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Abstract—MATLAB and Simulink, which have more than 5
million users and are installed at more than 100,000 businesses,
universities, and government organizations1, are widely used in
numerous large-scale projects across various industries. These
projects continually evolve in response to changes in business
logic. However, managing the impact of these changes on Simulink
projects presents several challenges to guarantee the quality
of these projects. To address this, we propose a WAVE-CIA-
based method named Simulysis for change impact analysis (CIA)
in Simulink projects. The core idea behind Simulysis is to
directly analyze Simulink project files and construct the project’s
corresponding call graph. By comparing the call graphs from
the old and new project versions, Simulysis computes the change
set. Subsequently, Simulysis applies the WAVE-CIA method to
this change set and the call graph to identify the impact set.
Additionally, Simulysis proposes a signal tracing method helping
the system engineers to follow, check, and debug signals through
the system. We have implemented Simulysis as a tool with the
same name and conducted experiments using several open-source
Simulink projects. The experiments demonstrate that Simulysis
effectively performs the CIA process and retrieves the impact
set, producing optimistic results and proving the practical appli-
cability of Simulysis for real-world projects. Further discussions
about Simulysis are provided in the paper.

Keywords—Change impact analysis; WAVE-CIA; MAT-
LAB/Simulink projects

I. INTRODUCTION

In the development of a Simulink project, where the
focus is on modeling, simulating, and analyzing dynamic
systems, the evolution of requirements and functions is a
common occurrence. Factors such as adding new features
or accommodating customer preferences often drive changes.
Similar to the software development life cycle, even minor
adjustments in Simulink models can lead to unforeseen conse-
quences and defects in the system. Consequently, change re-
quests pose challenges for maintaining and managing Simulink
projects. For developers, devising a strategy to identify the
modules that require modification to accommodate changes
is complex. Testers face the burden of testing numerous test
cases after system modifications. Project managers grapple
with cost allocation and time management related to change
management. For this reason, understanding the relationships
between altered Simulink components and their impact on
other elements is crucial for Simulink projects and software
projects in general. To address this, Change Impact Analysis
(CIA) [1], [2], has been developed and applied. Numerous

1https://www.mathworks.com/content/dam/mathworks/fact-sheet/
2023-company-factsheet-8-5x11-8282v23.pdf

published papers discuss this solution [3], [1], [4], [5], [6],
[2].

Researchers have indeed widely employed CIA across
various systems, spanning different research fields and pro-
gramming languages. In the domains of Business Process
Management (BPM) and Service-Oriented Architecture (SOA),
numerous published papers addressing CIA problems reveal
that impact analysis solutions primarily fall into three cate-
gories: dependency analysis, traceability analysis, and history
mining [4], [7]. First, dependency analysis is most frequently
used. It encompasses various graph-based analyses, including
control flow graph analysis [8], [9], message dependency
graph [10], [11], trust dependency graph [12], directed hyper-
graph [13] and call graph analysis. Additionally, formal meth-
ods aid in change identification, formal modeling, and impact
analysis [14], [15]. Quantitative analysis, which quantifies the
depth of change using metrics, is essential for decision-making
and problem-solving in service-based systems [16], [17], [18],
[19], [20]. Lastly, execution trace analysis relies on information
retrieved during program execution, either on-the-fly (online)
or after program execution (offline) [21].

Following dependency analysis, traceability analysis plays
a crucial role. It helps establish relationships between com-
ponents and their impact on other elements, such as source
code [22]. These relationships span multiple abstraction layers
and are captured using traceability links. Lehnert’s method en-
ables automated or semi-automated impact analysis approaches
for software, although it is not suitable for manual analy-
sis [9]. Existing traceability can be categorized into vertical
and horizontal traceability [23], [24]. Given the distributed
nature of SOA, traceability analysis in SOA systems remains
a challenging task.

History mining refers to the use of Mining Software
Repositories (MSR) techniques to discover historical change
dependencies [25], [21], [26]. This approach relies on an-
alyzing the version histories of software to identify change
patterns within source code repositories. By examining these
patterns, the method can pinpoint processes or services that
have frequently changed in tandem. It leverages change logs or
version histories to predict the impact of future modifications.
MSR methods have shown significant potential for impact
analysis in software systems [27]. They have been applied
across various aspects of software projects, including process
model repositories [25], web service ecosystems [28], and
process choreographies [29].

Change Impact Analysis (CIA) methods have been ex-
tensively implemented in various software languages. For
instance, the CA Harvest Software Change Manager is a
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comprehensive tool designed to track and manage software
changes throughout the development lifecycle [30]. It supports
C/C++ and several mainframe server languages like COBOL,
PL/I, and Assembly, offering features that help organizations
manage and understand the impact of their source code mod-
ifications. JRipples, an open-source tool tailored for Java de-
velopers, aids in comprehending programs during source code
changes [31]. It manages steps for impact analysis and change
propagation, highlights dependencies, and assists developers in
understanding how changes in one part of the source code can
affect another. JArchitect, although based on CIA, exclusively
supports Java [32]. It’s a source code analysis and visualization
tool that helps developers enhance their source code. It offers a
comprehensive set of features, including source code metrics,
visualization of dependencies through directed graphs and
dependency matrices, and the ability to compare source code
snapshots. Lastly, several tools were implemented, including
various CIA methods. SonarQube supports over 30 languages,
frameworks, and Infrastructure as Code (IaC) platforms [33].
Checkmarx supports Java, C#, JavaScript, Python, Ruby, and
PHP [34]. Ansible supports specific domain-based languages
on YAML [35]. Jira provides an interface for collaboration and
project management [36].

Regarding the CIA for Simulink projects, in 2017, Rapos et
al. introduced a method to address the Change Impact Analysis
(CIA) problem in Simulink projects [5]. This method, based on
a set of MATLAB scripts, was implemented in a tool named
SimPact. SimPact was validated as an impact predictor for
the maintenance history of a large set of industrial models
and their tests. However, SimPact can only operate within
the Simulink Interactive Development Environment (IDE),
meaning it cannot function independently of MATLAB. Other
tools, such as Diffplug and BDT, support the impact analysis
of Simulink projects using the signal tracing method [37],
[6]. Despite these advancements, no published paper has yet
addressed the CIA problem of Simulink projects that can
operate as a standalone solution and utilize the WAVE-CIA
method for performing the CIA.

This paper introduces Simulysis, a method based on
WAVE-CIA [3], designed to identify and analyze the impact of
changes between two versions of Simulink projects. Simulysis
reads data from the project’s *.mdl and *.slx files and builds
the corresponding call graphs. It then compares thoroughly,
identifying discrepancies and modifications between the two
project graphs. Subsequently, Simulysis applies the WAVE-
CIA to the changed Simulink components to identify the
affected ones. Simulysis makes four main contributions. First,
it introduces a technique for extracting information from
Simulink files and classifying the changes in different project
versions. Second, it demonstrates how to generate a call graph
of the project, a feature not supported by the current version of
MATLAB/Simulink. Third, Simulysis utilizes the WAVE-CIA
method to analyze the impact of changes using the generated
call graph. Finally, Simulysis proposes a method to trace a
given signal in the provided Simulink project. This provides
a crucial method for Simulink engineers to follow, check, and
debug signals and signal-related bugs. We have implemented
Simulysis as a tool and conducted preliminary experiments
with promising results.

The structure of this paper is as follows. Section II intro-

duces the essential background concepts. Section III delves
into the details of the Simulysis methodology. Section III-B4
presents the details of the proposed signal tracing method.
Section IV provides insights into the practical implementa-
tion of the Simulysis Tool. Initial experimental findings and
subsequent discussions are presented in Section V. Section VI
discusses the published papers related to Simulysis. The paper
concludes in Section VII.

II. BACKGROUNDS

In this section, we introduce background concepts that will
be utilized in this paper.

A. Change Impact Analysis

Change Impact Analysis (CIA) [2] is a systematic approach
commonly employed in software development, project man-
agement, and system engineering. Its primary purpose is to
evaluate the consequences of modifications made to a system.
CIA aids in making well-informed decisions, minimizing the
introduction of errors, and optimizing resource utilization.
While it cannot guarantee complete predictability or replace
thorough testing in every instance, the benefits of CIA include
improved system reliability, reduced change risks, and efficient
resource allocation. In software projects, CIA benefits software
developers, testers, project managers, system architects, and
stakeholders involved in the change process. Overall, the CIA
process contributes to better decision-making and enhances
system quality.

B. WAVE-CIA

WAVE-CIA, introduced by Li et al. in 2013 [3], represents
a novel Change Impact Analysis (CIA) approach based on the
traditional call graph-based techniques. Drawing inspiration
from the propagation of water waves, this method computes a
set of impacted components based on a change set and a call
graph. Much like the ripples formed when stones are thrown
into the water, WAVE-CIA views the call graph as a water
surface and the change set as the thrown stones. The central
concept is that a component is more likely to be impacted if it
has dependencies with altered components, and these modified
components propagate the impact to others in the graph. By
meticulously analyzing the call graph, WAVE-CIA identifies
precise change ripples and adeptly handles multiple changes
with interference. In comparison to traditional call graph-based
CIA methods, WAVE-CIA achieves a more accurate impact set
with fewer false positives, although it may occasionally miss
a few false negatives.

In the context of Simulink, several terms and concepts
differ from those found in conventional software development
codebases. These terms have been mapped to suitable WAVE-
CIA equivalents for implementation. The Simulink project
comprises numerous Simulink files with extensions such as
“.mdl” or “.slx”. These files contain Simulink systems, which
encompass various block types including Ports, Logic, Refer-
ences, Subsystems, and more, all interconnected by lines.

Definition 1 (Node or Vertex). Nodes represent systems in a
Simulink project. Each node corresponds to a specific system,
and the edges connecting the nodes represent the caller and
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callee relationships between these systems. This helps define
how systems interact with each other in the project.

Definition 2 (Call Graph). A call graph is a directed graph G
= (V, E), where V is a set of vertices representing Simulink
components in the system, and E ⊆ V × V is a set of
edges representing the call relationships between callers and
callees. WAVE-CIA draws an analogy from water waves that
ripple outward when stones are thrown into calm water. In
the context of the call graph, which is akin to a water
surface, Simulink components reachable by multiple altered
components (meeting positions) are more likely to be impacted
by the changes.

Definition 3 (Change Set - CS). A change set refers to a group
of Simulink files and systems within a Simulink project that
have been modified or are marked for modification. This set
is typically identified by comparing data between two versions
of the same Simulink project.

Definition 4 (Core Set). The core set is comprised of closely
related Simulink components that are likely to be affected by
multiple modifications in the change set. This set is generated
by identifying Simulink components close to the change set
within a call graph. These components, which are accessible
by multiple modified components, are more susceptible to
changes. The core set is determined by verifying if a component
is influenced by more than one modified component, and it
encompasses all the modified components in the change set.
The likelihood of components in the core set being affected
by multiple changes is high. Subsequently, the impact set is
calculated using propagation analysis based on the core set.

