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Abstract—High-dimensional microarray datasets are prone to
the “curse of dimensionality” due to feature redundancy, which
impairs the performance of machine learning models, and feature
selection is the key to addressing this issue. This study proposes
an Improved Binary Harris Hawks Optimization algorithm
(IBHHO) for feature selection in high-dimensional microarray
data. Core innovations comprise: i) a hybrid filter-wrapper
framework integrating a filter method (ReliefF), a wrapper
method (HHO) and a classifier (SVM) to simultaneously optimize
ReliefF parameters, SVM hyperparameters, and feature subsets;
ii) a differentiated exploration–exploitation strategy leveraging
HHO’s two-stage behavior (global parameter optimization during
exploration; feature refinement and local parameter tuning dur-
ing exploitation); and iii) an elite feature guidance strategy that
reduces redundant exploration and accelerates convergence via
fixed key-feature anchor points. Experiments conducted on eight
public microarray datasets demonstrate that IBHHO reduces
feature counts while improving classification accuracy, achieving
comprehensive performance superior to benchmark algorithms.
Consequently, IBHHO offers an efficient feature selection frame-
work for high-dimensional biomedical data analysis.
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I. INTRODUCTION

Technological advancements in the contemporary era
have driven revolutionary transformations in data acquisition
methodologies, while also engendering the proliferation of
redundant or misleading data—this may inadvertently com-
promise the performance of learning models. Furthermore,
coupled with the “curse of dimensionality” [1], the substantial
volume of features in datasets frequently induces overfitting in
machine learning frameworks.

A domain of particular interest is the analysis of high-
dimensional microarray datasets for gene expression profiling,
which facilitates the identification of cancer-related genes.
Microarray data (obtained from microarray experiments) is
typically presented as a two-dimensional table, with rows rep-
resenting gene expression levels and columns corresponding
to samples [2]. Notably, these datasets are characterized by a
small number of samples juxtaposed against hundreds of thou-
sands of genes. While microarray datasets have been widely
used for cancer classification [3], a large number of genes
are irrelevant to disease classification—posing a challenge for
understanding target diseases and underscoring the crucial role
of feature selection in reducing data dimensionality [4].

*Corresponding authors.

The objective of feature selection for microarray data is
to identify a set of genes that best discriminates between
biological sample types, eliminating irrelevant and redundant
information to enhance the efficiency and accuracy of can-
cer classification algorithms. According to feature evaluation
patterns, feature selection algorithms are broadly categorized
into three types: filter methods, wrapper methods, and hybrid
methods [5].

Filter methods employ fast standard metrics to evaluate
feature importance without classifier feedback, offering low
computational complexity but being agnostic to classifier
types. In contrast, wrapper methods leverage classifier feed-
back for feature subset selection—their selection process and
performance are biased toward the specific classifier, and while
they achieve superior classification accuracy, they incur higher
computational overhead. The hybrid method integrates wrapper
and filter approaches: in the initial stage, a filter method
quickly screens out irrelevant features to reduce dimension-
ality; subsequently, a wrapper method explores the reduced
feature space for a more concise subset [6]. It balances compu-
tational efficiency and classification accuracy—slightly slower
than pure filters but with better classification performance,
and significantly less complex than standalone wrappers while
achieving comparable or superior results.

Recently, hybrid feature selection strategies have gained
traction for high-dimensional datasets (e.g., [7], [8]), typically
using a filter to preselect top n features before a wrapper
searches for the optimal subset. However, this traditional two-
stage strategy has obvious limitations: the filtering stage relies
solely on statistical correlation between features and the target,
ignoring the classifier’s learning needs—potentially discarding
features crucial for classification but with insignificant statis-
tical indicators (which cannot be reintroduced in the wrapping
stage). Additionally, the manually preset n creates a trade-
off: too small restricts the wrapper’s search range, while too
large increases computational load—this defect is particularly
prominent in microarray data. Therefore, this study proposes
integrating the filter’s initial feature screening into the wrapper
stage via a dynamic optimization mechanism. Filter feature
evaluation receives classifier feedback to avoid misjudgment;
unselected features are retained in a candidate pool for reeval-
uation during wrapper iteration, enabling dynamic recall of
useful features. Meanwhile, filter subset size parameters adapt
to different datasets.

Support Vector Machine (SVM) [9] is a widely used
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classification technique with proven effectiveness [10]. Beyond
feature selection, SVM parameter configuration significantly
impacts accuracy, and the core challenge in enhancing SVM’s
performance lies in simultaneous optimization of feature sub-
sets (discrete 0/1 variables) and SVM parameters (continuous
values)—a mixed-variable optimization problem [11].

Metaheuristic algorithms (e.g., Harris Hawks Optimiza-
tion, HHO [12]) are well-suited for wrapper-based feature
selection due to computational efficiency and global search
capabilities. HHO mimics Harris hawks’ cooperative hunting
(exploration, transition, exploitation): the exploration phase
avoids local optima via global solution space search, while the
exploitation phase refines solution quality through precise local
adjustments. Accordingly, this study integrates filter parameter
optimization into HHO’s exploration phase (aligning feature
rankings with classification objectives) and feature subset
refinement into the exploitation phase (eliminating redundancy,
retaining critical features, and adapting classifier parameters).
This phased integration realizes dynamic coordination between
parameter tuning and feature screening. Traditional HHO-
based feature selection (binary encoding of candidate subsets)
lacks clear directional anchors, leading to excessive ineffective
searches in redundant feature regions—slowing convergence
and risking missed optimal solutions. To address this, we
propose an “elite feature guidance mechanism”: key features
in the top-performing subset of each iteration are marked as
“elite” (fixed as selected in subsequent optimizations). These
features act as search anchors, reducing ineffective exploration,
accelerating convergence to the global optimal subset, and
improving selection efficiency and accuracy. Given HHO’s
advantages in avoiding local optima, this paper proposes an
Improved Binary HHO (IBHHO) for feature selection in high-
dimensional microarray datasets. The main contributions are
summarized as follows:

1) Hybrid feature selection framework for joint optimiza-
tion of high-dimensional microarray data: A filter-wrapper
integrated framework enabling concurrent optimization of Re-
liefF parameters, SVM hyperparameters, and feature subsets.
ReliefF’s subset size parameter is adaptively tuned based on
dataset feature dimensionality.

2) Co-optimization strategy based on HHO’s two-stage
characteristics: A differentiated optimization strategy leverag-
ing HHO’s phases: the exploration phase optimizes ReliefF and
SVM parameters for comprehensive feature space exploration;
the exploitation phase refines feature subsets and fine-tunes
classifier parameters—significantly enhancing overall classifi-
cation performance.

3) Elite feature guidance strategy: An “Elite Feature Guid-
ance Strategy” that fixes key features (labeled 1) as strict
binary 1s. These anchored features steer the algorithm to
converge toward verified optimal subsets, mitigating redundant
exploration, accelerating convergence, and improving selection
accuracy/efficiency.

IBHHO addresses incoordination between filter and wrap-
per stages in traditional hybrids and optimization drawbacks of
conventional HHO. Tested on eight high-dimensional microar-
ray datasets, it outperforms existing popular meta-heuristic
methods—verifying its effectiveness for microarray data fea-
ture selection.

The study is structured as follows: Section II reviews
related research on feature selection for microarray datasets;
Section III elaborates on basic method principles; Section
IV introduces the optimization problem model; Section V
describes IBHHO’s application to feature selection; Section
VI evaluates IBHHO using eight public datasets; and Section
VII concludes the study.

