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Abstract—Robust obstacle detection in autonomous driving 

under adverse weather remains a critical challenge due to sensor 

degradation, visibility reduction, and increased uncertainty. This 

study proposes an Uncertainty-Aware Multi-Modal Fusion 

(UAMF) framework that integrates LiDAR, RGB images, and 

weather priors through a dynamic cross-modal attention 

mechanism and Bayesian uncertainty modeling. The model 

adaptively adjusts the fusion weights between sensor modalities 

according to real-time weather conditions and jointly optimizes 

detection loss with a KL divergence regularization to quantify 

predictive uncertainty. Experimental results on the nuScenes, 

KITTI-Adverse, and CARLA datasets demonstrate that UAMF 

achieves superior performance across rain, snow, and fog 

scenarios, with mAP@0.5 reaching 0.78, 0.72, and 0.65, 

respectively—representing 12–31% gains over existing baselines. 

Notably, UAMF reduces false positive rates by up to 40% in low-

visibility conditions and exhibits a strong correlation (ρ = 0.85) 

between estimated uncertainty and localization error. Ablation 

studies confirm the importance of the weather-aware fusion and 

uncertainty modules, while visibility-level analysis shows 

improved robustness under <30 m scenarios. The proposed 

framework offers reliable uncertainty signals for downstream 

decision-making and is deployable in real-time on embedded 

platforms. Future work will explore unsupervised weather 

parameter estimation, uncertainty-aware trajectory forecasting, 

and cross-domain generalization. 
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I. INTRODUCTION 

In recent years, autonomous driving technology has made 
great progress under good weather conditions. However, in 
severe weather environments such as heavy rain, heavy 
snowfall and dense fog, the stability and reliability of 
autonomous driving perception systems still face major 
challenges. According to Fang et al. (2022), about 30% of 
perception system failure cases are directly related to weather 
factors, manifested in problems such as sensor signal 
attenuation, obstacle occlusion and reduced environmental 
visibility. For example, LiDAR sensors have sparse data due to 
point cloud scattering in rainy and snowy weather, which 
seriously affects the accuracy of target detection [1]; at the 
same time, cameras are prone to miss key targets in haze 
weather due to reduced image contrast [2]. Although current 

research generally adopts multimodal sensor fusion (such as 
LiDAR, camera and millimeter wave radar) to improve system 
robustness [3], existing methods still have significant 
shortcomings in practical applications. Specifically, the first is 
the lack of effective modeling of the time-varying 
characteristics of multimodal data under severe weather 
conditions; the second is the lack of reasonable quantification 
of potential uncertainties in the detection results, resulting in a 
high false detection rate in low visibility environments. 

In the perception module of the autonomous driving 
system, severe weather conditions remain a key problem that 
affects the accuracy and robustness of environmental 
perception. Existing research mainly conducts modeling and 
training under ideal or slightly disturbed meteorological 
conditions, resulting in a significant decrease in the 
performance of the perception system under conditions such as 
heavy rain, heavy snow or dense fog. The main problems 
include: multimodal sensor data finds it difficult to achieve an 
efficient alignment under dynamic weather conditions, and the 
accuracy of feature fusion is limited; detection models 
generally lack uncertainty modeling and cannot effectively 
identify false detections caused by perceptual ambiguity; in 
addition, data resources under real severe weather are 
extremely limited. Although simulation data can make up for 
some sample gaps, there is a significant domain difference 
between it and the real environment, which restricts the 
generalization ability of the model in actual scenarios. 