Definition 5 (Impact Set - IS). The impact set is made up
of Simulink files and systems that could be affected by the
Simulink components in the change set. It includes elements
that may need to be reworked or revalidated. WAVE-CIA
determines the impact set through the process of mining the
call graph.

C. Simulink

Simulink [38], a graphical extension to MATLAB [39]
developed by MathWorks, is designed for modeling and
simulating dynamic systems. It offers key advantages such
as the capability to model nonlinear systems, which is not
easily achievable with transfer functions, and the ability to
include initial conditions for a more accurate depiction of
system behavior. Simulink provides a graphical interface for
users to build systems using block diagrams, incorporating
various elements like transfer functions, adding nodes, virtual
input/output devices, etc. Its integration with MATLAB en-
sures smooth data transfer between the two platforms. Due
to its wide usage in system modeling, controller design,
and simulation, Simulink is a potent tool in engineering and
scientific applications.

Table I describes some common blocks used in Simulink,
and Table II shows the data from the source code of Simulink
blocks.

Additionally, we clarify the key terms used in Simulink
modeling to ensure consistency throughout the paper. The
terms system, subsystem, component, block, and file are fun-
damental to Simulink, but they have specific meanings and

relationships that must be clearly understood.

Definition 6 (System). A system in Simulink is a complete
model representing a specific dynamic behavior or a control
logic. It encompasses all the elements necessary for simulating
a particular functionality. A system can be a standalone model
or can include multiple subsystems and components working
together.

Example: A vehicle dynamics model that includes the
engine, transmission, and braking systems.

Definition 7 (Subsystem). A subsystem is a modular, hierar-
chical component of a system. It encapsulates a set of blocks
that perform a specific function within the larger system.
Subsystems help organize and manage complex models by
breaking them into smaller, more manageable parts.

Example: Within a vehicle dynamics system, the engine
control unit can be a subsystem that handles all the engine-
related computations and control logic.

Definition 8 (Component). A component in Simulink refers to
any reusable, self-contained unit within a model. Components
can be atomic or composite and can represent hardware or
software elements. Components often refer to reusable libraries
or pre-built blocks that can be integrated into various models.

Example: A PID controller block can be a component used
in various systems to manage control processes.

Definition 9 (Block). A block is the fundamental building
element in Simulink models. Blocks represent mathematical
operations, signal routing, or functional units. They can be
combined to form systems and subsystems. Blocks can be
simple (like a gain block) or complex (like a Simulink Function
block).

Example: A summation block that adds input signals
together is a simple block, while a Stateflow chart is a more
complex block.

Definition 10 (File). A file in the context of Simulink refers
to the physical storage of models and components. Simulink
models are typically saved with the .slx or .mdl file extensions.
These files contain all the necessary information to define and
simulate a model, including block diagrams, parameters, and
configuration settings.

Example: vehicle_dynamics.slx is a file that con-
tains the complete Simulink model for vehicle dynamics.

D. Relationships in Simulink Project

To implement the CIA analysis of the Simulink projects,
we have to identify the relationships between components and
elements of Simulink projects.

1) Relationships between files: Within the context of file
relationships, we establish connections based on the structure
of the files in the project. This is essential for the implemen-
tation of WAVE-CIA, which depends on comprehending the
dependencies among files. The various types of file relation-
ships are illustrated in Table III.
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TABLE I. COMMONLY USED SIMULINK BLOCKS

ID Icon Name Description

1 Logical
Operator

The Logical Operator block does the given logical operation on its inputs. If it is nonzero, the input value is
true (1). Otherwise, it is false (0).

2 Relational
Operator

The Relational Operator block does the given relational operation on the input. The value chosen for the
Relational operator parameter determines if the block accepts one or two input signals.

3 Inport Inport blocks in Simulink link signals from outside a system into the system.

4 Outport
Outport blocks in Simulink link signals from inside a system to a destination outside of the system. Outport
blocks can connect signals originating from a subsystem to other parts of the model. Outport blocks can also
supply external outputs at the top level of a model hierarchy.

5 Subsystem A Subsystem block is a block that contains a subset of a model. We can have multiple subsystems in a model,
and we can have subsystems inside other subsystems.

6 Constant The Constant block of Simulink generates a real or complex constant value signal. We can use this block to
provide a constant signal input.

Fig. 1 illustrates the relationships between various files.
The file under examination in this figure is “Logic111”. It is
referenced within “Function12”, which makes “Function12”
the caller of “Logic111”. Within the context of “Logic111”,
there are references to two other files: “Block1111” and
“Logic112”. This makes these two files the callees of
“Logic111”.

MFMdl1

Function11 Funtion12 Function13

Logic112

Block1112 Block1113

Logic112Logic111

Logic112Block1111

Current
File

Callee Callee

Caller

Fig. 1. Example of file relationships.

2) Relationships between systems: Within the context of
Simulink systems relationships, we establish connections ac-
cording to the structural organization of systems within a file.
This definition is crucial for implementing WAVE-CIA.

Fig. 2 illustrates the relationships among systems. The
Subsystem block “Function21” is currently under assessment
for its relationships. It has two callers connected to it: the
“Bit Set” block and the Inport block “In2 1”. The output of
“Function21” is directly linked to the Logical Operator block
AND, which is therefore its callee.

E. Types of Change

In the process of analyzing two versions of a Simulink
project, pinpointing the differences between them is crucial,

1

2

In1

In2_1

Bit Set

Bit Set

Function21

Model

on

on

In1

In2

Current system

Caller

Caller

AND

Logical operator

Callee

Fig. 2. Example of system relationships.

with a special emphasis on the modified components. The set
of these modified elements is termed the change set (CS).
Modifications are classified into three categories: addition,
deletion, and change.

Simulysis employs the “Name” property of a Simulink
system as the key to discern whether it has been added, deleted,
or changed. This is a critical aspect of Simulysis, given that
two systems within the same Simulink file cannot possess
identical names. If a system name is present in both versions
of the Simulink project, it is considered altered if there exists
any discrepancy in its properties. Table V presents the various
types of modifications in a Simulink project.

III. SIMULYSIS METHOD

A. Simulysis Overview

Simulysis is a method based on WAVE-CIA for performing
CIA on Simulink projects. This method encompasses three
primary phases in the analysis of a specified Simulink project.
An overview of Simulysis is depicted in Fig. 3.

3. Impact set computation

1. Call graph
generation

2. Change set
computation

3.1. Core set
computation

3.2. Impact set
computation

Start End

Fig. 3. An overview of simulysis.
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TABLE II. SOURCE CODE OF SIMULINK BLOCKS

ID Icon Name Source code

1 Logical Operator Block source code:
<Block BlockType=“Logic” Name=“Logical&#xA;Operator” SID=“12”>
<PortCounts in=“2” out=“1”/>
<P Name=“Position”>[580, 152, 610, 183]</P>
<P Name=“ZOrder”>12</P>
<P Name=“AllPortsSameDT”>off</P>
<P Name=“OutDataTypeStr”>boolean</P>
</Block>
Properties:
- Position
- ZOrder
- AllPortsSameDT
- OutDataTypeSt

2 Relational Operator Block source code:
<Block BlockType=“RelationalOperator”
Name=“Relational&#xA;Operator” SID=“16”>
<PortCounts in=“2” out=“1”/>
<P Name=“Position”>[270, 257, 300, 288]</P>
<P Name=“ZOrder”>16</P>
<P Name=“Operator”>&lt;=</P>
<P Name=“InputSameDT”>off</P>
<P Name=“OutDataTypeStr”>boolean</P>
<P Name=“RndMeth”>Simplest</P>
</Block>
Properties:
- Position
- ZOrder
- Operator
- InputSameDT
- OutDataTypeStr
- RndMeth

3 Inport Block source code:
<Block BlockType=“Inport” Name=“In1” SID=“10”>
<P Name=“Position”>[370, 153, 400, 167]</P>
<P Name=“ZOrder”>10</P>
</Block>
Properties:
- Position
- ZOrder

4 Outport Block source code:
<Block BlockType=“Outport” Name=“Out1” SID=“14”>
<P Name=“Position”>[730, 158, 760, 172]</P>
<P Name=“ZOrder”>14</P>
</Block>
Properties:
- Position
- ZOrder

5 Subsystem Block source code:
<Block BlockType=“SubSystem” Name=“Subsystem” SID=“19”>
<PortCounts in=“1” out=“1”/>
<P Name=“Position”>[565, 229, 665, 271]</P>
<P Name=“ZOrder”>19</P>
<P Name=“ContentPreviewEnabled”>on</P>
<System Ref=“system 19”/>
</Block>
Properties:
- Position
- ZOrder
- ContentPreviewEnabled
- System Ref.

6 Constant Block source code:
<Block BlockType=“Constant” Name=“Constant” SID=“3”>
<P Name=“Position”>[380, 60, 410, 90]</P>
<P Name=“ZOrder”>3</P>
</Block>
Properties:
- Position
- ZOrder

• Phase 1 (Call graph generation): Given a project,
Simulysis obtains the project data by analyzing the
project files. Next, it builds a call graph based on
the structure and relationships between the Simulink
systems (blocks) and files by using the callee map. A

callee map is a set of Simulink components called by
other components through the Outports. This phase is
vital as it establishes the interconnections within the
Simulink project and generates a call graph that will
be utilized in subsequent phases.
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TABLE III. FILE RELATIONSHIPS

ID Relationship Roles Description

1 Parent Caller A file is deemed the parent and caller of another file
when it contains references to that other file.

2 Children Callee A file is considered a child and callee of another file
when it is referred to in the content of that other file.

3 No Relation Two files are considered unrelated if they don’t share
a parent-child relationship, regardless of whether they
have common parents or children.

TABLE IV. SYSTEM RELATIONSHIPS

ID WAVE-CIA Description

1 Caller The system that triggers a call to another system is referred to
as the “caller”.

2 Callee The system that receives a call from another system is referred
to as the “callee”.

3 No Relation Two systems are considered unrelated if they are not directly
connected.

TABLE V. TYPES OF CHANGE

ID Change Type Description

1 Addition Simulink components that appeared in the new version but not
the old version of the project are listed as Additions.

2 Deletion Simulink components that are removed in the new version and
existed in the old version of the project are listed as Deletions.

3 Change Simulink components that still exist in both versions of the
Simulink project but have different properties are listed as
Changes.

• Phase 2 (Change set calculation): When provided with
two call graphs corresponding to two versions of a
Simulink project, Simulysis calculates the change set.
This computed change set is then utilized in Phase 3
to determine the impact set.