II. RELATED WORK

A. Feature Selection Methods

Filter-based feature selection methods assess feature im-
portance exclusively based on data-intrinsic properties, disre-
garding the influence of learning algorithms or classifiers on
feature utility. Prominent examples include, in reference [13],
employed the ReliefF algorithm to select the top 3% feature
subsets in the initial screening stage of feature selection for
high-dimensional microarrays. In [14], the authors utilized the
Simulated Kalman Filter algorithm to select 1% of features
in microarray feature selection. In [15], the authors adopted
the SLI-γ filter method to choose the top 1% most relevant
features.

Wrapper-based feature selection methods incorporate learn-
ing algorithms as integral components, directly leveraging
classifier performance as the evaluation metric for feature
subset optimization. Wrapper methods typically have higher
computational costs than filter methods because they rely on
iterative evaluation of classifiers. Prominent examples include,
in reference [16], proposes a wrapper feature selection method
based on the Chimp Optimization Algorithm. In [17], the
authors introduces a Multi-objective Binary Harris Hawks
Optimization algorithm to directly optimize feature subsets as
a wrapper approach. In [18], the authors employ the Genetic
Algorithm as a wrapper method, using the accuracy of the
KNN classifier as the fitness function.

For high-dimensional microarray datasets—where feature
spaces often comprise thousands to tens of thousands of
genes—filter-wrapper hybrid approaches offer distinct advan-
tages over pure wrapper methods [19]. These hybrids integrate
the dimensionality reduction efficiency of filter methods with
the discriminative power of wrapper optimization, striking a
balance between computational feasibility and classification
performance.

Recently, feature selection methods based on hybrid filter
wrappers have been widely used to speed up the selection
process and improve classification performance. In reference
[20], an altruism mechanism was integrated into the Whale
Optimization Algorithm (WOA) to develop the AltWOA algo-
rithm. First, Pasi Luukka’s fuzzy entropy filtering method [21]
was employed to screen the top 300 genes by entropy values,
eliminating features with low class correlation. Subsequently,
the improved WOA—incorporating altruistic behavior—used
SVM classification accuracy as the fitness function to perform
iterative optimization of the feature subset from the preselected
300 genes. Evaluation on eight high-dimensional microarray
datasets demonstrates that this algorithm outperforms other
algorithms in terms of accuracy. The hybrid feature selection
framework proposed in [22] employs a two-stage strategy. In
the filter stage, the minimal redundancy maximal relevance
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algorithm integrates multiple filtering metrics—including Re-
liefF, chi-square test, and Kullback-Leibler divergence—to
quantify gene relevance, selecting the top 50 features with
the highest scores. Subsequently, in the wrapper stage, an
improved gray wolf optimizer is deployed to search for the
optimal feature combination within the prefiltered candidate
set, using SVM classification accuracy as the fitness func-
tion. In [23], the authors propose a two-stage gene selection
framework for microarray data, integrating anomaly detection
with genetic algorithms. In the first stage, an autoencoder is
employed to reduce the dimensionality of gene expression
data, followed by one-class support vector machine (One-class
SVM) for anomalous gene detection, where approximately 1%
of features are selected as the candidate subset. The second
stage then applies a guided genetic algorithm to the candidate
genes, refining them into the final set of effective features
through fitness evaluation based on classification accuracy.
In [24], the authors propose a novel hybrid algorithm, TRF-
WGHC, by integrating a ranking-based filter feature selection
algorithm with a greedy hill-climbing algorithm for DNA
microarray applications. In the first stage, specific ranking met-
rics—including information gain, gain ratio, and ReliefF—are
employed to select the top n percent of genes, discarding those
with scores below a predefined threshold. The second stage
then utilizes an augmented greedy hill-climbing algorithm
to search for the optimal feature subset from the remaining
genes. The experimental part was comprehensively tested on
18 microarray datasets, demonstrating that the algorithm is
simple and effective.

B. Joint Optimization

On one hand, the performance of Support Vector Ma-
chine (SVM) models is significantly influenced by parameter
selection, and applying SVM presents two key challenges:
selecting the optimal input feature subset and determining
the best parameter values, which are interdependent—the
chosen feature subset affects the optimal parameter values,
and vice versa. On the other hand, the parameters of the
filter method used also impact feature subset selection and
classification performance. Therefore, this study focuses on
synchronously optimizing three variables: SVM parameters,
filter method parameters, and feature selection results. Within
the synchronous optimization framework, the feature selection
vector consists of binary elements—“1” indicates selecting the
corresponding feature, while “0” excludes it [25]; the feature
mask for selection is a discrete integer variable, whereas SVM
classifier parameters and filter method parameters are continu-
ous variables, making the synchronous optimization of feature
selection and SVM parameters a mixed-variable optimization
problem. In the study of reference [26], researchers discretized
continuous parameters into integers and adopted the Firefly Al-
gorithm to synchronously optimize feature selection and SVM
parameters to improve the performance of traditional Chinese
medicine prescription classification. In [27], the authors used
the Genetic Algorithm with a binary encoding system to
design chromosomes containing penalty parameter C, kernel
function parameters, and feature masks, realizing the joint
optimization of feature selection and parameters. In [25], the
authors introduced the Salp Swarm Algorithm to address the
joint optimization of feature selection and classifier parameter
tuning, partitioning the solution space into a feature mask

(discrete part) and SVM parameters (continuous part), which
are optimized by binary SSA and standard SSA respectively. In
this study, the IBHHO algorithm synchronously optimizes the
three variables: during the exploration phase of the algorithm,
the filter algorithm and SVM parameters are optimized using
the original continuous HHO algorithm; during the exploitation
phase, SVM parameters and feature subsets are optimized
using both the continuous HHO algorithm and binary HHO
algorithm.

C. Summary

In summary, existing filter-wrapper hybrid methods for mi-
croarray feature selection typically adopt a two-stage process:
pre-screening a fixed number of features using filter methods,
followed by wrapper optimization. This rigid architecture has
two inherent flaws: 1) Static filtering thresholds cannot adapt to
the dynamic changes in feature correlations within microarray
data. When processing different microarray datasets, due to
the lack of flexibility and adaptability, it is difficult to achieve
effective optimization of feature selection and the performance
of classification models. 2) Optimizing the filtering phase and
the wrapper phase separately may result in a lack of close
coordination between them. This can cause the feature subsets
initially screened by the filtering algorithm to be affected by
redundant features, or lead to the omission of key features due
to the limitations of statistical evaluation, ultimately impairing
the overall performance of the model. In contrast, this study
proposes IBHHO algorithm. By integrating the filtering phase
into the two-stage mechanism of HHO, it realizes the com-
bination of the filtering phase and the wrapper phase in the
iterative update of the HHO algorithm, while achieving the
dynamic adaptive adjustment of the weight parameters of the
filtering method. This enables the filtering phase to adaptively
adjust the number of feature subsets according to the specific
distribution of the dataset, thereby effectively avoiding the risks
of over-filtering (losing discriminative features) and redundant
retention (retaining irrelevant attributes).

III. PRELIMINARY KNOWLEDGE

This section elaborates on the preliminary knowledge em-
ployed in this study. First, a feature ranking algorithm based
on the ReliefF filter is introduced, which is used for the initial
screening of feature subsets. Subsequently, the SVM classifier
used in this study and the application process of the original
HHO algorithm are presented.