This study aims to address the above problems and propose 
a weather-aware multimodal detection framework that 
integrates uncertainty modeling to improve the robustness and 
adaptability of autonomous driving systems in complex 
weather environments. Specifically, this study will construct a 
cross-modal fusion mechanism guided by weather parameters 
to achieve effective alignment of sensor features under 
dynamic meteorological conditions; introduce a Bayesian 
neural network structure to model the uncertainty of target 
detection results, thereby effectively suppressing false 
detection and missed detection in low-visibility scenarios; at 
the same time, construct a joint training strategy that combines 
simulation and real data, and use domain adaptation technology 
to alleviate the distribution offset between training and 
application scenarios, and improve the generalization 
performance of the model in actual deployment environments. 
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The contributions of this study are mainly reflected in three 
aspects: first, weather intensity is introduced as prior 
information in the multimodal fusion strategy for the first time, 
which effectively improves the accuracy and stability of sensor 
data alignment under severe weather conditions; second, 
combined with the Bayesian inference mechanism, end-to-end 
modeling of the confidence of the detection results is realized, 
providing the system with a decision-making basis based on 
uncertainty perception; finally, by constructing a collaborative 
training framework of simulation and real data and adopting 
progressive fine-tuning and domain randomization methods, 
the cross-domain generalization ability of the model in 
different weather scenarios is significantly improved, 
enhancing its practicality and robustness in real complex 
environments. 

II. LITERATURE REVIEW 

In recent years, academic research on the problem of target 
detection in autonomous driving systems under severe weather 
conditions has mainly focused on two technical paths: 
enhanced optimization of a single modality and deep fusion of 
multimodal information. In response to the performance 
degradation of specific sensors in extreme weather conditions, 
researchers have proposed a series of image and point cloud 
enhancement methods. For example, [5] constructed the 
FogNet model, which combined the physically driven image 
defogging mechanism with the end-to-end joint optimization of 
the detection task, and significantly improved the target 
detection accuracy under dense fog conditions. In terms of 
LiDAR, [4] designed the DETR-Weather model using the 
deformable Transformer structure, and alleviated the occlusion 
interference problem in heavy rain scenes through the dynamic 
attention mechanism. Although such methods have achieved 
certain results in a single sensor channel, due to the inherent 
problems of high camera noise in low light and sparse LiDAR 
point clouds on snowy days, it is difficult to completely avoid 
them, resulting in insufficient performance in actual scenes 
where multiple meteorological interferences overlap. 

In contrast, multimodal fusion methods have shown greater 
potential in improving system robustness because they can 
integrate multi-source sensor information. Fusion strategies 
mainly include early fusion, late fusion, and feature-level 
fusion. Researchers have conducted extensive explorations 
around the timing and mechanism of fusion. After 
systematically comparing different fusion strategies, [2] 
pointed out that early fusion in rainy and foggy environments 
results in performance degradation due to the lack of alignment 
of features between modalities, and suggested introducing a 
mid- and late-stage feature alignment mechanism to enhance 
robustness. In [3], the authors proposed a fusion model based 
on a generative adversarial network (GAN), which expanded 
the training set by synthesizing severe weather data and 
improved the detection performance to a certain extent. 
However, this method does not explicitly introduce dynamic 
modeling of weather parameters, resulting in significant 
domain differences between training data and real scenes [6], 
which affects the actual deployment effect of the model. 

With the increasing requirements for the stability of 
detection systems, uncertainty modeling has gradually become 

a key direction for autonomous driving perception research in 
severe weather environments. At present, related methods are 
mainly based on Bayesian deep learning and probabilistic 
modeling frameworks. The Bayesian convolutional neural 
network proposed by [8] uses Monte Carlo sampling to 
estimate the uncertainty of the prediction distribution, laying a 
theoretical foundation for subsequent research. However, its 
high computational cost limits its applicability in real-time 
scenarios. To improve efficiency, [9] introduced a lightweight 
Bayesian detection head and implemented joint training with 
three-dimensional object detection, effectively reducing the 
false detection rate while maintaining real-time performance. 
In addition, [7] proposed a multi-task uncertainty weighting 
mechanism based on heteroscedasticity modeling to achieve 
dynamic loss balance between classification and regression 
tasks, but did not perform specific modeling for weather 
disturbances. In [4], the authors further incorporated weather 
variables into detection error modeling and constructed a more 
adaptive unimodal detection model through conditional 
variational autoencoders (CVAEs), but their method has not 
yet been extended to multimodal scenarios. 