• Phase 3 (Impact set computation): In this phase,
the WAVE-CIA algorithm is implemented, using the
change set from Phase 2 as an input. This process
identifies the core set, relying on the call graph from
Phase 1, and computes the impact set by implementing
the WAVE-CIA algorithm. It’s important to note that
while Simulysis utilizes the WAVE-CIA technique
for calculating the impact of changes, it’s possible
to employ any other CIA method that facilitates the
computation of the impact set based on the call graph.

The subsequent sections delve into a comprehensive ex-
amination of each phase in the Simulysis method for Change
Impact Analysis (CIA) of Simulink projects.

B. Call Graph Generation

There are many methods for the analysis of Simulink
projects, such as manual navigation through the signals of the
project [37], based on MATLAB-provided script [5], AI-based
change distribution analysis [40], etc. By modeling a given
Simulink project as a call graph, we have an efficient method
to analyze, fix bugs, improve the model, trace the required
signals, etc. In this paper, we employ the call graph for change
impact analysis of Simulink projects for the two reasons below:

• Signal tracing: Simulink projects are designs of sys-
tems with many signals running across the model.
By using the call graph to model the given project,
signals can be seen as paths through the graph. For this
reason, the signal tracing problem can be addressed
by using the graph traversing problem and using such
well-known algorithms as depth-first search, breadth-
first search, etc. This greatly contributes to the system
analysis and debugging of Simulink projects.

• Change impact analysis: By modeling a Simulink
project as a call graph, the change impact analysis
problem can be solved by applying such graph-based
CIA methods as the WAVE-CIA method [3].

To create the call graph for a given Simulink project,
Simulysis analyzes project files and generates the required call
graph using the callee map. The creation of a call graph for a
specified Simulink project involves the following three primary
steps, as shown in Fig. 4.

Simulink
project

1. Project
analysis

2. Callee map
generation

3. Call graph 
generation

Call graph

Fig. 4. The main steps of the call graph generation process.

• Step 1 (Project Analysis): Simulysis scans all the
Simulink files in the specified project and extracts data
about all existing systems, lines, and branches. Details
of this step are presented in Section III-B1.

• Step 2 (Callee Map Generation): For every system
within the project, Simulysis identifies other systems
that are linked to it by employing a signal tracing
algorithm. A system in Simulink serves as a com-
putational unit that accepts input data via in-ports,
processes this data, and generates output through the
out-ports. Simulysis aims to locate the callees of the
system, which are systems connected to the system’s
out-ports. The specifics of this step are illustrated in
Algorithm 1.

• Step 3 (Call Graph Generation): Simulysis cycles
through each system in the project, generating a new
corresponding node in the call graph. Subsequently,
Simulysis establishes connections to other nodes in the
graph, utilizing the callers and callees of the system
identified in Step 2. The specifics of this step are
demonstrated in Algorithm 2.

1) Project analysis: For a specific Simulink project, Simul-
ysis analyzes by scanning the list of Simulink files in the
project and extracting a list of systems (blocks) and the lines
that connect these systems.

The structure of a typical Simulink project and a Simulink
file is depicted in Fig. 5 and Fig. 6. As a Simulink project
comprises numerous files and folders, it is crucial to pinpoint
the files where pertinent data is stored. Depending on the
MATLAB version of the project, the primary information of a
Simulink project is housed in various file types such as “.mdl”
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Simulink
files

Scripts
&

utilities
Project
file

Fig. 5. Simulink project structure example.

Main
data file

Configuration
files

Other
files

Fig. 6. Simulink file structure example.

and “.slx”. Simulysis filters the project by verifying the validity
of the model state and the file extension to locate files with
the “.mdl” or “.slx” extension and other project information.

Before MATLAB version R2016b, Simulink files had the
“.mdl” extension, and the data could be accessed directly.
For newer versions, Simulink introduces a new “.slx” file
extension, which is a zip file comprising multiple files and
folders. To access the file, Simulysis alters the “.slx” file
extension to “.zip” and then unzips the file. As only the

main data file (“blockdiagram.xml”) is needed to recreate a
visualization and execute other functions, only this file is
analyzed to retrieve system and line information.

Fig. 7 presents an instance of a “blockdiagram.xml” file
within an “.slx” file. The file adheres to a standard XML
format where the initial tags represent the file configuration
and setting parameters. Simulysis utilizes only a few proper-
ties within these tags to construct the necessary call graph.
The primary data is housed within the ¡System¿ tag, which
encompasses the information of blocks (¡Block¿ tag) and lines
(¡Line¿ tag). Leveraging the information from the blocks and
lines, Simulysis assembles the required call graph for use in
subsequent phases.

<?xml version="1.0" encoding="utf-8"?>
<ModelInformation Version="1.0">
    <Model>
        <P Name="LastSavedArchitecture">win64</P>
        <ConfigManagerSettings>
        .......
        <System>
            <Block BlockType="SubSystem" Name="MFMdl1" SID="51">
            <System>
                <P Name="Location">[-8, -8, 1374, 695]</P>
                <P Name="Open">off</P>
                <Block BlockType="From" Name="From" SID="162">
                    <P Name="Position">[195, 121, 235, 149]</P>
                    <P Name="ZOrder">104</P>
                </Block>
                ........
                <Line>
                    <P Name="ZOrder">68</P>
                    <P Name="Src">327#out:1</P>
                    <P Name="Dst">164#in:1</P>
                </Line>
                .........
        </System>
    </Model>
</ModelInformation>

Configuration
and setting
parameters

Block
data

Line
data

Main
data
of
Simulink
file

Fig. 7. Simulink file content example.

2) Callee map generation: The purpose of the callee map
is to identify the subsystems (i.e., callees) associated with each
system in the Simulink project. This is an important step in
creating the call graph, which helps analyze call relationships
between systems and determine the impact of changes in the
project. Details of the callee map generation process are shown
in Algorithm 1.

The algorithm starts by initializing the map
(systemCalleMap) as an empty set (∅) (line 2). It
then iterates over each system, checking its type to determine
the appropriate process (lines 3 - 30).

If a system is of type “From”, it does not connect to other
systems via lines. Instead, it directly jumps to a system of the
“To” type with the same identifier, facilitating data transfer
from the “From” system to the “To” system. Consequently,
the algorithm identifies the corresponding “To” systems of the
current “From” system and appends them as a caller-callee
pair to the “systemCalleeMap” map (lines 4 - 6).

If a subsystem is then connected to another system, the
algorithm will find the block corresponding to the port type
and port number connected (lines 12 - 13). In Simulink, a
system can connect to output port of type “Output”, “LConn”
and “RConn” (in which “LConn” and “RConn” represents
left and right side physical connection port - a special port
type in Simulink). The corresponding block that links a signal
from inside the subsystem to outside the subsystem is of
type “Outport”, “PMIOPort with “Side” attribute equals
“Left”, “PMIOPort with “Side” attribute equals “Right”.
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Algorithm 1 Generate the Callee Map
Input: systemList: List of systems of the project

lineList: List of lines of the project
Output: The required callee map

1 begin
2 systemCalleeMap ← ∅
3 foreach system in systemList do
4 if system type is “From” then
5 calleeSystem ← findGoto(systemList, system)
6 systemCalleeMap.append(system, calleeSystem)
7 else
8 lines ← findLines(lineList, system)
9 foreach line in lines do

10 callerSystem ← system
11 calleeSystems ← ∅
12 if system type is “SubSystem” then
13 callerSystem ←

getOutputPortBlock(system, line)
14 if line has branches then
15 foreach branch in line.getBranches() do
16 calleeSystem ← findSystem(systemList,

branch)
17 if calleeSystem type is “SubSystem” then
18 calleeSystem ←

getInputPortBlock(calleeSystem, line)
19 calleeSystems ← calleeSystems ∪

calleeSystem
20 end
21 else
22 calleeSystem ← findSystem(systemList, line)
23 if calleeSystem type is “SubSystem” then
24 calleeSystem ←

getInputPortBlock(calleeSystem, line)
25 calleeSystems ← calleeSystems ∪

calleeSystem
26 end
27 systemCalleeMap.append(callerSystem,

calleeSystems)
28 end
29 end
30 end
31 return systemCalleeMap
32 end

After finding out the corresponding output port blocks, the
algorithm assigned it as the caller (line 13)

If the system type is not “From”, the algorithm identifies
lines connected to it. In Simulink, a line block contains some
branch properties, which are lines connecting to other blocks.
Therefore, for each line, the algorithm checks if the line
contains any branches. If so, the algorithm iterates through
the branches to find the system that is connected to them and
adds them to the callee list (calleeSystem) (lines 14 - 20). If
not, the algorithm finds the system connecting to the line and
adds it to the callee list (calleeSystem) (lines 21 - 26).

If a system is connected to a system of type “SubSystem”
through the subsystem’s input ports (lines 17 - 18 and 23 -
24), the algorithm will find the port block inside the sub-
system correspond to port type and port number connected.
In Simulink, a system can connect to an input port of type
“Input”, “LConn” and “RConn”. The correspond block that
links signal from outside the subsystem to the inside are of type
“Inport”, “PMIOPort with “Side” attribute equals “Left”,
“PMIOPort” with “Side” attribute equals “Right”. After
finding all corresponding input port blocks, the algorithm then
and adds them to the “calleeSystems” array (line 19 and 25).

After finding out the caller and the callee systems,

the algorithm adds the caller system (callerSystem)
and its corresponding callee list (calleeSystems) to the
systemCalleeMap map (line 27). Once all systems in
systemList have been processed, the algorithm returns
systemCalleeMap.

Time Complexity Analysis

Theorem III.1. Let n be the total number of systems in
systemList, m be the maximum number of lines in the
lineList and k be the maximum number of lines in the
line.getBranches(). The time complexity of Algorithm 1 is
O(n ∗m ∗ k).

Proof: From Algorithm 1, we see that the foreach loop
at lines 3 - 30 iterates n times, resulting in time complexity of
this loop is O(n). Lines 4 - 6 check the type of each system.
If the systemType is “From”, its find the corresponding
“To” system. This check has a time complexity O(1) for each
system. Line 8 finds lines connected to the system, which has
time complexity O(1) for each system. Line 9 - 28 iterate
through each line connected to the system: Line 14 - 20
handle lines with branches, iterating through each branch and
finding the connected systems. This has a time complexity
of O(k) in the worst case, where k is the maximum number
of branches for any line in lines. Line 21 - 26 handle
lines without branches, finding the connected system. This
has a time complexity of O(1) for each line. Since we need
to consider all lines of the system, the time complexity for
processing lines is O(m ∗ k). Combining these steps, the total
time complexity for processing each system and its connected
lines is O(m ∗ k) in the worst case. For this reason, iterating
over all n systems results in an overall time complexity of
O(n ∗m ∗ k) of Algorithm 1.