A. ReliefF

A notable strength of ReliefF [28] in feature evaluation
is its capacity to capitalize on local feature dependencies
while still accounting for the global data distribution. This
avoids sacrificing the global perspective by overemphasizing
local details [29]. Its core principle involves assessing features
according to their capability to discriminate between closely
neighboring observation samples via feature values. Specif-
ically, the evaluation unfolds iteratively: in each iteration,
an observation sample is randomly drawn from the sample
space; next, the k nearest neighbors belonging to the same
category and the corresponding nearest neighbors from other
categories are identified; subsequently, each feature’s score is
updated based on feature-value differences between the target
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sample and its same-category and different - category nearest
neighbors. The weights for each feature in distinguishing the
target sample from its neighbors are computed using Eq. (1).
Generally, a higher weight indicates greater importance for
tasks like category classification, translating to higher utility
in model construction and related processes.

Wf = Wf − 1

mk

k∑
j=1

difff (Ri, Hj)

+
1

mk

∑
c̸=class(Ri)

P (c)

1− P (class(Ri))

k∑
j=1

difff (Ri,Mj)

(1)

where, Wf is the ReliefF weight of feature f , k denotes
the number of nearest neighbor samples, and m represents the
number of iterations. Ri is the random sample in iteration i.
Hj and Mj are the nearest neighbor samples from the same
class and different classes of Ri, respectively. P (c) is the prior
probability of class c, which is typically determined based on
the training samples fed into the ReliefF algorithm. difff (·, ·)
is the value difference of feature f between two observations.

For the ReliefF filtering method employed in the IBHHO
algorithm proposed in this study, after ranking features by
weights using k-nearest neighbors, the top SN features (where,
SN denotes the number of features selected by ReliefF) are
chosen as the feature subset output in the initial screening
stage. The setting equations for k and SN are presented in
Eq. (2) and Eq. (3).

k = ⌊p⃗ · kmax + 0.5⌋ (2)

SN = ⌊p⃗ ·D + 0.5⌋ (3)

where, p⃗ represents the position vector of k, kmax is
typically set to 10, p⃗ · kmax means scaling each element of
vector p⃗ by kmax times, and ⌊p⃗ · kmax + 0.5⌋ means rounding
p⃗ · kmax to the nearest integer. D represents the feature
dimension of the dataset, and p⃗·D means scaling each element
of vector is scaled by D times to realize parameter adjustment
based on the data dimension.

During the filtering stage, the ReliefF algorithm is em-
ployed to assess the significance of each feature. Features are
then ranked in descending order of their computed importance
scores, and the top SN features are forwarded to the wrapper
stage. Setting an excessively low threshold may lead to the
exclusion of critical features, whereas an overly high thresh-
old could retain numerous redundant or irrelevant features.
To address this challenge, our approach dynamically adjusts
the threshold, enabling the selection of feature subsets with
varying sizes according to the intrinsic importance distribution
of features across diverse datasets.

B. SVM

The core idea of Support Vector Machines (SVM) is to
map training data into a higher-dimensional space and separate
the categories of training data by establishing an optimal
hyperplane, thereby transforming non-linearly separable data

in the input feature space into linearly separable data in the
high-dimensional feature space.

When using SVM as a classifier, the parameter C serves
as a key factor in controlling the model’s complexity and the
severity of misclassification penalties, thereby balancing the
model’s bias and variance. Additionally, the kernel function
parameter determines the nonlinear transformation from the
input space to the high-dimensional space, where the hyper-
plane used for class separation is identified. This study selects
the RBF kernel function based on its simplicity and efficiency,
as shown in Eq. (4):

φ(xi − xj) = exp
(
−γ∥xi − xj∥2

)
, γ > 0 (4)

where, γ represents the parameter of kernel function. The
parameters of support vector machine (SVM) to be optimized
include penalty parameter C and kernel function parameter γ.

C. Harris Hawk Optimization

The HHO algorithm consists of three distinct phases: the
exploration phase, the transition phase from exploration to
exploitation, and the exploitation phase.

Proposed in [12], the Harris Hawk Optimization algorithm
(HHO) is a bio-inspired swarm intelligence optimization algo-
rithm renowned for its robust global search capability and high
optimization precision. In this framework, the prey (rabbits
in natural hunting scenarios) symbolizes the optimal solution
with the highest fitness value in the current iteration. The
algorithm operates through two overarching stages: exploration
and exploitation, with the transition phase mediating between
them. During the exploration phase, the algorithm initializes
control parameters (escape energy E) to survey the solution
space and locate potential prey regions. The exploitation phase
comprises four distinct attack strategies, dynamically adjusted
based on the prey’s perceived “energy” (solution quality) and
escape probability. These strategies simulate hierarchical hunt-
ing behaviors, enabling progressive refinement of the optimal
solution.

1) Exploration phase: When hunting prey, Harris hawks
adopt two distinct exploration strategies. Candidate solutions
are designed to approach the prey as closely as possible,
with the optimal solution representing the target prey itself.
First, Harris hawks select a landing point by considering the
positions of other hawks and their prey. In the second method,
hawks wait on random tall trees. These two approaches are
simulated with equal probability q using Eq. (5):

x(t+ 1) =

{
xr(t)− r1 |xr(t)− 2r2x(t)| q ≥ 0.5

xp(t)− xm(t)− r3 (L+ r4(U − L)) q < 0.5
(5)

where, the vector x(t) is the current position of the
hawk, x(t + 1) is the hawk’s position in the next iteration,
xr(t) is a randomly selected position from the Harris hawk
population, xp(t) is the prey position in the current iteration,
r1, r2, r3, r4 are random numbers with a (0, 1) distribution, q
is the transition factor controlling the two strategies, and L/U
are the lower/upper bounds of variables. xm(t) is the average
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position of the current hawk population, is calculated as Eq.
(6):

xm(t) =
1

N

N∑
i=1

xi(t) (6)

where xi(t) is the position of each hawk in iteration t, and
N denotes the total number of hawks.

2) Transition from exploration to exploitation: The algo-
rithm switches from exploration to exploitation based on the
prey’s running or escape energy, as defined by Eq. (7):

E = 2E0

(
1− t

Max iter

)
(7)

where, E represents the prey’s escape energy, E0 is the
initial energy state, which randomly varies within (−1, 1) at
each iteration. When |E| ≥ 1, global search is performed;
otherwise, the exploitation phase begins.

3) Exploitation phase: During the exploitation phase |E| <
1, Harris hawks raid and capture prey while the prey avoids
predation. HHO determines the appropriate position update
strategy from the following four attack modes based on the
random number r ∈ (0, 1), parameter E, and the strategy
determinant |E|: when |E| ≥ 0.5, Harris hawks choose the
soft besiege strategy; otherwise, they adopt the hard besiege
strategy.

a) Soft besiege: When r ≥ 0.5, Harris hawks can
capture the prey; otherwise, the hunt fails. When r ≥ 0.5
and |E| ≥ 0.5, the prey has sufficient energy to jump to avoid
predation, and Harris hawks use the soft siege strategy with
prey energy to complete the hunt, as shown in Eq. (8) and Eq.
(9):

X(t+ 1) = ∆X(t)− E|J ·Xp(t)−X(t)| (8)

∆X(t) = Xp(t)−X(t) (9)

where, J = 2(1 − r5) is the prey’s movement distance in
the jump mode, and r5 is a random number in (0, 1).

b) Hard besiege: When r ≥ 0.5 and |E| < 0.5, the
prey has insufficient energy, and Harris hawks adopt the hard
siege strategy for rapid predation, as in Eq. (10):

X(t+ 1) = Xp(t)− E|∆X(t)| (10)

c) Soft besiege with progressive rapid dives: When
r < 0.5 and |E| ≥ 0.5, the prey has sufficient energy to
escape. Harris hawks then choose the soft siege combined with
a progressive dive tactic, as described by Eq. (11). This strategy
includes two hunting methods, with the second selected if the
first fails:

X(t+ 1) =


Y : Xp(t)− E|JXp(t)−X(t)|

if f(Y ) < f(X(t))
Z : Y + S × LF (D)

if f(Z) < f(X(t))

(11)

where, D is the spatial dimension, S is a 1 × D random
vector, f is the fitness function, and LF is the Levy function
simulating the prey’s jumping behavior.

d) Hard besiege with progressive rapid dives: When
r < 0.5 and |E| < 0.5, the prey lacks energy but has a chance
to escape. Harris hawks then employ the hard siege strategy
with a progressive dive to reduce the distance to the prey and
form an encirclement, as in Eq. (12):

X(t+ 1) =


Y : Xp(t)− E|JXp(t)−Xm(t)|

if f(Y ) < f(X(t))
Z : Y + S × LF (D)

if f(Z) < f(X(t))

(12)

IV. PROBLEM MODEL

In the feature selection and parameter optimization model
of this study, the decision variables revolve around ReliefF
feature screening, performance adjustment of the SVM classi-
fier, and determination of the final feature subset. That is, by
adjusting variables such as k, SN , C, γ and FS, the value
of the objective function f is minimized, thereby achieving
a balance between “high classification accuracy” and “small
scale of the feature subset”. Therefore, the expression of the
optimization problem model in this study is [see Eq. (13)]:

Min f(k, SN,C, γ, FS) (13)

The decision variables in the optimization problem model
include: ReliefF feature screening parameters (k, the number
of nearest-neighbor samples, which is used to determine the
scale of neighbor samples referenced when calculating feature
weights; SN , the scale of the feature subset selected in the
initial screening, i.e., the number of features preliminarily
screened out), parameters of the SVM classifier (C, the penalty
parameter, which is used to control the penalty intensity for
misclassified samples; γ, the kernel function parameter, which
defines the mapping complexity of the kernel function in the
sample space), and feature selection results (discrete variable
FS). The value ranges of each decision variable must satisfy
the following constraints [see Eq. (14) to Eq. (18)]:

kmin < k = ⌊p⃗ · kmax + 0.5⌋ < kmax (14)

SNmin < SN = ⌊p⃗ ·D + 0.5⌋ < SNmax (15)

Cmin < C < Cmax (16)

γmin < γ < γmax (17)
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FSi =

{
1 if the ith feature is selected
0 otherwise

(18)

specifically, for the ReliefF parameters: kmin = 0, kmax =
10; SNmin = 0, SNmax = 0.005 · D. For the SVM classifier
parameters, Cmin = 0, Cmax = 1000; γmin = 0, γmax = 1.
The feature selection result is characterized by the discrete
variable FS, where FSi = 1 indicates that the i-th feature is
selected, and FSi = 0 indicates that the feature is excluded.
The constructed “0/1 binary vector” is used to describe the
final feature subset, whose dimension is consistent with the
number of original features.

The problem model in this study is oriented towards
minimizing the objective function f . The objective function
and the expression of the optimization goal are as follows [see
Eq. (19) and Eq. (20)]:

f = α · (1− acc) + (1− α) · SF
D

(19)

acc =
TP + TN

TP + TN + FP + FN
(20)

where, α is the balance coefficient (α = 0.7), SF is
the number of selected features, D is the total number of
original features, and acc represents the classification accuracy.
The calculation equation is shown in Eq. (20). The model in
this study synchronously optimizes continuous and discrete
variables, including ReliefF parameters (k, SN ), SVM classi-
fier parameters (C, γ), and feature selection results (discrete
FS vector). By leveraging the “synergistic effect” between
feature subsets and classifier parameters, it more accurately
excavates the “classification discriminant information” of the
dataset. This overcomes the problems of traditional univariate
optimization methods, such as being prone to falling into local
optima and the “curse of dimensionality”, where computa-
tional complexity grows exponentially with the dimension of
variables. Ultimately, it achieves the global optimization of
classifier performance.

V. IBHHO FOR FEATURE SELECTION

A. Solution Structure

The solution structure of the algorithm in this study is
represented by a coordinate array, where each element of the
array is a continuous variable with a value range between [0, 1].
The solution structure consists of three parts: the parameters
k and SN of ReliefF, the parameters C and γ of the SVM
classifier, and the feature selection results. Fig. 1 shows a
schematic diagram of the solution structure of the algorithm
in this study.

For the first part, the parameters k and SN of ReliefF are
calculated by Eq. (2) and Eq. (3), with maximum values set to
10 and 0.005, respectively. For the second part, the parameters
C and γ of SVM are set to range between (0, 1000) and (0, 1),
respectively. The third part represents the result of discrete fea-
ture selection. Given that feature selection is inherently discrete
and HHO is designed for continuous optimization problems,
a discrete version of HHO (BHHO) must be employed. In

the BHHO algorithm, the result vector of feature selection is
represented by Eq. (21):

FSi =

{
1 if wi < gi+4

0 otherwise
(21)

where, wi is a random number within the interval (0, 1),
gi+4 representing the i+4-th position in the solution structure.

Features of datasetSVM

k SN ...........C γ FSi ...........

ReliefF

Fig. 1. Solution structure.

B. Fitness function

The fitness function is used to measure the quality of
each Harris hawk individual in the IBHHO algorithm. Each
Harris hawk represents a potential feature subset along with
parameters of the classifier and ReliefF, and the fitness function
provides an evaluation criterion for these individuals. The
algorithm uses this criterion to select and evolve toward better
feature subsets and classifier parameters. Feature selection
is a multi-objective optimization problem that should simul-
taneously consider higher classification accuracy and fewer
features. Linear weighting methods can transform multiple
objectives into a single fitness value to facilitate algorithmic
solution. In this study, a linear combination of classification
accuracy and the number of selected features is used as the
fitness function, as defined in Eq. (19).

C. Co-Optimization Strategy for Parameters and Features
Based on HHO Two-Stage Characteristics

As described in the first subsection, the solution structure
of IBHHO is divided into three parts (ReliefF, classifier
parameters, and feature selection results). Since the HHO
algorithm has both exploration and exploitation components,
it effectively balances global search and local search.

The proposed staged optimization strategy fully capitalizes
on the complementary characteristics of the HHO algorithm’s
exploration and exploitation phases:

During the exploration phase, the search space is optimized
to identify potential high-quality solution regions. Therefore,
ReliefF and SVM parameters are optimized during this phase.
By dynamically adjusting the ReliefF parameters, the impor-
tance of features is evaluated from multiple perspectives, gen-
erating stable feature rankings. Concurrently, SVM parameters
are adjusted to rapidly adapt to the data distribution, thereby
enhancing model performance;

The development phase focuses on fine-grained search
around high-quality solutions. At this stage, feature subset
and SVM parameter optimization are performed. Based on
the reliable feature subset generated by ReliefF parameters
in the exploration phase, the focus shifts to fine-tuning SVM
parameters and further controlling the feature subset size,
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achieving a balance between computational efficiency and
optimization accuracy.

This design avoids the computational bottleneck of direct
feature selection in high-dimensional data while reducing the
search space complexity through separate parameter optimiza-
tion, providing a new optimization form for the hybrid feature
selection framework.

D. Elite Feature Guidance Strategy

In the feature selection process of the original HHO
algorithm, the optimization of feature subsets is simulated
as the process of hawk flocks chasing prey. The candidate
feature subsets correspond to the positions of hawks, while the
optimal feature subset is analogized to the prey’s position. The
algorithm continuously adjusts the positions of hawks through
two stages—exploration and exploitation—to approach the
prey. During the exploitation phase, hawks mainly update their
positions using Eq. (8), Eq. (10), Eq. (11) and Eq. (12), to
attempt getting closer to the prey. However, this updating
approach in high-dimensional feature spaces may lead to
extensive redundant searches in non-critical regions. Moreover,
the lack of a protection mechanism for verified high-quality
features makes the algorithm prone to missing the true optimal
feature subset, resulting in slow convergence and limited result
accuracy.