Although existing research has made some progress in 
improving the performance of perception systems, from a 
comprehensive perspective, current methods still have many 
limitations. First, multimodal fusion models generally do not 
embed weather parameters as dynamic priors into the fusion 
mechanism, resulting in unstable feature alignment strategies 
under rapidly changing meteorological conditions such as rain, 
snow, and fog [2] [3]. Second, current uncertainty modeling 
mostly focuses on the model prediction distribution itself and 
has not yet systematically considered the external 
environmental uncertainty introduced by weather disturbances. 
This neglect makes it difficult for the model to distinguish 
between sensor noise and model entity errors [5] [7]. Finally, 
although simulation platforms (such as CARLA) can generate 
diverse severe weather data to alleviate the problem of sample 
scarcity, due to the significant distribution offset between their 
synthetic features and real data, directly training models often 
experiences performance degradation in actual tests. In [6], the 
authors pointed out that the current mainstream synthetic 
training strategy still suffers from a performance degradation of 
more than 25% when deployed in real scenarios. There is an 
urgent need to build a more targeted simulation-real data 
collaborative training and domain adaptation mechanism to 
improve the model's cross-scenario generalization ability. 

III. METHODOLOGY 

A. Model Framework 

This study proposes an uncertainty-aware multi-modal 
fusion framework (UAMF), whose core architecture consists of 
four modules: multimodal feature extraction, weather-aware 
cross-modal fusion, Bayesian uncertainty modeling, and target 
detection head. The multimodal feature extraction module is 
used to process LiDAR point clouds, RGB images, and 
weather parameters; the weather-aware cross-modal fusion 
module is used to dynamically adjust sensor feature weights; 
the Bayesian uncertainty modeling module is used to estimate 
the credibility of detection results; and the target detection head 
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module is used to output 3D bounding box parameters and 
uncertainty values. The specific process is shown in Fig. 1. 

 
Fig. 1. Model framework diagram. 

B. Multimodal Feature Extraction 

1) Extracting LiDAR features: Input LiDAR point cloud 

Ρ ∈ ℝN×4  and use improved PointNet++ [11] to extract 

geometric features. The extraction formula is: 

𝐹𝐿𝑖𝐷𝐴𝑅 = 𝑃𝑜 𝑖𝑛𝑡 𝑁 𝑒𝑡 + +(𝛲) ∈ ℝ𝐷𝑙 

where, 𝐷𝑙 = 256 is the feature dimension [2]. 

2) Early image features: Input RGB image 𝛪 ∈ ℝ𝐻×𝑊×3, 

use ResNet-50 [10] as the backbone network to extract multi-

scale features. The extraction formula is: 

𝐹𝐼𝑚𝑎𝑔𝑒 = 𝑅𝑒 𝑠𝑁𝑒𝑡 − 50(𝛪) ∈ ℝ𝐷𝑖×𝐻
′×𝑊′

 

Compressed into vectors 𝐹𝐼𝑚𝑎𝑔𝑒 ∈ ℝ𝐷𝑖  through global 

average pooling, 𝐷𝑖 = 512. 

3) Weather parameter encoding: The input weather 

parameter vector 𝑊 = [𝑤𝑟𝑎𝑖𝑛 , 𝑤𝑠𝑛𝑜𝑤 , 𝑤𝑓𝑜𝑔] ∈ [0,1]3  is 

encoded into high-dimensional features through a multi-layer 

perceptron (MLP). The encoding formula is: 

𝐹𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑀𝐿𝑃(𝑊) ∈ ℝ𝐷𝑊 , 𝐷𝑊 = 64 

The MLP structure is 3 → 32 → 64 , and the activation 
function is ReLU [9]. 