3) Call graph generation: Once the callee map is prepared,
Simulysis proceeds to generate the call graph, which will be
utilized later in the CIA process.

The generation of this call graph for a given Simulink
project is detailed in Algorithm 2.

The algorithm takes as input the list of systems from
Step 1 (systemList) and the callee map from Step 2
(systemCalleeMap). After processing, the algorithm outputs
the desired call graph. The process begins by initializing the
call graph as an empty set (∅). It’s important to note that
Simulink already generates a unique identifier, known as SID.
For this reason, Simulysis leverages this SID value as the
identifier for each node in the call graph. The algorithm iterates
over each system (system) in the system list (systemList),
retrieving the SID of the system (line 4). It then either retrieves
an existing node or creates a new one in the call graph
(callGraph) that corresponds to the system (system) (line 5).
Next, the algorithm fetches the callee list (calleeList) of the
system (system) from the callee map (systemCalleeMap)
(line 6). It then cycles through the callee list (calleeList),
identifies the node corresponding to the callee system node in
the call graph, and establishes an edge between the callee and
caller (lines 7 - 11). This entire process is repeated for each
system (lines 3 - 12). Finally, the algorithm returns the call
graph (line 13).

Time Complexity Analysis
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Algorithm 2 Generate the Corresponding Call Graph for a
Simulink Project
Input: systemList: List of systems in the project

systemCalleeMap: A map of callees by system
Output: callGraph: The corresponding call graph of the

project
1 begin
2 callGraph ← ∅
3 foreach system in systemList do
4 systemSID ← getSystemSID(system)
5 node ← getOrCreateNode(callGraph, systemSID)
6 calleeList ← getCallees(systemCalleeMap,

system)
7 foreach callee in calleeList do
8 calleeSystemSID ← getSystemSID(callee)
9 calleeNode ← getOrCreateNode(callGraph,

calleeSystemSID)
10 createEdge(callGraph, node, calleeNode)
11 end
12 end
13 return callGraph
14 end

Theorem III.2. Let n be the total number of systems in
systemList, and m be the maximum number of callee sys-
tems for any system in systemList. The time complexity of
Algorithm 2 is O(m ∗ n).

Proof: From Algorithm 2, we see that the foreach loop
at lines 3 - 12 iterates n times, resulting in time complexity
of this loop is O(n). Given a specific system (system) in the
loop, other actions in this loop at lines 4 - 6 are getting the
system id (systemSID), its corresponding node (node), and
its list of callee systems (calleeList). These are simple actions
that retrieve data from a data store such as a database or file,
resulting in a time complexity of O(1). Let m be the maximum
number of callee systems in all calleeList, the second loop
(line 7 - 11) will have time complexity of O(m). As a result,
the overall time complexity of this algorithm is O(m ∗ n).

4) Signal tracing method: In large Simulink projects, when
facing a bug, especially a signal-related bug, system engineers
must be able to fix the bug by checking the signal to find the
bug. We call this the signal tracing problem. This is a complex
task as the signal can go from the inport through multiple levels
of the system model to the outport of the model. Using the
corresponding call graph, the signal tracing problem can be
modeled as the path-finding problem inside a directed graph.

It is important to identify the relationships between objects
in Simulink models to implement the Depth-First Search
algorithm (DFS). To reduce the complexity of the algorithm,
Simulysis proposes identifying relationships between objects,
including systems, lines, and branches. There are six types
of relationships: System-Line, Line-Branch, Branch-Branch,
Branch-System, From-Goto, and Parent-Child.

System-Line Relationship The System-Line relationship is
the most common in the Simulink model, defined through
the object’s ID attribute. Fig. 8 illustrates an example of
information about systems and one line in an “.slx” file. It
can be seen that objects are connected through ID values;

each block has a unique ID value that does not duplicate any
other block within the same file. The line will have two child
tags <P> with the attributes “Name=Dst” and “Name=Src”.
The value of the “Name=Dst” tag will match the ID value
of a system in the file, indicating that it is the destination
system. The value of the “Name=Src” tag will indicate the
source system.

<Line>
    <P Name="ZOrder">29</P>
    <P Name="Src">16#out:1</P>
    <P Name="Points">[25, 0; 0, -5]</P>
    <P Name="Dst">31#in:1</P>
</Line>

<Line>
    <P Name="ZOrder">3</P>
    <P Name="Src">12#out:1</P>
    <P Name="Points">[21, 0; 0, 120]</P>
    <P Name="Dst">16#in:1</P>
</Line>

<Line>
    <P Name="ZOrder">2</P>
    <P Name="Src">13#out:1</P>
    <P Name="Points">[53, 0; 0, -120]</P>
    <P Name="Dst">16#in:2</P>
</Line>

<Block BlockType="RelationalOperator"
Name="Relational&#xA;Operator" SID="16">
    <P Name="Ports">[2, 1]</P>
    <P Name="Position">[560, 217, 590, 248]</P>
    <P Name="ZOrder">41</P>
    <P Name="Operator">&lt;=</P>
    <P Name="InputSameDT">off</P>
    <P Name="OutDataTypeStr">boolean</P>
    <P Name="RndMeth">Simplest</P>
</Block>

System Id

Source
system ID

Destination
system ID

Destination
system ID

Fig. 8. System-line relationship.

System-Branch Relationship

Fig. 9 illustrates an example of the System-Branch rela-
tionship. Similar to the System-Line relationship, the System-
Branch relationship is determined by the ID value. The value
of the child tag “Name=Dst” will also indicate the destination
system connected by the branch. However, unlike a line, a
branch will not have a child tag <P> with the attribute
“Name=Src”.

Line-Branch Relationship

A branch is defined as a child object of a line in Simulink in
the model. A connection line can have multiple branch lines.
Fig. 10 describes the information about a line in the ”.slx”
file. The <Line> tag contains two child tags ¡Branch¿ that
represent the line with two corresponding branch lines.

Branch-Branch Relationship

Similar to the Line-Branch relationship, the Branch-Branch
relationship is formed when a branch contains child tags that
are other branches, as shown in Fig. 11.

Goto-From Relationship

Goto and From are two special types of blocks, where a
Goto block can transmit a signal to a corresponding From
block and vice versa. The notable point is that these two
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<Block BlockType="Reference" Name="Switch6"
SID="8264">
    <P Name="Ports">[3, 1]</P>
    <P Name="Position">[510, 25, 530, 85]</P>
    <P Name="ZOrder">-21</P>
    <P Name="ShowName">off</P>
    <P Name="LibraryVersion">3.21</P>
    <P Name="SourceBlock">lib2011b/Simulink
Original/Signal Routing/MC_Switch</P>
    <P Name="SourceType">MSK_Switch</P>
</Block>

Source
system ID

<Branch>
    <P Name="ZOrder">5</P>
    <P Name="Points">[0, -130]</P>
    <P Name="Dst">8264#in:2</P>
</Branch>

Destination
system ID

Fig. 9. System-Branch Relationship.

  <Line>
      <P Name="ZOrder">4</P>
      <P Name="Src">8262#out:1</P>
      <P Name="Points">[25, 0]</P>
      <Branch>
          <P Name="ZOrder">5</P>
          <P Name="Points">[0, -130]</P>
          <P Name="Dst">8264#in:2</P>
      </Branch>
      <Branch>
          <P Name="ZOrder">6</P>
          <P Name="Dst">8263#in:2</P>
      </Branch>
  </Line>

Line

Branch

Fig. 10. Line-branch relationship.

  <Branch>
      <P Name="ZOrder">10</P>
      <P Name="Points">[1425, 0]</P>
      <Branch>
          <P Name="ZOrder">11</P>
          <P Name="Points">[0, -90]</P>
          <P Name="Dst">6651#in:3</P>
      </Branch>
      <Branch>
          <P Name="ZOrder">12</P>
          <P Name="Dst">6659#in:1</P>
      </Branch>
  </Branch>

Branch

Child
Branch

Fig. 11. Branch-branch relationship.

blocks do not connect with each other through a line. A
Goto block can connect with multiple From blocks located at
different positions in the model. The Goto-From relationship is
determined through the GotoTag parameter. Two blocks with
the same GotoTag value are considered to be connected. As
shown in Fig. 12, the GotoTag value of both blocks is “xclcn”,
so they are connected.

Parent-Child Relationship

A system is called a parent if it contains a subsystem; the

<Block BlockType="From" Name="From" SID="6669">
    <P Name="Position">[570, 353, 630, 367]</P>
    <P Name="ZOrder">-8</P>
    <P Name="ShowName">off</P>
    <P Name="GotoTag">xclcn</P>
</Block>

<Block BlockType="Goto" Name="Goto" SID="6028">
    <P Name="Position">[380, 213, 830, 217]</P>
    <P Name="ZOrder">2</P>
    <P Name="ShowName">off</P>
    <P Name="GotoTag">xclcn</P>
</Block>

GotoTag

Destination
system ID

Fig. 12. Goto-from relationship.

objects within the subsystem will be children of that block.
In the structure of a MATLAB Simulink model, Simulysis
identifies three types of systems that contain subsystems:
“Subsystem”, “ModelReference”, and “Reference”. The “Mod-
elReference” and “Reference” blocks have similar structures;
the files containing the subsystems of these two types of blocks
will be in different files within the project. The “Subsystem”
block has a simpler structure, with its subsystem contents
residing in the same file as the current model. Fig. 13 describes
an example of a line being the input to a subsystem.

 <Block BlockType="SubSystem" Name="acc_control"
SID="6588">
      <P Name="Ports">[12, 6]</P>
      <P Name="Position">[745, 620, 930, 980]</P>
      <P Name="ZOrder">-213</P>
      <P Name="RequestExecContextInheritance">off</P>
      <P Name="Variant">off</P>
      <System>
          <Block BlockType="Inport" Name="xacchold"
SID="6592">
            <P Name="Position">[390, 53, 420, 67]</P>
            <P Name="ZOrder">-4</P>
            <P Name="Port">4</P>
            <P Name="IconDisplay">Port number</P>
            <Port>
              <P Name="PortNumber">1</P>
              <P Name="PropagatedSignals">xacchold</P>
              <P Name="ShowPropagatedSignals">on</P>
              <P Name="RTWStorageClass">Auto</P>
              <P
Name="DataLoggingNameMode">SignalName</P>
            </Port>
  </Block>

Port
value

  <Line>
      <P Name="ZOrder">29</P>
      <P Name="Labels">[0, 0]</P>
      <P Name="Src">6476#out:1</P>
      <P Name="Dst">6588#in:4</P>
  </Line>

ID and port value
of subsystem

ID value

Fig. 13. Parent-child relationship

In this figure, the subsystem will be connected to the parent
system through the Port value. A line/branch line will be an
input to a subsystem if it contains a child tag <P> with the
attribute “Name=Dst” having an ID value matching the parent
system’s ID value and the destination Port value matching an
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input Port value of the parent system. Similarly, a line will be
an output of the subsystem if it contains a child tag <P> with
the attribute “Name=Src” having an ID value matching the
parent system’s ID value and the source Port value matching
an output Port value of the parent system.

