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Abstract—Ulcerative Colitis (UC), a chronic inflammatory
bowel disease, presents significant diagnostic challenges due to
its overlapping symptoms with other gastrointestinal disorders
and the complex visual patterns in endoscopic imagery. Accurate
and early detection is essential to guide effective treatment and
improve patient outcomes. This research introduces a robust
hybrid framework that combines convolutional feature extraction
with bidirectional temporal modelling for the precise identifi-
cation of UC from medical imagery. The proposed approach
integrates CNNs—including MobileNetV3Large, Inception v3,
InceptionResNetV2, and Xception—with Bi-GRU and Bi-LSTM
networks. The CNNs are responsible for capturing high-level spa-
tial features, while the Bi-GRU and Bi-LSTM modules enhance
temporal context understanding, enabling the model to effectively
interpret subtle patterns and transitions characteristic of UC.
Each hybrid model was designed, and thoroughly tested on an
curated set of experimental data. Among the combinations, the
highest accuracy was of 93.10%, obtained with the Xception
+ Bi-GRU + Bi-LSTM model. Inception v3 + Bi-GRU + Bi-
LSTM followed closely, attaining an accuracy of 92.62%. The
different data augmentation techniques is deployed to handle
the class imbalance that exists in the LIMUC dataset . Notably,
the bidirectional temporal modelling component significantly
improved the recognition of sequential dependencies in medical
image frames, enhancing the model’s diagnostic robustness. The
findings demonstrate that integrating CNNs with bidirectional
temporal encoders offers a promising solution for UC detection,
providing a valuable tool for clinicians in automated diagnostic
systems. This study not only contributes to the advancement of
intelligent medical imaging but also paves the way for deploying
real-time UC detection models in clinical practice.

Keywords—Ulcerative Colitis Detection (UCD); CNNs; Bi-GRU;
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I. INTRODUCTION

Ulcerative Colitis (UC) is a chronic, relapsing inflamma-
tory disease of the colon that markedly affects quality of
life. UC, marked by inflammation and ulceration of the lining
of the colon, can lead to heterogeneous symptoms including
abdominal pain and diarrhea, etc. Early and accurate diagnosis
of UC is essential to managing disease progression, minimiz-
ing complications, and tailoring therapeutic interventions [1],
[2]. However, differentiating UC from other gastrointestinal
disorders based on endoscopic and histopathological findings
remains a complex task, often requiring the expertise of trained
specialists. The subjectivity and margin of human error that

is inherent to standard diagnostic protocols is the result of
the subtlety of visual clues in a medical image as well
as variability among different patients. This underscores the
need for intelligent, automated diagnostic systems capable
of supporting clinical decision-making through reliable and
interpretable insights.

Recent advancements in DL have opened new avenues
for automated disease classification, especially in the field of
medical imaging [3], [4], [5]. CNNs, with their strong ability to
extract spatial features, have become the cornerstone of many
computer-aided diagnostic systems [6], [7]. Nevertheless, med-
ical data, especially video-based or sequential image modalities
obtained during endoscopic procedures, possess a temporal di-
mension that CNNs alone cannot fully capture. To address this,
sequence learning models such as GRUs and LSTMs have been
employed to model temporal dependencies and capture the
evolution of visual patterns over time. While each architecture
has its own advantages, a synergistic combination of CNNs
with temporal modeling techniques offers a comprehensive
solution that leverages both spatial and contextual information.
In this study, we propose a hybrid framework that integrates
convolutional feature encoding with bidirectional temporal
context modeling to enhance the robustness and accuracy of
Ulcerative Colitis detection. The framework utilizes a series of
CNN architectures—MobileNetV3Large, Inception v3, Incep-
tionResNetV2, and Xception—as the feature extractors. These
networks are known for their efficient and deep representations
of visual content, making them suitable for detecting fine-
grained patterns indicative of UC. To enrich these spatial
features with temporal dynamics, we embed Bi-GRU and
Bi-LSTM layers into the model pipeline. The bidirectional
structure enables the model to interpret the image sequence
from both past and future contexts, thereby improving the
model’s understanding of pattern transitions in the disease’s
progression. Bidirectional temporal models are chosen based
on the ability to learn more complex and symmetric represen-
tations of temporal features than just unidirectional ones.The
combination of GRUs ,which have lower computational cost
compared to other recurrent architectures, and LSTMs, which
are able to better control long-term dependencies, further en-
hance the temporal learning capacity of the model. Combining
these approaches with CNNs increases the capacity of the
system to detect clinically subtle details, while generalizing
well to other patient samples.A comprehensive experimental
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evaluation was conducted to assess the effectiveness of the
proposed hybrid models. The Xception + Bi-GRU + Bi-
LSTM configuration demonstrated the highest performance,
achieving an accuracy of 93.10%. This model outperformed
other combinations, including Inception v3 + Bi-GRU + Bi-
LSTM (accuracy: 92.62%), InceptionResNetV2 + Bi-GRU +
Bi-LSTM (accuracy: 91.28%), and MobileNetV3Large + Bi-
GRU + Bi-LSTM (accuracy: 89.40%). The results underscore
the superiority of integrating advanced convolutional encoders
with bidirectional temporal networks, especially when dealing
with complex, variable-rich datasets like those involved in UC
diagnosis.

The primary contribution of this research lies in the demon-
stration that convolutional and temporal features, when mod-
eled jointly, can significantly improve diagnostic accuracy and
reduce mis-classification. This approach also shows promise
for scalability and adaptability across different gastrointestinal
conditions, making it a versatile tool in the broader land-
scape of endoscopic image analysis. Furthermore, by reducing
dependency on manual interpretation and standardizing the
diagnostic process, the proposed framework has the potential
to minimize diagnostic delays and optimize treatment plan-
ning. With the rising demand for precision medicine and the
integration of Al in healthcare workflows, our proposed model
offers a timely and impactful solution.