C. Cross-Modal Fusion of Weather Perception 

1) Cross-modal attention mechanism: LiDAR and image 

features are concatenated into 𝐹𝑐𝑎𝑡 = [𝐹𝐿𝑖𝐷𝐴𝑅 ; 𝐹𝐼𝑚𝑎𝑔𝑒] , and 

the attention weight is calculated jointly with weather feature 

𝐹𝑊𝑒𝑎𝑡ℎ𝑒𝑟 . The calculation formula is: 

𝛼 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝑊𝑎 ⋅ [𝐹𝑐𝑎𝑡; 𝐹𝑊𝑒𝑎𝑡ℎ𝑒𝑟]) ∈ ℝ𝐷𝑎 

where, 𝑊𝑎 ∈ ℝ𝐷𝑎×(𝐷𝑙+𝐷𝑖+𝐷𝑤) is the learnable weight matrix, 
𝐷𝑎 = 128. 

2) Dynamic feature weighting: The concatenated features 

are weighted by attention weights, and the calculation formula 

is: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝛼 ⊙ 𝐹𝑐𝑎𝑡 ∈ ℝ𝐷𝑙+𝐷𝑖  

where, ⊙ represents the element-wise product [4]. 

D. Bayesian Uncertainty Modeling 

1) Posterior distribution estimation: Assume that the 

fusion feature service 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is from a Gaussian distribution 

𝛮(𝜇, 𝜎2) , whose parameters are generated by two fully 

connected layers, and the formula is: 

𝜇 = 𝑊𝜇𝐹𝑓𝑢𝑠𝑖𝑜𝑛 , 𝜎 = 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑊𝜎𝐹𝑓𝑢𝑠𝑖𝑜𝑛) 

where, 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = 𝑙𝑜𝑔( 1 + 𝑒𝑥)  ensures that the 
standard deviation is non-negative [8]. 

2) KL divergence regularization: To constrain the distance 

between the posterior distribution 𝑞(𝐹𝑓𝑢𝑠𝑖𝑜𝑛|⋅)  and the prior 

distribution 𝑝(𝐹𝑓𝑢𝑠𝑖𝑜𝑛) = 𝛮(0,1), calculate the KL divergence. 

The calculation formula is 

𝐿𝐾𝐿 =
1

2
∑ (𝜎𝑖

2 + 𝜇𝑖
2 − 𝑙𝑜𝑔 𝜎𝑖

2 − 1)
𝐷𝑙+𝐷𝑖
𝑖=1 

E. Object Detection Head and Loss Function 

1) Detection head design: Using CenterPoint [12] decoder, 

the 3D bounding box parameters are predicted from 𝐹𝑓𝑢𝑠𝑖𝑜𝑛, 

and the calculation formula is: 

𝛣 = [𝑥, 𝑦, 𝑧, 𝑤, ℎ, 𝑙, 𝜃] = 𝑀𝐿𝑃𝑑𝑒𝑡(Ffusion) 

At the same time, the uncertainty estimate 𝜎 +𝑑𝑒𝑡  is output. 

2) Uncertainty weighted loss: The detection loss is defined 

as the weighted mean square error (WMSE) 

Ldet =
1

𝑁𝑜𝑏𝑗
∑

1

𝜎𝑖
2 ‖𝛣𝑖 − 𝛣𝑖

𝑔𝑡
‖
2
+ 𝑙𝑜𝑔 𝜎𝑖

2𝑁𝑜𝑏𝑗
𝑖=1

 

where, 𝜎𝑖 is the uncertainty of the 𝑖 th target [7]. 

3) Total loss function: Jointly optimize the detection loss 

and the KL divergence regularization term, and we can get: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑑𝑒𝑡 + 𝜆𝐿𝐾𝐿 

Among them 𝜆 = 0.1. 

IV. EXPERIMENTS 

A. Data Source 

The experiments in this study used public datasets for 
extraction and synthesis. The specific steps are as follows: 

Step 1: Extract the nuScenes severe weather subset. 
Samples containing heavy rain, heavy snow, and heavy fog 
were selected from the nuScenes dataset, a total of 10,000 
frames (5,000 rain, 3,000 snow, and 2,000 fog), including 3D 
annotation boxes and weather labels (visibility, precipitation 
intensity) [13]. 

Step 2: Extract KITTI-Adverse information to form an 
extended KITTI dataset, which includes 2D images and 
LiDAR point clouds (resolution 1242×375) of rain and fog 
scenes, totaling 8,500 frames [14]. 