Signal Tracing Algorithm

Simulysis uses a DFS algorithm to traverse the call graph
with the support of a stack of nodes. We maintain the three
global parameters to support the DFS traversing algorithm.
First, pathList is the list of all paths from the startNode to
endNode. Second, path is a temporary variable for storing the
path being processed. Third, stack is a stack data structure to
store nodes of the call graph being processed. The algorithm
accepts startNode and endNode, which are the start and
end nodes of the signal being checked. When the algorithm
finishes running, pathList stores the list of all paths from
startNode to endNode. Details of the algorithm are shown
in Algorithm 3.

Algorithm 3 Signal Tracing
Input: startNode ∈ callGraph: the start node of the path being

checked.
endNode ∈ callGraph: the end node of path being checked.
Output: The list of paths is stored in pathList

1 begin
2 pathList, path, stack ← ∅
3 stack.push(startNode)
4 while stack is not empty do
5 curNode← stack.pop()
6 path← path ∪ {curNode}
7 if curNode is endNode then
8 newPath← clone path(path);
9 pathList← pathList ∪ {newPath});

10 if stack is not empty then
11 curNode← stack.pop()
12 path← remove visited nodes(path, curNode)
13 call Algorithm 3(curNode, endNode);
14 end
15 else
16 childList← get child nodes(curNode)
17 foreach child in childList do
18 stack.push(child)
19 end
20 if stack is not empty then
21 curNode← stack.pop()
22 call Algorithm 3(curNode, endNode);
23 end
24 end
25 end
26 end

The algorithm starts by initializing the path list (pathList),
temporary path (path), and the stack data structure (stack) as
empty sets (∅) (line 2). Then, the algorithm push startNode
to the stack (line 3). While the stack is not empty, the
algorithm does the following smaller tasks. First, the algorithm
retrieves the top node from the stack (stack) and adds it to
the temporary path (path) (lines 5 - 6). In case the current
node (curNode) is the end node (endNode), we have found
one path from the start node (startNode) to the end node
(endNode). The algorithm adds the cloned path (newPath)
of path to the path list (pathList) (lines 8 - 9). We clone the
path to ensure that later changes does not affect the cloned

path. Next, the algorithm finds the next path from the start
node (startNode) to the end node (endNode). If the stack
(stack) is not empty, the algorithm retrieves the current node
(curNode) from the top node of the stack (line 11). After
getting the previous path, currently, path still contains nodes
from the previous path. We remove all unnecessary nodes from
path (line 12). These nodes are all nodes from the end of path
to the sibling nodes of curNode that previously belonged to
path. Then, the algorithm recursively calls itself to find paths
from the current node (curNode) to the end node (endNode)
(line 13).

In case the current node (curNode) is not the end node
(endNode), the algorithm retrieves all next nodes (we call
them child nodes) (childList) in the directed call graph
(line 16) and pushes them to the stack (stack) (lines 17 - 19).
Then, if the stack (stack) is not empty, the algorithm retrieves
the top node (curNode) and recursively calls itself to find path
from the current node (curNode) to the end node (endNode)
(lines 20 - 23).

The time complexity of Algorithm 3 is O(V,E), where V
and E is the sets of nodes and edges in the call graph [41].

C. Change Set Computation

Simulysis generates call graphs corresponding to two ver-
sions of a Simulink project, as outlined in Algorithm 2. For
impact analysis using the WAVE-CIA method, it’s necessary
for Simulysis to identify the change set between these two call
graph versions. The process relies on the use of the “Name”
and “SID” properties of a Simulink block to determine its
presence across both graph versions. If a block is found in
both versions, Simulysis examines if any of its properties
have changed. If a change is detected, the block is marked
as changed. The specifics of this process are detailed in
Algorithm 4.

Algorithm 4 Compute the Change Set
Input: callGraphBefore, callGraphAfter
Output: changeSet

1 begin
2 changeSet, changedList, addedList, deletedList ← ∅
3 foreach node in callGraphAfter do
4 if ¬ NodeExistsIn(node, callGraphBefore) then
5 AddToList(node, addedList)
6 end
7 if NodeExistsIn(node, callGraphBefore) and

PropertyChanged(node, callGraphBefore,
callGraphAfter) then

8 AddToList(node, changedList)
9 end

10 end
11 foreach node in callGraphBefore do
12 if ¬ NodeExistsIn(node, callGraphAfter) then
13 AddToList(node, deletedList)
14 end
15 end
16 changeSet ← toSet(addedList, deletedList,

changedList)
17 return changeSet
18 end
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Algorithm 4 takes in two call graphs (callGraphBefore,
callGraphAfter) corresponding to two versions of a given
Simulink project. The output is the required change set
(changeSet). The algorithm begins by initializing the change
set (changeSet) and three temporary lists: changedList,
addedList, and deletedList as empty set (∅). For each node in
callGraphAfter, the algorithm checks if the node also exists
in callGraphBefore. If it does not, the node is considered
as added and is added to the added node list (addedList)
(lines 4 - 6). If the node exists in callGraphBefore and any
of its properties have changed in the two graphs (detected by
the changes in the text of properties), the node is added to
the change list (changedList) (lines 7 - 9). The algorithm
then checks for any node that exists in callGraphBefore but
not in callGraphAfter. Such a node is considered as deleted
and is added to the deleted node list (deletedList) (lines 11 -
15). Finally, the algorithm adds the three lists: addedList,
deletedList, and changedList to the changeSet (line 16)
and returns the result.

Time Complexity Analysis

Theorem III.3. Let n be the maximum number of nodes in the
call graphs for both the previous and updated project versions.
The time complexity of Algorithm 4 is O(n).

Proof: Let m be the number of nodes in the call graph
corresponding to the new project version (callGraphAfter).
From Algorithm 4, it is evident that the foreach loop at
lines 3 - 10 has a time complexity of O(m). In this loop, thanks
to the utilization of the hash table data structure, the action that
verifies if a node exists in a call graph has a time complexity
of O(1) (line 4 and line 7). The functions PropertyChanged
and AddToList are straightforward functions with a time com-
plexity of O(1), resulting in the time complexity of this loop
being O(m). Let k be the number of nodes in the call graph
corresponding to the old project version (callGraphBefore).
Following the same reasoning as above, the loop at lines 11 -
15 would have a time complexity of O(k). The toSet function
at line 16 is a simple function with a complexity of O(1).
From the above analysis, let n = max(m, k), the overall time
complexity of the algorithm is O(max(m, k))≡O(n).

D. Impact Set Computation

Upon obtaining the change set from Phase 2, Simulysis
proceeds to compute the impact set. This set includes Simulink
files and systems that are influenced by the Simulink compo-
nents present in the change set. Given a call graph and a change
set, which is a subset of the call graph, Simulysis follows
a two-step process to calculate the impact set. The first step
involves the computation of the core set, which includes the
computation of the neighbor set as detailed in Section III-D1.
The second step is the computation of the impact set itself.

1) Neighbor Set Computation: In WAVE-CIA, a core set
comprises Simulink systems that are potentially influenced by
several systems within the change set. The computation of the
core set utilizes the concept of a neighbor set associated with
a given component. A neighbor set of a specific component,
with a depth of n, includes other components in the call graph
that can be reached via a maximum of n edges.

The parameter “depth” plays a crucial role in the zoning
of the Coreset. The depth parameter significantly impacts the
accuracy and efficiency of the Coreset. Depth determines the
level at which data points are considered and clustered within
the Coreset. A higher depth value implies a finer granularity,
resulting in more detailed and potentially more accurate core-
sets, whereas a lower depth value leads to a more generalized
and coarser representation of the data. To identify the optimal
depth for a specific problem, empirical experimentation is
essential. The appropriate depth varies depending on the nature
of the dataset and the specific requirements of the analysis.
By conducting experiments with varying depth values, we can
evaluate the performance and accuracy of the resulting Coreset,
thereby determining the most suitable depth parameter for their
particular application.

Simulysis employs a recursive algorithm to identify the
neighbors of a specific system node within the call graph.
The procedure for determining the neighbor set is detailed in
Algorithm 5.

Algorithm 5 Compute the Neighbor Set
Input: systemNode: a given system in a call graph

depth: The maximum edges between two Simulink to
consider neighbors
callGraph: The call graph being analyzed

Output: neighborSet: The required neighbor set
1 begin
2 systemNode.isV isited← true
3 neighborSet ← ∅
4 callers ← findCallers(systemNode, callGraph)
5 callees ← findCallees(systemNode, callGraph)
6 neighborSet ← neighborSet ∪ callers ∪ callees
7 if depth ≤ 1 then
8 return neighborSet
9 end

10 foreach neighborNode ∈ neighborSet and
neighborNode.isV isited = false do

11 subNeighborSet← call Algorithm 5(neighborNode,
depth− 1, callGraph)

12 neighborSet ← neigborSet ∪ subNeighborSet
13 end
14 end

The algorithm initiates by marking the systemNode as
visited (line 2) and setting the neighborSet as an empty
set (∅) (line 3). It then identifies the direct caller (callers)
and direct callee (callees) lists of the current node, and
appends these lists to the neighbor set (lines 4 - 5). This step
locates all neighbor nodes that are connected to the current
systemNode via a single edge. The recursion terminates when
depth ≤ 1 (lines 7 - 9). Subsequently, for each unvisited
neighborNode in the neighborSet, the algorithm recursively
calls itself to find the neighbor set (subNeighborSet) of the
neighborNode and adds it to the neighborSet (lines 10 - 13).
In this step, the algorithm locates all direct neighbors of the
neighborNode, hence the parameter depth must be depth−1.
Upon termination of the algorithm, we obtain the neighbor set
of the given systemNode, with a depth number equivalent to
the number of edges from the systemNode.

2) Time Complexity Analysis:
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Theorem III.4. Let n be the total number of nodes in the
call graph, d be the maximum degree of any node in the call
graph, and k be the specified depth. The time complexity of
Algorithm 5 is O(n ∗ dk).

Proof: From Algorithm 5, we see that lines 4 - 5 finds
direct callers and callees of systemNode and adds them to
neighborSet which involves checking connections and has a
time complexity of O(d) since d is the maximum degree of
any node. Lines 7 -9 checks if depth is less than or equal to 1
and, if so, returns neighborSet, which has a time complexity
of O(1). Line 10 - 13 handle the recursive exploration of
neighbors. For each unvisited neighbor in neighborSet, the
algorithm recursively calls itself with depth−1. This recursion
explores up to k levels, and at each level, it may process up
to d neighbors. The time complexity for exploring neighbors
at each level is O(d), and since the recursion depth is O(dk).
Given that there are n nodes in the call graph and in the worst
case, each node needs to process its neighbors, the overall
time complexity of the algorithm is O(n ∗dk). As a result, the
overall time complexity of this algorithm is O(n ∗ dk).