The Elite Feature Guidance Strategy proposed in this study
improves the exploitation phase of the original HHO algorithm
by introducing pre-identified key features (marked as 1) as
fixed “anchor points”, significantly optimizing the feature
selection optimization process. Specifically, the algorithm di-
rectly assigns the “prey positions” of these key features to strict
binary value 1, keeping them unchanged throughout the search
process. These anchored features act as navigation coordinates,
guiding the hawk flock to converge preferentially toward the
optimal feature subset containing these key features. During
the iterative update process, the algorithm first ensures that
the anchored features in the candidate feature subset always
remain 1, avoiding the loss of these key features during the
search. Eq. (22) shows the position update method after adding
the guidance mechanism. Among them, Xnew is the new prey
position (candidate solution), and i is the position in the
solution structure array.

When i < 4, it represents the first 4 positions of the
solution structure, i.e., the ReliefF and SVM parameters, which
do not participate in the elite guidance mechanism; when
i > 4, it represents the position of the feature selection result,
which is the part involved in the elite guidance.

X ′
p(t)i =

{
Xp(t)i (i ∈ [0, 3])

FSi+4 (i ≥ 4)
(22)

For non-anchored features, during the exploitation phase,
the optimization of the feature subset in the new position of the
hawk is updated using Eq. (23), Eq. (24), Eq. (25) and Eq. (26),
where X ′

rabbit represents the position of prey containing fixed
anchoring features and Xnew(t + 1) is the updated candidate
feature subset.

{
Xnew(t+ 1) = ∆′X(t)− E|J ·X ′

p(t)−X(t)|
∆′X(t) = X ′

p(t)−X(t)
(23)

X(t+ 1) = X ′
p(t)− E|∆′X(t)| (24)

Xnew(t+ 1) =


Y : X ′

p(t)− E|J ·X ′
p(t)−X(t)|

f(Y ) < f(X(t))

Z : Y + S × LF (D)

f(Z) < f(X(t))

(25)

Xnew(t+ 1) =


Y : X ′

p(t)− E|J ·X ′
p(t)−Xm(t)|

f(Y ) < f(X(t))

Z : Y + S × LF (D)

f(Z) < f(X(t))

(26)

In this way, the algorithm always builds upon anchored
features when exploring new feature combinations, effectively
reducing search attempts in non-critical regions. By fixing key
features, this strategy significantly narrows the effective search
space and minimizes redundant exploration, thereby enhancing
the algorithm’s convergence speed.

Meanwhile, since anchored features are pre-verified high-
quality features, the algorithm can more accurately approach
the true optimal feature subset, ultimately improving the accu-
racy and efficiency of feature selection–particularly suitable for
feature selection tasks on high-dimensional complex datasets.

E. Algorithm Flow of IBHHO

In summary, addressing the challenge of feature selection
for high-dimensional microarray datasets, this study proposes
three innovative strategies. Firstly, a hybrid feature selection
framework integrating filter (ReliefF) and wrapper (SVM)
methods is constructed to synchronously optimize ReliefF
parameters, SVM hyperparameters, and feature subset size.
The feature subset size parameter is adaptively adjusted based
on the intrinsic dimensionality of the dataset, enabling dynamic
adaptation. Secondly, a differentiated optimization strategy is
designed based on the two-stage characteristics of the HHO
algorithm: the exploration phase optimizes ReliefF and SVM
parameters to comprehensively search the feature space, while
the exploitation phase focuses on feature subset refinement
and classifier parameter fine-tuning, significantly enhancing
classification performance. Finally, an “Elite Feature Guidance
Strategy” is proposed, which fixes pre-identified key features
as binary value 1 as “anchor points” in the search space.
This guides the algorithm to converge rapidly to the optimal
feature subset, effectively reducing redundant exploration and
substantially improving the efficiency and accuracy of feature
selection. The flowchart of the proposed IBHHO algorithm is
shown in Fig. 2.

Initialization Phase: The basic parameters of the algorithm
(population size N and maximum number of iterations T ).
Then initialize the positions of hawks, including ReliefF pa-
rameters (k and SN ), SVM parameters (C and γ), and feature
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subsets (where binary values indicate whether features are
selected).

Fitness Calculation: The fitness is computed using Eq. (19).
For the current hawk positions (candidate solutions), feature
selection is performed on the microarray dataset based on the
current ReliefF parameters to obtain the feature subset SN for
SVM training. The selected feature subset SN is used to train
the SVM and further refine the optimal subset, after which the
classification accuracy acc is calculated. Finally, the fitness
value is computed using Eq. (19). A smaller fitness value
indicates better comprehensive performance of the candidate
solution (higher classification accuracy with fewer features).

Exploration Phase: Execute “broad-spectrum optimization
of ReliefF and SVM parameters”. The core objective is to
simulate the behavior of hawk flocks searching for prey in a
vast space using the HHO algorithm, performing extensive and
diverse adjustments to ReliefF feature evaluation parameters
and SVM classifier hyperparameters. This aims to identify
potential high-quality parameter intervals for the subsequent
exploitation phase.

Exploitation Phase: Fine-tune SVM parameters and refine
feature subsets. In this phase, the Elite Feature Guidance
Mechanism is introduced, where features marked as 1 (pre-
identified key features) have their “prey positions” directly
assigned as strict binary value 1. The positions of hawks are
updated using Eq. (23), Eq. (24), Eq. (25) and Eq. (26), guiding
the algorithm to converge rapidly to the verified optimal feature
subset.

Iteration Termination Criterion (t < T ?): If t < T , the
process returns to the fitness calculation phase for the next
round of optimization; if t > T , the iteration terminates and
the optimal solution is output.

VI. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the pro-
posed method in feature selection tasks for medical datasets
through comparative analysis from different aspects. All exper-
iments were conducted on the MATLAB 2023b platform, with
the hardware configuration as follows: Windows 11 operating
system, Intel (R) Core (TM) i5-13500H CPU @ 2.6 GHz, and
16.0 GB of RAM.

A. Description of Datasets

To analyze the performance of the proposed method,
we utilized eight high-dimensional DNA microarray gene
expression datasets, including both binary and multi-
class classifications. These datasets were downloaded from
two public websites: http://case.szu.cn/stff/zhuzx/Datssets.html
and https://github.com/kivancguckiran/microarray-data. Table I
provides the specific descriptions of the datasets.

Overall, the 8 microarray datasets selected in this study
are distinctly diverse and representative, and they have also
been used in existing literature, such as references [30], [31],
and [24]. These datasets can comprehensively and rigorously
verify the performance of the proposed method: in terms
of classification tasks, they include both binary classification
(such as Colon Cancer, CNS, Leukemia, Lung cancer, Ovarian
cancer, Breast cancer) and multi-class classification (SRBCT

with 4 classes, Burcyznski with 3 classes), which can test the
adaptability of the method to different category complexities;
in terms of sample composition, the total number of samples
ranges from 60 (CNS) to 253 (Ovarian); the dimensionality
of disease features is distributed in a gradient from 2000 to
22,283, which fully verifies the generalization ability of this
method in mining key features and improving classification
accuracy. The selection of these datasets provides a compre-
hensive experimental basis for evaluating the effectiveness and
reliability of the method.