Step 3: Extract CARLA simulation data. Use CARLA 
0.9.14 to generate extreme weather scenes (10,000 frames each 
for rain, snow, and fog), and align the parameter settings with 
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the real data distribution (such as visibility range 10-100m) 
[15]. 

B. Experimental Settings 

Three baseline models, YOLOv8, PointPillars and 
FusionNet, were selected. YOLOv8 was used for monocular 
image detection (Ultralytics official implementation) [16], 
PointPillars was used for LiDAR point cloud detection 
(OpenPCDet library) [17], and FusionNet was used for 
LiDAR-camera early fusion (without weather coding) [2]. 

Carla synthetic data (50 epochs, learning rate 1e-3) was 
selected for pre-training, nuScenes real data (30 epochs, 
learning rate 1e-4), optimizer AdamW and weight decay 1e-4 

were used for fine-tuning, and mAP@0.5 (3D IoU ≥ 0.5), 

false positive rate (FPR), inference speed (FPS), calibration 
error (ECE), and Pearson correlation coefficient of uncertainty 

and error (𝜌). 

C. Experimental Results and Analysis 

1) Comparison of results: The experimental results are 

shown in Table I. Table I shows the performance of each 

model in target detection under bad weather conditions. 

TABLE I.  TARGET DETECTION RESULTS OF EACH MODEL 

Model 
mAP 

(Rain) 

mAP 

(Snow) 

mAP 

(Fog) 
FPR↓ FPS↑ 

YOLOv8 0.61 0.53 0.48 15.2% 45 

PointPillars 0.68 0.62 0.55 12.5% 38 

FusionNet 0.73 0.67 0.60 9.8% 35 

Ours(UAMF) 0.78 0.72 0.65 6.3% 32 

From the experimental results shown in Table I, it can be 
seen that the proposed UAMF (Uncertainty-Aware Multimodal 
Fusion) model has significantly better detection performance 
on the nuScenes severe weather subset than existing 
mainstream methods, including YOLOv8, PointPillars and 
FusionNet. In three typical weather scenes (rain, snow, and 
fog), the UAMF model achieved mAP indicators of 0.78, 0.72, 
and 0.65, respectively, which are 6.8%, 7.5%, and 8.3% higher 
than the current FusionNet, which performs better. This 
performance improvement verifies the effectiveness of the 
weather perception mechanism and dynamic feature fusion 
strategy introduced by UAMF in complex environments, 
especially in low visibility scenes with obvious modal 
degradation, where the ability to fuse and combat unstable 
sensor information is particularly outstanding. 

In addition, UAMF also shows significant advantages in 
the false positive rate (FPR) indicator. Its FPR is 6.3%, which 
is 34.7% lower than FusionNet's 9.8%, indicating that by 
introducing the uncertainty modeling mechanism, UAMF can 
effectively identify low-confidence predictions caused by 
environmental noise, thereby suppressing false detections. This 
result emphasizes the contribution of Bayesian modeling to the 
stability of the perception system. 

Although UAMF has a slightly lower frame rate (FPS) 
indicator (32 FPS), which is lower than YOLOv8's 45 FPS and 
PointPillars' 38 FPS, considering UAMF's comprehensive 
improvement in robustness and accuracy, its slightly reduced 
real-time performance is acceptable, especially in scenarios 
where autonomous driving has higher safety requirements. In 
general, UAMF achieves a good balance between accuracy and 
stability, verifying the effectiveness of the synergistic 
mechanism of weather perception, cross-modal fusion and 
uncertainty modeling. 

2) Ablation experiment: The experimental results are 

shown in Table II. Table II shows the contribution of each 

module in the heavy rain scene. The results show the 

effectiveness of the key modules of the UAMF model and its 

robust performance under different visibility conditions. 