3) Core Set Computation: The computation of the core set
is a crucial step in the WAVE-CIA method. This computation
depends on the change set, and its outcome is subsequently
utilized to calculate the impact set. The specifics of the core
set computation process can be found in Algorithm 6.

Algorithm 6 Compute Core Set
Input: callGraph: The call graph of the Simulink project

changeSet: A set of components that have been
changed
depth: An integer specifying the neighbor set explo-
ration depth

Output: coreSet: the required core set
1 begin
2 coreSet ← ∅
3 foreach node ∈ callGraph do
4 if node /∈ changeSet then
5 neighborSet ← call Algorithm 5(node, depth,

callGraph)
6 if —neighborSet ∩ changeSet— > 1 then
7 coreSet ← coreSet ∪ {node}
8 end
9 end

10 end
11 coreSet ← coreSet ∪ changeSet
12 return coreSet
13 end

The algorithm takes in three inputs: the call graph
(callGraph), the change set (changeSet), and an integer
(depth) that determines the extent of the neighbor set com-
putation. The output is the desired core set (coreSet). The
algorithm starts by initializing the core set as an empty set (∅)
(line 2). It then iterates over each node (node) in the call graph
(callGraph) that is not in the change set (changeSet), and in-
vokes Algorithm 5 to compute the neighbor set (neighborSet)
of the node (line 5). If the neighborSet and changeSet share
more than one node, the node is added to the coreSet (lines 6 -
8). After all nodes in the callGraph have been checked, he
algorithm incorporates the changeSet into the coreSet, as the

core set is a superset of the change set (line 11). The algorithm
concludes by returning the coreSet (line 12).

Time Complexity Analysis

Theorem III.5. Let n be the total number of nodes in the
call graph, d be the maximum degree of any node in the call
graph, and k be the specified depth. The time complexity of
Algorithm 5 is O(n× dk).

Proof: From Algorithm 6, we see that line 2 initializes
the core set with a time complexity of O(1). Lines 3 - 10
iterate through each node in the call graph that is not in the
change set. For each node, line 5 calls Algorithm 5 to compute
the neighbor set, which has a time complexity of O(dk) since
Algorithm 5 explores up to k levels of neighbors. Line 6 checks
the intersection of the neighbor set and the change set, which
involves set operations with a time complexity of O(d). Line 7
adds the node to the core set if the intersection condition is
met, with a time complexity of O(1). Line 11 merges the
change set into the core set, which has a time complexity of
O(n) in the worst case. Given that there are n nodes in the
call graph and each node’s neighbor set computation involves
O(dk) operations, the overall time complexity of the algorithm
is O(n× dk).

4) Impact set calculation: Although the core set is ex-
pected to encompass many components affected by the change
sets, other impacted components may not be included in the
core set. Consequently, it becomes necessary to broaden the
change ripple to account for additional impacts that might
have been overlooked, or in simpler terms, to enlarge the core.
The fundamental concept of this procedure is that any node
not already in the impact set will be added if both its caller
and callee sets share nodes with the existing impact set. The
specifics of this procedure can be found in Algorithm 7.

Algorithm 7 Compute the Impact Set
Input: callGraph: The call graph of the Simulink project
coreSet: A core set
Output: impactSet: the required impact set

1 begin
2 impactSet ← coreSet
3 isStable ← false
4 while not isStable do
5 isStable ← true
6 foreach node ∈ callGraph do
7 if node /∈ impactSet then
8 callerSet ← findCallers(node, callGraph)
9 calleeSet ← findCallees(node, callGraph)

10 if —callerSet ∩ impactSet—>0 and
—calleeSet ∩ impactSet—>0 then

11 impactSet ← impactSet ∪ {node}
12 isStable ← false
13 end
14 end
15 end
16 end
17 return impactSet
18 end

Algorithm 7 takes in two inputs: the call graph (callGraph)
and the core set (coreSet). It outputs the desired impact set
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(impactSet). The algorithm begins by initializing the impact
set (impactSet) with the core set (coreSet) (line 2). It then
continuously checks each node in the call graph that is not in
the impact set to determine if it has at least one caller and one
callee within the impact set. If it does, the node is considered
to be impacted by the change set (lines 6 - 15). This process is
repeated until the impact set reaches a state of stability, where
no additional nodes are added during the checking process. The
stability of the impact set is monitored using a boolean flag,
isStable (line 3), which is initially set to true true (line 5) at
the start of the call graph checking loop (lines 6 - 15). This
flag is reset to false when a new node is added to the impact
set (line 12). If the flag remains false after the loop, the loop
is rerun. If not, the algorithm terminates the loop and returns
the impact set (impactSet) (line 17).

Time Complexity Analysis

Theorem III.6. Let n be the total number of nodes in the call
graph, and d be the maximum degree of any node in the call
graph. The time complexity of Algorithm 6 is O(n× d).

Proof: From Algorithm 7, we see that line 2 initializes
the impact set with a time complexity of O(1). The outer
loop (lines 4 - 16) repeats until no changes occur, and within
each iteration, the inner loop (lines 6 - 15) iterates through
each node in the call graph. Line 10 checks the intersections
of the caller set and callee set with the impact set, each of
which involves set operations with a time complexity of O(d).
Lines 11 - 12 add the node to the impact set if the conditions
are met and set the changed flag, both of which have a time
complexity of O(1). Assuming the algorithm stabilizes after
a constant number of iterations, the time complexity for each
iteration through the call graph is O(n × d). Therefore, the
overall time complexity of the algorithm is O(n× d).

IV. IMPLEMENTATION

We’ve developed a tool named Simulysis2, utilizing the
MVC framework and C#.NET within the Microsoft Visual
Studio IDE. The architecture of Simulysis, depicted in Fig. 14,
comprises three primary components.

Controller

View Model

Project
Database

Update Display

User Input

Action Handling

Data Update

File Relationship
ControllerUpload Controller

Projects Controller Analysis Controller

Project Upload
View

Model ViewFile Relationship
View

Impact Analysis
View Projects

Wave-CIA

Project Version
Comparator

Simulink Data
Reader

Fig. 14. The Simulysis architecture.

• Model: The Model component, encompassing four
sub-components, is tasked with managing project
data. The Projects sub-component oversees the in-
formation of Simulink projects. The Simulink Data

2https://github.com/KaoSon2004/Simulysis-CIA

Reader extracts and handles crucial data from
Simulink projects. The Project Version Comparator
sub-component performs comparisons between differ-
ent versions of Simulink projects. Lastly, the WAVE-
CIA sub-component carries out the change impact
analysis.

• Controller: The Controller component, composed of
four sub-components, acts as a bridge, overseeing
user interactions and the flow of the application. The
four sub-components include the Upload Controller,
Project Controller, Analysis Controller, and File Re-
lationships. These are tasked with handling requests
on project uploads, project information management,
project file and structure analysis, and file relationship
management, respectively.

• View: The View component displays necessary infor-
mation via interface packages such as Project Upload
View, File Relationship View, Impact Analysis View,
and Model View. These views facilitate the user in-
terface for Simulink project uploads, file relationship
management, impact analysis execution, and the vi-
sualization of changes and impacts within a specific
project, respectively.

Fig. 15 and 16 display Simulysis screens, showcasing a
standard Simulink file. The screen is divided into three sec-
tions, each marked with numbers for straightforward reference.
The three sections are described as follows.

• Section 1: This section displays the differences be-
tween two specified file versions within the Simulink
project. It features a search bar and tabs labeled
“Added”, “Changed”, “Deleted”, and “Impacted”.
These tabs categorize the systems, which are listed
with an option to adjust their visibility.

• Section 2: This section outlines the functionalities
associated with the WAVE-CIA method. It comprises
two components: a dropdown list for selecting the
depth of the Core set computation, and a button to
initiate the WAVE-CIA analysis.

• Section 3: This section displays the Model View of
the chosen Simulink file. It illustrates the Simulink
systems (blocks) using the data of blocks and lines
extracted from Simulink files, as detailed in Sec-
tion III-B1. In this view, systems that have been added
are highlighted in green; changed systems are marked
in orange; and impacted systems are indicated in cyan.
Other systems are either not filled or their color is
determined by their properties.

V. EXPERIMENTS

To assess the practical utility and efficacy of Simulysis,
we have conducted tests using various open-source projects.
These projects, sourced from GitHub3, have a Git history
of committed changes to Simulink source files. The projects
include the following:

3https://github.com/
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Fig. 15. An example of Simulink file in Simulysis.

Fig. 16. An example of impacted systems in Simulysis.

• Intelligent-EMS4: This project aims to explore the
feasibility of a Machine Learning-based Energy Man-
agement System (EMS) for an inboard DC-grid. The
main energy source is hydrogen (Fuel-Cell), supple-
mented by a battery for quick load adjustments. In this
project, Simulink is utilized for simulating a DC chip.
For our experiment, we employed commit 5d200f
(representing the old version) and commit 72216a
(representing the new version).

• Failure Detection and Fault Tolerant Control of a
Jet-Powered Flying Humanoid Robot5 (called Fail-
ure Detection): This project involves Simulink source
code used to conduct experiments for the related
paper [42]. In our experiments, we utilized commit
f0ed42 to represent the old version and commit 9427f4
for the new version.

• FMT-Model6: The Firmament Model (FMT Model)
is a crucial part of the Firmament Autopilot project.
This model provides a thorough simulation frame-
work, along with algorithm libraries that have been
carefully developed using MATLAB/Simulink. For
our experiments, we referred to commit 37b5ae to
represent the old version and commit f3c154 for the
new version.

• Reinforcement Learning for Control of Valves7

(called Reinforcement Learning): This project lever-

4https://github.com/dfpasdel/Intelligent EMS
5https://github.com/ami-iit/paper nava 2023 icra fault-control-ironcub
6https://github.com/Firmament-Autopilot/FMT-Model/
7https://github.com/Rajesh-Siraskar/Reinforcement-Learning-for-Control-of-Valves/

ages Simulink to investigate the application of Rein-
forcement Learning for optimal control of non-linear
systems. We conducted our experiments using two dif-
ferent versions of the system, represented by commit
171ef7 (the older version) and commit 25dc044 (the
newer version).

• Kugle8: This project employs Simulink to make a self-
balancing robot equipped with three omni wheels. Our
experiments were conducted using two versions of
the system, represented by commit 3be7e7 (the older
version) and commit b1ee16 (the newer version).