TABLE I. DATASETS DESCRIPTIONS

Dataset Samples Features Classification type

Colon Cancer 62 2000 Binary-class

SRBCT 63 2308 Multi-class

Central Nervous System (CNS) 60 7129 Binary-class

Leukemia 72 7129 Binary-class

Lung cancer 181 12533 Binary-class

Ovarian cancer 253 15154 Binary-class

Breast cancer 118 22215 Binary-class

Burcyznski 127 22283 Multi-class

B. Experimental Design and Performance Indicators

To evaluate the performance of machine learning models on
different datasets, this study employed k-fold cross-validation.
The datasets were further randomly divided into training sets
and independent test sets via k-fold cross-validation. The main
advantage of cross-validation lies in the independence of each
test set, thereby enhancing the reliability of the results. In this
study, the value of k was set to five. Thus, the datasets were
partitioned into five parts, with each part containing data in
equal proportion from each class. Four parts were used for
training, while the remaining one part served as the test set.

The analysis of feature selection results for the eight
datasets employed multiple evaluation metrics, including accu-
racy, fitness value, number of selected features, and execution
time. These statistical metrics aim to analyze experimental
outcomes and determine the algorithm’s performance.

To robustly evaluate the reliability of the proposed method,
this study is designed to compare all performance indicators
of the proposed algorithm with those of all comparative
algorithms in the experimental section, and the finally reported
results are the average values of 30 independent executions.

C. Overall Performance Evaluation

This section presents a comparison of the IBHHO algo-
rithm with other optimization algorithms in terms of evalua-
tion metrics including classification fitness, accuracy, number
of selected features, and execution time. It is divided into
two parts: comparison of IBHHO with various optimization
algorithms aided by ReliefF, and comparison of IBHHO with
various state-of-the-art methods.

1) Comparison of IBHHO with various optimization algo-
rithms aided by ReliefF: In this subsection, four optimization
algorithms integrated with ReliefF are employed as compar-
ative algorithms, namely GA [25], PSO [32], FA [33], and
WCA [34].
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Fig. 2. The flowchart of the IBHHO.

Boxplot analysis is the optimal method to represent the data
distribution characteristics of the collected results and identify
data anomalies (such as skewness and outliers). A boxplot
displays data distribution in the form of different quartiles,
specifically the lower (the lowest point/edge of the whisker)
and upper (the highest point/edge of the whisker) quartiles,
which represent the minimum and maximum values of the
data distribution. The lower quartile and upper quartile are
indicated by the corners of the rectangle. A small boxplot
rectangle indicates a stronger consistency of the data.

To verify the performance of the IBHHO algorithm, four al-
gorithms integrated with ReliefF (GA-R, PSO-R, FA-R, WCA-
R) were selected as comparative algorithms. Experiments were
conducted on 8 datasets, with fitness as the evaluation metric (a
smaller fitness value indicates better optimization performance
of the algorithm). The boxplot results are shown in Fig. 3.

On the Colon Cancer dataset, it is intuitively visible that the
box of the IBHHO algorithm is the narrowest, which clearly
indicates that the fluctuation range of its multiple running
results is the smallest, and its stability is the best among the
five algorithms. In contrast, the GA+R algorithm has the widest
box and the worst stability. The small squares inside the boxes
represent the average values of the algorithm runs. By compari-
son, the small square corresponding to IBHHO is located at the
lowest position, which strongly proves that the average value
of its fitness is the smallest and its classification performance
is more excellent. The performances of the PSO+R, FA+R, and
WCA+R algorithms are relatively close. Their box widths are
between those of IBHHO and GA+R, with moderate stability,
and their mean points are concentrated in a specific interval,
with average fitness better than that of GA+R.

On the SRBCT, Lung cancer, and Ovarian cancer datasets,
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Fig. 3. Comparison of average fitness among different feature selection optimization algorithms.

the box of the IBHHO algorithm appears as a thin line.
Compared with the other four algorithms, its box has the
smallest width, indicating that the results of multiple runs are
highly convergent and its stability is optimal. When comparing
the small squares representing the average values of each algo-
rithm, the small square corresponding to the IBHHO algorithm
has the lowest fitness, demonstrating its best classification
performance.

On the Central Nervous System (CNS), Breast cancer, and
Burcyznski datasets, the box of the GA+R algorithm is the
narrowest, showing the best stability, while the stability of the
IBHHO algorithm is relatively inferior on these three datasets.
However, when comparing the small squares inside the boxes
that represent the average fitness values, the small square of
IBHHO is located at the lowest position, whereas that of
GA+R is at the highest. This proves that the average fitness
of the IBHHO algorithm is the lowest, indicating better fitness
performance, while the fitness of the GA+R algorithm is the
worst.

From the boxplots of all test datasets, the key statistical
metrics such as the median and mean of the IBHHO al-
gorithm’s boxplot are significantly lower than those of the
comparison algorithms, and the overall distribution of the box
is more concentrated in the low fitness interval. This fully
indicates that, relying on its unique population update and

search strategies, IBHHO can more efficiently traverse the
search space and explore low-fitness solutions in different
data scenarios. Its optimization stability and effectiveness are
superior to those of the comparison algorithms, which strongly
verifies that IBHHO exhibits excellent performance across
multiple types of datasets.

To verify the comprehensive performance of the IBHHO
algorithm in feature selection tasks, experiments were con-
ducted on eight datasets using the proposed algorithm and four
comparative algorithms with ReliefF assistance, as shown in
Fig. 4. The classification performance was measured by the
average classification accuracy of 30 independent runs, and the
feature screening efficiency was evaluated by the average num-
ber of selected features. The results were visualized through
a combination of bar charts and line charts (the purple bars
represent the average accuracy, and the red lines represent the
average number of selected features).

As shown in the figure, on the four datasets of Colon
Cancer, Central Nervous System (CNS), Breast cancer, and
Burcyznski, the accuracy of IBHHO is higher than that of the
other four comparative algorithms. Moreover, the number of
selected features by the IBHHO algorithm is the smallest. This
demonstrates that on these four datasets, IBHHO can ensure
higher precision while screening key features more efficiently,
well-verifying the advantages of the IBHHO algorithm.
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Fig. 4. Comparison of the number of features and accuracy.

On the SRBCT and Ovarian cancer datasets, the accuracy
of IBHHO is on par with that of the FA algorithm, while the
accuracies of the GA+R algorithm and the WCA+R algorithm
are slightly lower than those of IBHHO and FA+R, indicating
that these three algorithms have advantages in classification
accuracy on the SRBCT dataset. However, considering the
number of selected features, on the SRBCT dataset, the number
of selected features by the IBHHO algorithm (6) is much lower
than that by the GA+R and FA+R algorithms (68 and 75
respectively); on the Ovarian cancer dataset, the number of
selected features by IBHHO is 2, compared to 522 and 99 by
FA+R and WCA+R. This proves that IBHHO can screen key
features while ensuring high precision, and performs better in
the “classification accuracy-feature efficiency” dimension.

On the Leukemia dataset, the FA+R algorithm has the high-
est classification accuracy (0.99), with IBHHO being slightly
less accurate (also 0.99). However, the number of selected
features by IBHHO is 6, while that by the FA+R algorithm
reaches 288. This shows that the ability of IBHHO to screen
key features is far superior to that of FA+R. Therefore, it can
be concluded that IBHHO performs better in meeting the dual
requirements of “accuracy+number of selected features”.

On the Lung cancer dataset, all algorithms exhibit classifi-
cation performance with accuracy close to 1. Nevertheless, the
number of selected features by the IBHHO algorithm is much
lower than that of the comparative algorithms, which proves
that the IBHHO algorithm can select the most critical features
while ensuring high accuracy.