TABLE II.  CONTRIBUTION OF EACH MODULE OF THE UAMF MODEL 

UNDER HEAVY RAIN SCENARIO 

Model Variant mAP FPR 

UAMF (w/o Weather Encoder) 0.71 10.1% 

UAMF (w/o Uncertainty) 0.74 8.9% 

Full UAMF 0.78 6.3% 

From the ablation experiment in Table II, it can be seen that 
the weather encoder and uncertainty modeling module 
contribute significantly to the overall performance of the model. 
After removing the weather encoder, the mAP dropped from 
0.78 to 0.71, a decrease of 7.0%, indicating that the dynamic 
weather perception mechanism is of great significance for the 
correct alignment of multimodal features. This result verifies 
the guiding role of weather prior information in multimodal 
fusion, especially in scenes with significant environmental 
interference, such as rainy days, which helps to achieve more 
stable feature extraction and matching. On the other hand, 
when the uncertainty modeling module is removed, the FPR 
(false positive rate) of the model increases from 6.3% to 8.9%, 
an increase of 29.3%, which clearly shows that the Bayesian 
inference mechanism plays a key role in suppressing low-
confidence false positives caused by noise interference, 
providing the system with stronger perception credibility 
control capabilities. 

3) Performance analysis of visibility classification: Fig. 2 

shows the mAP change trend of the UAMF model at different 

visibility distances in foggy weather. The results show that 

under extreme conditions with visibility below 30 meters, the 

mAP of UAMF can still be maintained at 0.58, which is 

significantly better than FusionNet (0.42) and PointPillars 

(0.35), showing higher adaptability to low-visibility 

environments. In addition, the mAP change of UAMF at 

different visibility levels shows a slower attenuation trend, and 

the attenuation slope is 40% lower than that of other models, 

indicating that the UAMF model maintains stronger 

robustness in the face of perceptual degradation. 
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Fig. 2. mAP line graph of each model. 

4) Uncertainty quantification analysis: The experimental 

results in this section mainly focus on the performance of the 

UAMF model in uncertainty modeling, and quantitative 

analysis is performed from two dimensions: calibration error 

(ECE) and uncertainty-error correlation, further verifying the 

confidence assessment ability and perceived reliability of the 

model. 

First, from the bar graph in Fig. 3a, we can see that the 
UAMF model performs best in terms of the expected 
calibration error (ECE) indicator, which is only 0.04, 
significantly lower than FusionNet's 0.07 and YOLOv8's 0.12. 
The lower the ECE, the closer the prediction confidence of the 
model output is to its true accuracy, reflecting the "calibration" 
of the prediction result. The smaller ECE value of UAMF 
indicates that it not only provides accurate detection results in 
the perception output, but also can output more reliable 
confidence estimates, which helps subsequent modules make 
safer decisions, especially suitable for scenarios with strong 
confidence constraints in autonomous driving. 

Secondly, Fig. 3b shows the correlation analysis between 
the uncertainty estimate and the positioning error. The Pearson 
correlation coefficient was used for quantification in the 
experiment. The correlation coefficient between the uncertainty 
score of the UAMF model and the target positioning error 
reached 𝜌 = 0.85, showing a strong positive correlation trend. 
This result shows that the confidence estimate of the UAMF 
model not only has a high resolution ability, but also can 
effectively characterize the level of change of the actual 
detection error. In other words, when the model estimates a 
higher uncertainty, its corresponding positioning error also 
tends to increase, and vice versa, reflecting that the model has 
the ability to "know what it does not know". 

In summary, the results verify the effectiveness of UAMF 
in uncertainty modeling, which not only improves the 
credibility and interpretability of the output confidence, but 
also provides theoretical support and practical basis for the 
safety of perception systems in complex environments. This 
capability is of great value in dealing with edge cases, 
confidence screening, and decision fallback mechanisms in 
autonomous driving systems. 

 
Fig. 3. ECE and Pearson coefficient. 