• Propulsion System Model9: This project employs
Simulink in the design of a Hybrid Motor Nitrous
Oxide Rocket Propulsion System. Our experiments
were conducted using two versions of the system,
represented by commit 1994f02 (the older version)
and commit 7aba367 (the newer version).

The five Simulink projects were chosen based on their
increasing size and complexity, ranging from small and sim-
ple to large and complex, to comprehensively evaluate the
effectiveness of the proposed method. These projects are well-
known within the Simulink community, ensuring the results
are relevant and applicable to commonly used projects. Addi-
tionally, the selected projects are complex enough to simulate
real-world scenarios, demonstrating that the proposed method
can be effectively applied in practical settings. By selecting
projects with varying sizes and complexities, we ensure a thor-
ough and representative assessment of the Simulysis method’s
performance in actual applications, implicitly suggesting its
viability for real-world projects.

The experiments are performed on a server with the fol-
lowing configuration: Intel R⃝ CoreTM i5-7300HQ @ 2.50 GHz,
RAM: 16GB RAM. In our experiments, we set depth = 3
for the core set computation. We checked the accuracy of the
results by cross-referencing them with MATLAB’s Simulink
tool and calculated the following key metrics to evaluate
the effectiveness of the Simulysis method: the number of
changed systems (blocks), the number of impacted systems,
the total number of systems in the new project version, the
percentage of impacted systems in the new project version, the
amount of memory required, and the time taken to perform the
experiments. The results of these experiments are presented in
Table VI. In this table, the columns are as follows:

• Project: the project under consideration.

• CB: number of changed blocks between the two
versions.

• IB: number of impacted blocks in the new version.

• TB: total number of blocks in the new project version.

• %: percentage of impacted blocks within the new
project (= IB/TB).

• Mem (MB): amount of the required memory (in MB).

• Time (s): The time (in seconds) taken to compute the
impact set.

8https://github.com/mindThomas/Kugle-MATLAB
9https://github.com/icl-rocketry/PropulsionSystemModel
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TABLE VI. EXPERIMENTAL RESULTS

Project CB IB TB % Mem (MB) Time (s)

Intelligent-EMS 88 126 397 31.73 1.31 0.123

Failure Detection 16 26 1059 2.46 4.33 0.35

FMT-Model 2085 2668 9700 27.51 16.64 1.911

Reinforcement

Learning
118 156 396 39.39 0.65 0.232

Kulge 263 322 1240 25.97 2.72 0.288

Propulsion 189 269 1115 24.13 5.78 0.767

Based on the experimental results presented in Table VI,
we can make the following observations:

• For the “Intelligent-EMS” project, out of 397 blocks,
23 are impacted, which constitutes 5.79% of the total.

• For the “Failure Detection” project, out of 1059
blocks, 26 are impacted, which represents 2.46% of
the total.

• For the “FMT-Model project”, out of 9700 blocks, 289
are impacted, which represents 2.98% of the total.

• For the “Reinforcement Learning” project, out of 396
blocks, 50 are impacted, which represents 12.63% of
the total.

• For the “Kugle”, out of 1240 blocks, 76 are impacted,
which represents 6.13% of the total.

• For the “Propulsion”, out of 1115 blocks, 75 are
impacted, which represents 6.73% of the total.

• In comparing the change calculation results, we found
them to be accurate when cross-checked with MAT-
LAB’s Simulink model comparison tool. For the
impact analysis, we tested our implementation and
confirmed it aligns correctly with the WAVE-CIA
algorithm. However, the correctness of the WAVE-CIA
algorithm itself is beyond the scope of this discussion.

• For the largest project (FMT-Model), which comprises
a total of 9700 systems, the memory and time con-
sumption is 24.25 MB and 14.79 seconds, respec-
tively. Given the current capabilities of memory and
processing, we consider this to be acceptable. This
demonstrates the practical applicability of Simulysis
for real-world projects.

• While it appears that the memory and time usage
may be proportional to the number of changed and
impacted systems, there is no definitive evidence to
support this observation.

VI. RELATED WORKS

Numerous studies have been conducted on the Change Im-
pact Analysis (CIA) issue, specifically about Simulink projects
and more generally, software projects. In this section, we focus
solely on the most relevant studies and tools [37], [5], [6], [40],
[43], [44], [3], [45].

In the realm of model-based testing, many researchers have
made significant contributions to UML impact analysis. In

2003, Briand et al. introduced a UML model-based approach
to impact analysis that can be implemented prior to any
changes [43]. Initially, they ensure the consistency of the
UML diagrams. Subsequently, they identify the modifications
between two distinct versions of a UML model. Following
this, they determine the model elements that are directly or
indirectly affected by these changes using impact analysis
rules (formulated in Object Constraint Language). Our interest
aligns with Briand’s in the area of software change impact
analysis. However, our approach involves analyzing the source
code of Simulink projects to construct the call graph and
applying the WAVE-CIA method to compute the impact set.

In 2010, Fourneret et al. introduced an automated model-
based impact analysis [44]. Fourneret’s approach involves a set
of algorithms that identify dependent and impacted elements
following the detection of changes in a UML/OCL Statechart
diagram. This allows an engineer to pinpoint the critical
aspects of the software and determine which functionalities
require regression testing. While our interests align with
Fourneret’s in the area of software system regression testing,
our focus is specifically on the change impact analysis of
Simulink projects.

In 2010, Li et al. introduced the WAVE-CIA method, a
novel approach for calculating the impact set derived from the
call graph of various types of software projects [3]. Our work
aligns with this interest in change impact analysis. However,
our application of the WAVE-CIA method is specifically
tailored to Simulink projects. We construct the call graph using
Simulink files and subsequently apply the WAVE-CIA method
to these generated call graphs.

Diffplug [37] conducts impact analysis of Simulink
projects using a straightforward method known as signal
tracing. This method allows users to select a block and trace
its signal, enabling them to determine the potential impact of a
block change. However, Diffplug necessitates that users man-
ually navigate through each level of the model to identify the
impacted target inputs and/or outputs. Conversely, Simulysis
automates this process by analyzing the project, calculating
changes, and computing the impact set using the WAVE-CIA
method.

In 2017, Rapos and Cordy introduced SimPact, a method
and tool for analyzing the impact of changes in Simulink
models [5]. SimPact’s impact analysis of a Simulink model
involves two stages: change isolation and the determination
of the impact of changes on test values. Initially, SimPact
identifies the differences between two versions of a model.
Subsequently, it assesses the potential impact of these changes
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on inputs and outputs by traversing the entire model hierarchy,
tracing, and highlighting all potential impacts from a specific
block at all levels. While our interest in the impact analysis
of Simulink projects aligns with that of SimPact, there are
key differences between SimPact and Simulysis. In the change
isolation phase, SimPact utilizes the model differencing script
of Rapos and Cordy [46], which employs the internal Simulink
comparison operator. Conversely, Simulysis directly analyzes
the Simulink project to construct the call graph and compares
the two call graph versions to identify the change set. In the
impact analysis phase, SimPact depends on the caller-callee
relationship to identify the impact set, which is fundamentally
different from Simulysis, which uses the WAVE-CIA method
to determine the impact set.

In 2020, Bennett et al. introduced the Boundary Diagram
Tool (BDT), a method designed for change impact analysis
of large Simulink projects within embedded systems [6]. BDT
conducts impact analysis by tracing changes throughout the
Simulink model. Our work aligns with this interest in Simulink
project impact analysis. However, our approach differs as we
directly analyze Simulink projects to construct the call graph
and utilize the WAVE-CIA method to compute the impact set.

In 2021, Jaskolka et al. [40] conducted an examination of
real industrial software repositories and their version control
systems to gain insights into potential changes in Simulink.
Their intention was to guide the usage of Simulink in industrial
practices and understand the distribution of change types in
Simulink projects. However, Simulysis differs fundamentally
in its objectives, as it primarily aims to compute the impact
set.

In 2023, Tran et al. developed CIA4CS, a method specif-
ically designed for Change Impact Analysis (CIA) of C#
projects, based on the WAVE-CIA approach [45]. CIA4CS fills
a significant void in existing methodologies, considering the
widespread use of the C# language in the software industry.
The method utilizes static code analysis to build dependency
graphs, which then facilitates the application of the WAVE-
CIA. The authors have integrated CIA4CS into a tool and
conducted tests on a variety of C# projects. Their experi-
ments demonstrated the tool’s efficiency in analyzing project
components, dependencies, and the elements impacted across
different versions. While our interests align with Tran’s in
terms of the CIA and the WAVE-CIA method, our focus is
specifically on the CIA of Simulink projects.

VII. CONCLUSION

We have introduced Simulysis, a method designed for the
change impact analysis of Simulink projects. When provided
with two versions of a Simulink project, Simulysis performs
the CIA by constructing the call graph from the files, iden-
tifying the changes, and calculating the impact set using the
WAVE-CIA method. We have incorporated this method into a
tool, also named Simulysis, and conducted several experiments
on open-source projects, yielding promising results. Further
discussion about the method is provided in the paper.

Looking ahead, we envision several enhancements to
Simulysis to augment its capabilities. Firstly, we are actively
working on improving the speed of call graph construction and

refining the algorithm used for impact set determination. Sec-
ondly, we plan to upgrade the tool’s user interface to facilitate
better visualization of large-scale Simulink projects. Lastly, we
aim to develop additional features such as report exporting
and system integration support to better accommodate user
environments. Through these advancements, our goal is to offer
users an efficient, user-friendly tool that bolsters the role of
Simulysis in ensuring effective software quality assurance for
Simulink projects.

ACKNOWLEDGMENTS

This research was funded by the research project QG.25.09
of Vietnam National University, Hanoi.

REFERENCES

[1] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475

[2] M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou, I. Deligiannis, and
V. C. Gerogiannis, “Change impact analysis: A systematic mapping
study,” Journal of Systems and Software, vol. 174, p. 110892, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S016412122030282X

[3] B. Li, Q. Zhang, X. Sun, and H. Leung, “Wave-cia: A novel
cia approach based on call graph mining,” in Proceedings of the
28th Annual ACM Symposium on Applied Computing, ser. SAC ’13.
New York, NY, USA: Association for Computing Machinery, 2013,
p. 1000–1005. [Online]. Available: https://doi.org/10.1145/2480362.
2480554

[4] K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, and S. U.
Khan, “Impact analysis and change propagation in service-oriented
enterprises: A systematic review,” Information Systems, vol. 54,
pp. 43–73, 2015. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306437915001179

[5] E. J. Rapos and J. R. Cordy, “Simpact: Impact analysis for simulink
models,” in 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2017, pp. 489–493.