From the perspective of meeting the dual requirements
of “accuracy+number of selected features” across all test
datasets, compared with comparative algorithms such as
GA+R, PSO+R, FA+R, and WCA+R, the IBHHO algorithm,
relying on its unique search and update mechanisms, achieves
efficient screening of key features while ensuring high accu-
racy. This not only reduces model complexity but also verifies
the advantages of the IBHHO algorithm.

Table II presents the comparison of the average execution
times of the proposed algorithm and comparative algorithms
over 30 independent runs under the same operating environ-
ment.

As shown in the table, on the two low-dimensional datasets
of Colon Cancer (62 samples, 2000 genes) and SRBCT (63
samples, 2308 genes), GA+R achieves the shortest execution
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time. This is because in low-dimensional spaces, its genetic
operations can converge directly, and it rapidly screens features
through simple operations such as selection and crossover,
thereby reducing redundancies. PSO+R has a slightly longer
execution time, which stems from the fact that its particle
update rules require more iterations to adjust particle distribu-
tion during the initial exploration of small-scale data. IBHHO
ranks third with an execution time close to that of PSO+R,
mainly because its unique search mechanism involves fine-
grained exploration of the solution space during initialization
or early iterations, resulting in additional computations and
thus a slightly longer execution time.

On two medium-high dimensional datasets, Central Ner-
vous System (CNS) (60 samples, 7129 genes) and Leukemia
(72 samples, 7129 genes), PSO+R exhibits the shortest execu-
tion time. This is because its particles can rapidly focus on key
features in high-dimensional spaces by sharing global optimal
information, thus avoiding the computational bottlenecks of
GA+R’s high-dimensional crossover operations and the ex-
ploratory redundancy of IBHHO. IBHHO ranks second with
an execution time comparable to those of GA+R and PSO+R,
as its strategy to escape local optima during high-dimensional
searches introduces additional computational overhead.

On the Lung Cancer dataset (181 samples, 12,533 genes),
GA+R runs the fastest. The larger sample size strengthens
the selection pressure of GA+R, enhancing its efficiency in
eliminating redundant genes and achieving directional evolu-
tion in high-dimensional spaces. However, for IBHHO, under
high-dimensional and large-sample scenarios, the high com-
putational cost associated with its complex feature screening
strategy results in it being slower than both GA+R and PSO+R.

On ultra-large-scale high-dimensional datasets such as
Ovarian cancer (253 samples, 15,154 genes), Breast cancer
(118 samples, 22,215 genes), and Burcyznski (127 samples,
22,283 genes), IBHHO achieves the shortest running time.
Its heuristic search or group-based screening mechanisms can
directly skip redundant features, overcoming the computa-
tional breakdown issues of GA+R and PSO+R in ultra-high-
dimensional spaces, and is particularly adaptable to extreme
data scenarios involving multi-class classification and ultra-
large-scale genes. In these cases, IBHHO ranks first, while
GA+R and PSO+R exhibit significantly longer running times
due to the high-dimensional computational complexity and
inefficiency in handling multi-class classification tasks, which
are much longer than that of IBHHO.

In summary, IBHHO is not always the fastest; instead, its
performance varies dynamically with data dimensionality: it is
outperformed by GA+R in low-dimensional cases (as GA+R
features more straightforward computations), and by PSO+R in
medium-to-high-dimensional scenarios (since PSO+R achieves
more efficient convergence in high dimensions). However, in
ultra-large-scale high-dimensional scenarios, it emerges as the
optimal choice by virtue of its unique mechanisms, reflecting
its targeted adaptation to different data characteristics. More-
over, on all datasets, IBHHO demonstrates superior classifica-
tion performance compared to the comparative algorithms.

2) Comparison between proposed algorithm and various
state-of-the-art methods: To verify the performance of the
IBHHO algorithm, four advanced optimization algorithms,

namely AltWOA [20], SAGA [35], AIEOU [36], and BSNDO
[37], were selected as comparative algorithms. Experiments
were conducted on 8 datasets, with all experiments indepen-
dently executed 30 times under the same environment.

Fig. 5 presents the box plots of the average fitness values
obtained from 30 independent runs. On the Colon Cancer
dataset, the box of the SAGA algorithm appears as a thin line,
indicating a high degree of convergence (minimal fluctuation)
among the results of multiple runs and thus demonstrating
the best stability among all algorithms. When comparing
the mean points (small squares) within the boxes, IBHHO
exhibits a significantly lower average fitness value than the
other comparative algorithms, indicating the best classification
performance. Moreover, the lowest position of IBHHO’s box
also confirms its lowest fitness value and optimal classification
performance.

On the SRBCT, Lung cancer, and Ovarian cancer datasets,
the box of the IBHHO algorithm appears as a thin line with
the lowest position among all boxes. The small square within
its box (representing the mean fitness value) is also lower than
those of other comparative algorithms, which proves that IB-
HHO achieves the best classification performance. Following
that, the performances of the SAGA and AltWOA algorithms
are second to IBHHO, while the BSNDO algorithm exhibits
the worst performance.

On the Central Nervous System (CNS), Breast cancer, and
Burcyznski datasets, the SAGA algorithm exhibits the narrow-
est box, indicating the smallest fluctuation in results across
multiple runs and the best stability among all algorithms.
However, comparing the mean points (small squares) within
the boxes, IBHHO’s mean point is positioned lowest, meaning
its average fitness value is far superior to SAGA (whose mean
point is higher, reflecting the worst fitness performance). This
shows that although IBHHO is slightly less stable than SAGA
(with a marginally wider box), it achieves a breakthrough
in fitness optimization through its unique search strategy. It
compensates for the stability difference with a lower aver-
age fitness (better classification performance), demonstrating
strong adaptability to high-dimensional complex data.

On the Leukemia dataset, the box width of IBHHO is close
to that of SAGA (moderate stability), but its mean point is the
lowest, showing a significant advantage in fitness. Compared
with algorithms like AltWOA, AIEOU and BSNDO, IBHHO
is superior in both stability and fitness. Its box is concentrated
in the low-fitness interval with short whiskers (data is con-
centrated without extreme fluctuations), verifying its efficient
optimization ability on medium-dimensional data.

Boxplots across all datasets show that statistical metrics
such as the median and mean of IBHHO all lie in the lowest
interval; its box is overall concentrated in the low-fitness
range with short whiskers (indicating high aggregation of non-
outlier data). This indicates that through its unique popula-
tion update and search mechanisms, IBHHO can efficiently
traverse the solution space and explore low-fitness solutions
across different data scenarios (low-dimensional, medium-
to-high-dimensional, and ultra-large-scale high-dimensional),
avoiding the drawbacks of comparative algorithms (such as
the high fluctuation of SAGA and the local convergence bias
of AltWOA). Even in datasets where SAGA dominates in
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TABLE II. COMPARISON OF AVERAGE EXECUTION TIME(S)

Dataset IBHHO GA+R PSO+R FA+R WCA+R

Colon Cancer 76.1 47.8 75.8 342.8 476.5

SRBCT 205.7 179.5 194.7 935.6 1156.7

Central Nervous System (CNS) 107.4 104.0 103.6 1711.5 103.3

Leukemia 115.5 119.7 111.9 936.8 341.6

Lung cancer 207.5 173.5 197.9 793.6 258.8

Ovarian cancer 283.0 365.6 365.3 920.2 361.3

Breast cancer 209.3 221.3 205.1 1025.7 364.0

Burcyznski 325.7 408.6 408.0 1535.3 277.0

stability (CNS), IBHHO still outperforms with a lower average
fitness (a core performance metric), fully verifying its excellent
generalization ability and optimization efficiency on multi-type
microarray data.