V. DISCUSSION 

The uncertainty-aware multimodal fusion framework 
(UAMF) proposed in this study shows significant performance 
advantages and method innovation in target detection tasks 
under adverse weather conditions. First, by introducing a cross-
modal attention mechanism for weather parameter encoding, 
the model can dynamically adjust the fusion weights of LiDAR 
and camera features according to environmental changes such 
as rain, snow, and fog, thereby enhancing the adaptability of 
multimodal data. For example, in a foggy environment, due to 
the scattering attenuation of the LiDAR signal caused by fog 
particles, the model automatically increases the weight of the 
image modality (the fusion ratio can reach 3:1), achieving an 
mAP of 0.65 in the nuScenes foggy test set, an increase of 8.3% 
compared to the static fusion strategy (FusionNet). This 
mechanism effectively compensates for the performance loss 
of [2], when dealing with multiple weather superposition 
situations (performance drops by 20%). Second, UAMF 
introduces a Bayesian neural network for uncertainty modeling 
to achieve a quantitative expression of the confidence of the 
detection results. Experiments show that UAMF has a false 
positive rate of 6.3% in scenes with visibility less than 30 
meters, which is significantly lower than YOLOv8's 15.2%, 
and the false positive rate is reduced by 58%. In addition, the 
Pearson correlation coefficient between uncertainty estimation 
and target positioning error is as high as 0.85, indicating that 
UAMF has good interpretability in terms of output credibility 
[8]. This feature is crucial for autonomous driving systems and 
can be used for risk perception and redundant module 
activation mechanisms, such as calling radar-assisted 
verification when confidence is low to improve overall safety. 

UAMF has good potential for practical deployment. It can 
be used as a redundant safety module in the autonomous 
driving perception system. In the L4 system, it can be used to 
cross-validate with the millimeter-wave radar results to 
improve the reliability of target detection in low visibility. 
Studies have shown that when the system's missed detection 
rate is reduced to below 0.1%, the overall safety can be 
improved by about 40%. In addition, UAMF has strong 
compatibility in edge computing environments. Its 32 FPS 
running speed has passed the deployment test on the Jetson 
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AGX Orin platform, meeting the dual requirements of real-
time performance and computing resources. 

VI. CONCLUSION 

This study proposes a multimodal perception framework 
(UAMF) that integrates uncertainty modeling to address the 
challenges of autonomous driving environment perception 
under adverse weather conditions. The framework provides 
solutions to the problems of sensor degradation and detection 
reliability by introducing a cross-modal attention mechanism 
guided by weather parameters and a Bayesian neural network 
structure. Experimental results show that the mAP@0.5 of 
UAMF on the nuScenes adverse weather subset reaches 0.78, 
0.72, and 0.65 in three typical scenarios: rain, snow, and fog, 
respectively, which is better than existing mainstream detection 
models (such as YOLOv8 and FusionNet), with an average 
performance improvement of 12% to 31%. In addition, UAMF 
reduces the false detection rate by about 40% in extreme 
environments with visibility less than 30 meters, and 
significantly improves the model's ability to quantify prediction 
uncertainty by introducing a KL divergence regularization term. 
The high correlation (Pearson 𝜌 = 0.85) between uncertainty 
estimation and positioning error further verifies the accuracy of 
the model's expression of confidence in the results, providing a 
reliable signal for risk assessment and decision triggering for 
the autonomous driving system. 

Although UAMF has been proven effective in multiple 
experimental scenarios, future research can further improve 
system performance and adaptability from the following 
aspects: 1) Unsupervised weather parameter estimation: 
Automatic perception of weather intensity can be achieved 
through self-supervision or contrastive learning methods, 
reducing dependence on dedicated meteorological sensors 
(Gupta and Kim, 2023); 2) Uncertainty-driven trajectory 
prediction: Extend the current uncertainty modeling 
mechanism to the target behavior level, and combine structures 
such as LSTM or Transformer to predict the future trajectory 
of dynamic targets [7]; 3) Cross-domain generalization and 
incremental adaptation: Construct a hierarchical domain 
adaptation mechanism to enhance the model's migration 
capabilities in unseen weather combinations (such as 
sandstorms + rain and snow) or new sensor environments (such 
as 4D millimeter-wave radar). 
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