases that require fast predictions.
Understanding data is critical to support the proper and
optimal use of data, which can be achieved through good
dataset visualization. Classification approaches that perform
poorly due to overly general features lead to the use of
data for forecasting so that the data can have better benefits.
In forecasting time series data such as weather predictions,
the data collection or observation time scale needs to be
considered. Forecasting over a broader period provides higher
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accuracy due to generalization while forecasting over a smaller
period has the potential to reduce accuracy due to increased
noise or data variation. Regular sequential forecasting produces
errors of up to 3%. However, changing a broader time period
approach to YoY reduces the error to less than 1.6%. Although
the model algorithm is essential to produce good accuracy,
basic things such as feature engineering, feature selection, and
the methods used are also crucial in creating a good model.
In addition, data visualization is needed to support a better
understanding of the data so that it makes an optimal approach.
Further development can focus on using more sophisticated
techniques to recognize features and combine various models
to improve performance.

Building on the findings of this study, several directions
for future research emerge. First, while the current work
employs relatively basic machine learning models such as
KNN, SVM, and LSTM, future studies could investigate
more advanced or hybrid approaches—such as combining
deep learning with statistical or ensemble methods—to
enhance predictive accuracy. Expanding the dataset in both
spatial and temporal resolution, for instance through hourly
measurements or integration of multi-source data from
satellites, radar, and reanalysis products, could further improve
model performance. Moreover, the present feature set focuses
primarily on surface-level variables; incorporating atmospheric
parameters, remote sensing indicators, and applying advanced
feature engineering could better capture complex climatic
interactions. The limited richness of the dataset may
also contribute to the underperformance of deep learning
models, suggesting that data augmentation techniques or
transfer learning from global climate datasets could be
beneficial. Hybrid algorithms such as LSTM + SARIMAX,
CNN-LSTM, or RF + ARIMA should be tested to leverage
both temporal dependencies and nonlinear relationships. The
small performance gap between models points to possible
bottlenecks in feature selection and preprocessing, warranting
a more systematic analysis of feature importance. Given that
the best classification accuracy achieved is approximately
0.81, further hyperparameter optimization—using Bayesian or
evolutionary search methods—could help unlock additional
performance gains. Additionally, the exploration of seasonal
decomposition techniques, such as STL decomposition, prior
to forecasting could improve signal extraction.
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