To verify the comprehensive performance of the IBHHO
algorithm in feature selection tasks, the algorithm proposed in
this study and four comparative algorithms from various state-
of-the-art methods were tested on 8 datasets, as illustrated
in Fig. 6. The classification performance is evaluated using
the average classification accuracy from 30 independent runs
(represented by blue bar charts), while the feature selection
efficiency is depicted by orange curves (showing the average
number of selected features). This dual-metric visualization
(precision+feature count) precisely assesses the algorithm’s
balance between “classification accuracy” and “feature selec-
tion efficiency”.

On the Colon Cancer and SRBCT datasets, IBHHO
achieves the best classification accuracy (reaching above 0.9),
while other algorithms are around 0.8. Looking at the number
of selected features, although GA selects fewer key features
(1 and 4, respectively, compared to IBHHO’s 4 and 6), its
classification accuracy is lower. Overall, IBHHO demonstrates
a better balance between “accuracy” and “efficiency”. On the
Central Nervous System (CNS), Lung cancer, Ovarian cancer,
and Breast cancer datasets, the IBHHO algorithm achieves the
best classification accuracy, with SAGA being slightly inferior.
However, when comparing the number of selected features, the
number of key features selected by the IBHHO algorithm is
less than that selected by SAGA, which proves that IBHHO
can search for more critical features while ensuring high
accuracy.

On the Leukemia dataset, IBHHO achieves a classification
accuracy of 0.98 with only 6 selected key features, demon-
strating the best balance performance between “accuracy and
feature selection efficiency”. In contrast, the BSNDO algorithm
exhibits a classification accuracy of only 0.62 while selecting
up to 3519 key features, thus showing the worst performance
in balancing “accuracy and number of features”. On the
Burcyznski dataset, the AltWOA algorithm selects the fewest
features (26), while IBHHO selects 110 features. However, in
terms of classification accuracy, IBHHO reaches 0.97, whereas
AltWOA only achieves 0.52. Therefore, IBHHO still delivers
the best comprehensive performance on the Burcyznski dataset.

The above results fully demonstrate IBHHO’s advantages
in simultaneously maximizing classification accuracy and min-
imizing the number of features. Through efficient search

mechanisms, this method can generate sparse yet high-quality
feature sets, reducing model complexity while enhancing per-
formance. This makes IBHHO a powerful tool in the field of
bioinformatics—its unique advantages are particularly promi-
nent in research scenarios where both accuracy and feature
efficiency are equally emphasized to obtain reliable biological
insights (such as identifying the minimal gene panel required
for cancer diagnosis).

Table III presents a comparison table of the average execu-
tion time from 30 independent runs of the proposed algorithm
and the comparative algorithms under the same operating
environment. As can be observed from the table, on the Colon
cancer (62 samples, 2000 features) and SRBCT (63 samples,
2308 features) datasets, which belong to low-dimensional
spaces, the simple search strategy of BSNDO avoids the fine-
grained search overhead during the initialization of IBHHO
and converges directly, resulting in shorter computation time.
For the Central Nervous System (CNS) dataset (60 samples,
7129 features), when the sample size is limited and the feature
dimension is relatively high, the heuristic search of IBHHO
avoids the blind exploration of the particle swarm of AltWOA
in the initial iteration and directly converges to the key features.

On the Leukemia (72 samples, 7129 features), Lung can-
cer (181 samples, 12,533 features), and Breast cancer (118
samples, 22,215 features) datasets, where the sample size is
relatively small but the feature dimension is extremely high,
AltWOA exhibits faster running speed. This is likely due to the
optimizations for high-dimensional computational efficiency
in its improved version (AltWOA), which may adopt feature
subspace operations or highly optimized vector computation
implementations. These optimizations significantly reduce the
constant factor overhead of high-dimensional vector operations
in each iteration.

On the Ovarian cancer (15,154 features, 253 samples) and
Burcyznski (22,283 features, 127 samples) datasets, where
both sample sizes and feature dimensions are higher, IB-
HHO runs faster. Its advantage may lie in its more complex
and adaptive exploration-exploitation balance strategies. These
strategies allow IBHHO to more effectively utilize information
and accelerate the convergence process in the more complex
search spaces induced by increased sample sizes, thereby
gaining a significant advantage in the total number of iterations
and offsetting the potentially higher computational cost of its
single iteration.

To summarize, in low-dimensional spaces, although IB-
HHO is not the fastest in such scenarios, its fitness values
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Fig. 5. The box plots of the average fitness values obtained from 30 independent runs.

and classification performance ( classification accuracy, num-
ber of selected features, etc.) far surpass those of BSNDO,
demonstrating decisive advantages. In high-dimensional small-
sample scenarios (Leukemia, Lung cancer, and Breast can-
cer), AltWOA achieves the fastest running speed by sig-
nificantly reducing the constant factor overhead of each it-
eration through feature subspace operations and vectorized
computation optimizations. However, IBHHO still maintains
acceptable timeliness (slightly slower than AltWOA) while
comprehensively outperforming AltWOA in both fitness and
classification performance. In high-dimensional large-sample
datasets (Ovarian cancer and Burczynski), IBHHO relies on
adaptive exploration-exploitation strategies to efficiently guide
the search direction in complex solution spaces, surpassing
AltWOA in speed with fewer iterations while maintaining a
leading position in classification performance.

TABLE III. COMPARISON OF AVERAGE EXECUTION TIME(S) FROM 30
INDEPENDENT RUNS

Dataset IBHHO SAGA AltWOA AIEOU BSNDO

Colon Cancer 76.1 178.7 65.0 64.9 62.0

SRBCT 205.7 133.3 100.4 266.6 81.1

Central
Nervous
System (CNS)

107.4 510.5 163.2 299.3 208.9

Leukemia 115.5 464.9 95.5 204.0 201.8

Lung cancer 207.5 3262.9 68.1 648.7 528.7

Ovarian cancer 283.0 3382.5 376.3 799.2 894.7

Breast cancer 209.3 12832.0 93.6 839.2 735.4

Burcyznski 325.7 11428.3 501.5 827.3 714.6

VII. CONCLUSION

This study aims to address the challenge of feature selec-
tion in high-dimensional microarray datasets, where redundant
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Fig. 6. Comparison chart of the number of features and accuracy.

features and the “curse of dimensionality” severely hinder the
performance of machine learning models. To tackle this issue,
IBHHO is proposed, which integrates a hybrid feature selec-
tion framework, a two-stage parameter-feature co-optimization
strategy, and an elite feature guidance mechanism. By fusing
filter (ReliefF) and wrapper (SVM) methods, this framework
enables the simultaneous optimization of ReliefF parameters,
SVM hyperparameters, and feature subsets. Leveraging the
two-stage characteristics of HHO (exploration and exploita-
tion), the algorithm focuses on optimizing ReliefF and SVM
parameters during the exploration phase, while refining feature
subsets in the exploitation phase, thus achieving a balance
between global search and local optimization. The elite feature
strategy further accelerates the algorithm’s convergence speed
and reduces redundant exploration by retaining key features
as fixed anchors. These innovations collectively enhance IB-
HHO’s ability to identify optimal feature subsets, not only
improving classification accuracy but also effectively reducing
feature dimensionality. Experimental results demonstrate that
IBHHO outperforms other comparative algorithms in terms of
comprehensive performance across eight microarray datasets,
verifying its effectiveness in handling high-dimensional bio-
logical data. In future, it will also be possible to combine

bioinformatics knowledge to conduct in-depth analyses of the
biological relevance of feature subsets selected by IBHHO,
providing more specific guidance for research on cancer gene
functions.
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