[6] B. Mackenzie, V. Pantelic, G. Marks, S. Wynn-Williams, G. Selim,
M. Lawford, A. Wassyng, M. Diab, and F. Weslati, “Change impact
analysis in simulink designs of embedded systems,” ser. ESEC/FSE
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 1274–1284. [Online]. Available: https://doi.org/10.1145/
3368089.3417060

[7] Bohner, “Impact analysis in the software change process: a year
2000 perspective,” in 1996 Proceedings of International Conference
on Software Maintenance, 1996, pp. 42–51.

[8] O. Bouchaala, M. Yangui, S. Tata, and M. Jmaiel, “Dat: Dependency
analysis tool for service based business processes,” in 2014 IEEE 28th
International Conference on Advanced Information Networking and
Applications, 2014, pp. 621–628.

[9] S. Lehnert, “A taxonomy for software change impact analysis,” in
Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th Annual ERCIM Workshop on Software
Evolution, ser. IWPSE-EVOL ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 41–50. [Online]. Available:
https://doi.org/10.1145/2024445.2024454

[10] S. Basu, F. Casati, and F. Daniel, “Toward web service dependency
discovery for soa management,” in 2008 IEEE International Conference
on Services Computing, vol. 2, 2008, pp. 422–429.

[11] D. Romano and M. Pinzger, “Using vector clocks to monitor
dependencies among services at runtime,” in Proceedings of the
International Workshop on Quality Assurance for Service-Based
Applications, ser. QASBA ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 1–4. [Online]. Available:
https://doi.org/10.1145/2031746.2031748

www.ijacsa.thesai.org 868 | P a g e

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475
https://www.sciencedirect.com/science/article/pii/S016412122030282X
https://www.sciencedirect.com/science/article/pii/S016412122030282X
https://doi.org/10.1145/2480362.2480554
https://doi.org/10.1145/2480362.2480554
https://www.sciencedirect.com/science/article/pii/S0306437915001179
https://www.sciencedirect.com/science/article/pii/S0306437915001179
https://doi.org/10.1145/3368089.3417060
https://doi.org/10.1145/3368089.3417060
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2031746.2031748


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

[12] S. Qi, B. Li, C. Liu, X. Wu, and R. Song, “A trust impact analysis
model for composite service evolution,” in Proceedings of the 2012
19th Asia-Pacific Software Engineering Conference - Volume 01, ser.
APSEC ’12. USA: IEEE Computer Society, 2012, p. 73–78. [Online].
Available: https://doi.org/10.1109/APSEC.2012.30

[13] D. Zhao, S. Liu, L. Wu, R. Wang, and X. Meng, “Hypergraph-based
service dependency resolving and its applications,” in 2012 IEEE Ninth
International Conference on Services Computing, 2012, pp. 106–113.

[14] Y. Wang, J. Yang, W. Zhao, and J. Su, “Change impact analysis in
service-based business processes,” Service Oriented Computing and
Applications, vol. 6, no. 2, p. 131–149, 2012.

[15] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
managing web services: issues, solutions, and directions,” The VLDB
Journal, vol. 17, no. 3, p. 537–572, 05 2008. [Online]. Available:
https://doi.org/10.1007/s00778-006-0020-3

[16] P. Kumar and Ratneshwer, “A review on dependency analysis of soa
based system,” 2014. [Online]. Available: https://api.semanticscholar.
org/CorpusID:11112313

[17] S. Black, “Computing ripple effect for software maintenance,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 13, no. 4, pp. 263–279, 2001. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.233

[18] H. Xiao, J. Guo, and Y. Zou, “Supporting change impact analysis
for service oriented business applications,” in International Workshop
on Systems Development in SOA Environments (SDSOA’07: ICSE
Workshops 2007), 2007, pp. 6–6.

[19] S. Wang and M. A. Capretz, “A dependency impact analysis model
for web services evolution,” in 2009 IEEE International Conference on
Web Services, 2009, pp. 359–365.

[20] ——, “Dependency and entropy based impact analysis for service-
oriented system evolution,” in 2011 IEEE/WIC/ACM International Con-
ferences on Web Intelligence and Intelligent Agent Technology, vol. 1,
2011, pp. 412–417.

[21] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475

[22] L. Westfall, “Bidirectional requirements traceability,” Software Quality
Professional Magazine, vol. 10, 2007. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:107717465

[23] C. Boldyreff, E. Burd, R. Hather, M. Munro, and E. Younger, “Greater
understanding through maintainer driven traceability,” in WPC ’96. 4th
Workshop on Program Comprehension, 1996, pp. 100–106.

[24] S. Pfleeger and S. Bohner, “A framework for software maintenance
metrics,” in Proceedings. Conference on Software Maintenance 1990,
1990, pp. 320–327.

[25] H. K. Dam and A. Ghose, “Mining version histories for change
impact analysis in business process model repositories,” Computers
in Industry, vol. 67, pp. 72–85, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0166361514001833

[26] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proceedings. 26th International
Conference on Software Engineering, 2004, pp. 563–572.

[27] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” J. Softw. Maint. Evol., vol. 19, no. 2, p. 77–131, mar 2007.
[Online]. Available: https://doi.org/10.1002/smr.344

[28] H. Khanh Dam, “Predicting change impact in web service ecosystems,”
International Journal of Web Information Systems, vol. 10, no. 3,
pp. 275–290, mar 2014. [Online]. Available: https://doi.org/10.1108/
IJWIS-03-2014-0006

[29] W. Fdhila, S. Rinderle-Ma, and C. Indiono, “Memetic algorithms for
mining change logs in process choreographies,” in Service-Oriented
Computing, X. Franch, A. K. Ghose, G. A. Lewis, and S. Bhiri, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 47–62.

[30] Broadcom, “Ca harvest software change manager,” accessed date:
2024-02-15. [Online]. Available: https://www.broadcom.com/products/
software/service-management/harvest-software-change-manager

[31] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “Jripples: A tool for
program comprehension during incremental change,” in Proceedings
of the 13th International Workshop on Program Comprehension,
ser. IWPC ’05. USA: IEEE Computer Society, 2005, p. 149–152.
[Online]. Available: https://doi.org/10.1109/WPC.2005.22

[32] CoderGears, “Jarchitect :: Java static analysis and code quality tool,”
accessed date: 2024-02-15. [Online]. Available: https://www.jarchitect.
com

[33] SonarSource, “Clean code: Writing clear, readable, understandable;
reliable quality code — sonar,” accessed date: 2024-02-15. [Online].
Available: https://www.sonarsource.com/products/sonarqube/

[34] Checkmarx, “Application security testing company — software security
testing solutions — checkmarx,” accessed date: 2024-02-15. [Online].
Available: https://checkmarx.com/

[35] R. Hat, “Ansible is simple it automation,” accessed date: 2024-02-15.
[Online]. Available: https://www.ansible.com

[36] Atlassian, “Jira,” accessed date: 2024-02-15. [Online]. Available:
https://www.atlassian.com/software/jira

[37] Diffplug, “Free simulink viewer and differ — diffplug,” accessed date:
2024-02-15. [Online]. Available: https://www.diffplug.com/features/
simulink

[38] MathWorks, Simulink - Simulation and Model-Based Design -
MATLAB, accessed date: 2024-02-25. [Online]. Available: https:
//www.mathworks.com/products/simulink.html

[39] ——, Matlab, accessed date: 2024-02-25. [Online]. Available:
https://www.mathworks.com/products/matlab.html

[40] M. Jaskolka, V. Pantelic, A. Wassyng, M. Lawford, and R. Paige,
“Repository mining for changes in simulink models,” in 2021
ACM/IEEE 24th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), 2021, pp. 46–57.

[41] R. Tarjan, “Depth-first search and linear graph algorithms,” in 12th
Annual Symposium on Switching and Automata Theory (swat 1971),
1971, pp. 114–121.

[42] G. Nava and D. Pucci, “Failure detection and fault tolerant control
of a jet-powered flying humanoid robot,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 12 737–
12 743.

[43] L. Briand, Y. Labiche, and L. O’Sullivan, “Impact analysis and change
management of uml models,” in International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., 2003, pp. 256–265.

[44] E. Fourneret and F. Bouquet, “Impact analysis for uml/ocl statechart
diagrams based on dependence algorithms for evolving critical
software,” sep 2010, accessed date: 2024-02-15. [Online]. Available:
https://publiweb.femto-st.fr/tntnet/entries/120/documents/author/data

[45] H. V. Tran, N. T. M. Loan, D. D. Kien, N. H. Trang, L. V.
Huy, and P. N. Hung, “Cia4cs: A method for change impact
analysis of c# projects,” Journal on Information Technologies and
Communications, vol. 2024, no. 01, 11 2023. [Online]. Available:
https://doi.org/10.1145/2480362.2480554

[46] E. J. Rapos and J. R. Cordy, “Examining the co-evolution relationship
between simulink models and their test cases,” in Proceedings
of the 8th International Workshop on Modeling in Software
Engineering, ser. MiSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 34–40. [Online]. Available:
https://doi.org/10.1145/2896982.2896983

www.ijacsa.thesai.org 869 | P a g e

https://doi.org/10.1109/APSEC.2012.30
https://doi.org/10.1007/s00778-006-0020-3
https://api.semanticscholar.org/CorpusID:11112313
https://api.semanticscholar.org/CorpusID:11112313
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.233
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475
https://api.semanticscholar.org/CorpusID:107717465
https://api.semanticscholar.org/CorpusID:107717465
https://www.sciencedirect.com/science/article/pii/S0166361514001833
https://www.sciencedirect.com/science/article/pii/S0166361514001833
https://doi.org/10.1002/smr.344
https://doi.org/10.1108/IJWIS-03-2014-0006
https://doi.org/10.1108/IJWIS-03-2014-0006
https://www.broadcom.com/products/software/service-management/harvest-software-change-manager
https://www.broadcom.com/products/software/service-management/harvest-software-change-manager
https://doi.org/10.1109/WPC.2005.22
https://www.jarchitect.com
https://www.jarchitect.com
https://www.sonarsource.com/products/sonarqube/
https://checkmarx.com/
https://www.ansible.com
https://www.atlassian.com/software/jira
https://www.diffplug.com/features/simulink
https://www.diffplug.com/features/simulink
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/matlab.html
https://publiweb.femto-st.fr/tntnet/entries/120/documents/author/data
https://doi.org/10.1145/2480362.2480554
https://doi.org/10.1145/2896982.2896983

	Introduction
	Backgrounds
	Change Impact Analysis
	WAVE-CIA
	Simulink
	Relationships in Simulink Project
	Relationships between files
	Relationships between systems

	Types of Change

	Simulysis Method
	Simulysis Overview
	Call Graph Generation
	Project analysis
	Callee map generation
	Call graph generation
	Signal tracing method

	Change Set Computation
	Impact Set Computation
	Neighbor Set Computation
	Time Complexity Analysis
	Core Set Computation
	Impact set calculation


	Implementation
	Experiments
	Related Works
	Conclusion
	References