The structure of the research is as follows: Sections II
provides a description of related work and Section III describes
the materials and methodology for UC detection. Discussion
of the results is given in Section IV. Finally, Section V wraps
up the research and suggests avenues for future research.

II. LITERATURE REVIEW

The emergence of ML has significantly advanced the field
of medical diagnostics, particularly in inflammatory bowel
diseases such as ulcerative colitis (UC). Multiple studies have
attempted to improve early diagnosis, severity recognition,
treatment outcome prediction, and differentiation from other
gastrointestinal diseases with several different Al methods .
One of the early studies by Khorasani et al. [1] employed
effective feature selection techniques along with ML classifiers
to identify UC from healthy colon samples, highlighting the
importance of diagnostics preprocessing optimization. Sim-
ilarly, Popa et al. [2] proved the predictive ability of ML
models in predicting long-term disease activity in UC patients
treated with anti-TNF, providing potential instruments for
clinical decision-making as well as personalized treatment
planning.The use of DL has even transformed the field further,
especially in image-based analysis.

Klang et al. [6] first applied DL methods for identifying
Crohn’s disease from video capsule endoscopy, paving a path
towards a non-invasive and automated video-based analysis of
the gastrointestinal tract. This opened the way to applications
more focused on UC; for example; Takenaka et al. [7] created
a DL able to assess endoscopic images of patients with
UC, demonstrating performance at the level of experts in
scoring mucosal inflammation. Bossuyt et al. [8] went a step
further by incorporating a computer-based quantification of
endoscopic and histological inflammation, thus reinforcing the
promise of image-based Al tools for assessment of the whole
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disease.Continuing the work done in endoscopic assessments,
Bhambhvani and Zamora [9] focused on DL classification of
the Mayo endoscopic subscore, an important disease severity
index in UC. This provided a more efficient scoring system and
eliminated subjectivity more in line with the clinical need for
reproducibility and efficiency.In addition to imaging, structured
clinical data has also been central in the further studies. Roy et
al. [10] considered links to UC, 5-ASA, and COVID-19 deaths
in the context of machine learning methodology, demonstrating
Al’s ability to integrate real-world data in support of research.

In a similar vein, Miyoshi et al.[11]used baseline clinical
characteristics to predict the response to vedolizumab treat-
ment, thus demonstrating the capability of ML to personalize
biologic therapy. At the molecular level, Park et al. [12] utilized
RNA sequencing data to ML models to classify UC versus
Crohn’s disease, indicative of the increasing convergence of
Al and genomic data. Becker et al. [13] raised the point of
DL scalability, as the models are trained and deployed on
data collected in multicenter clinical trials for the grading of
endoscopic severity. They argued for cross-validation and gen-
eralizability. Lu et al.[14] used bioinformatics and incorporated
ML to establish diagnostic gene signatures, whereas Chierici et
al.[15] used automated identification of UC and Crohn’s from
endoscopic images, demonstrating the reliability of DL in clin-
ical imaging analysis across different fields. Gut microbiome
is another area of relevance for UC prediction. Barberio et al.
[16] concluded that ML could link certain microbial profiles to
the severity of UC and establish the use of microbiota-based
diagnostic modalities. Li et al. [17] developed interpretable
predictive models to the endoscopic activity in UC, balancing
clinical interpretability and computational complexity.Building
on this, Fan et al. [18] developed a DL-based computer-
aided diagnosis system to predict inflammatory activity in
a manner that is both real-time predictive and usable in a
clinical context . Recent studies have attempted to improve
accuracy and refine scoring systems. Byrne et al.[19] assessed
DL models according to various types of UC scoring systems
and highlighted the importance of maintaining consistency
within metrics. Polat et al. [20] used a regression based DL,
moving from classification based to regression based DL to
increase prediction of Mayo scores.

Kulkarni et al. [21] summarized the use of Al technologies
in UC, highlighting some of the trends and challenges in
diagnostic innovation.Pei et al. [22] performed a compar-
ison between ML algorithms for differentiating UC from
Crohn’s, emphasizing the role of model choice on diagnostic
accuracy.Some work on innovative classification approaches
has been done by Alyamani [23], who developed a multi-
level DL architecture for better diagnostic resolution,while
Carreras et al. [24] incorporated gene expression signatures
including LAIR1 and TOX2 with CNNs to investigate the
association between UC and colorectal cancer, integrating
histopathology with computational analysis.Lee et al.[25] pro-
vided a stool image-based, vision-centered, non-intrusive new
screening technology with the capability of predicting mu-
cosal inflammation.Vezakis et al.[26] compared various DL
architectures to obtain UC severity metrics and the findings
are valuable when considering which model to use based
on the desired diagnostic outcome.Li et al.[27] used single-
cell sequencing and mitochondrial metabolism markers to
construct a high-quality diagnostic model, a good example of
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the combination of omics data and artificial intelligence.

Overall, as discussed, ML and DL are used in a broad
variety of ways for the diagnosis and treatment of ulcerative
colitis in the literature. Whether dealing with endoscopic im-
ages or histological slides, genomics, or microbiota, novel Al
paradigms have been proposed, allowing for more accurate di-
agnoses, as well as predictive and tailored treatment strategies.
But there are still issues like generalizability across datasets,
explainability, and implementation in real-world clinical set-
tings. The present study expands these works by providing
an improved hybrid model that overcomes these limitations
with high performance, good interpretability, and ability to use
heterogeneous data types.

III. MATERIALS AND METHODS
A. Dataset

The LIMUC dataset [28] utilized in this work contains
a total of 11,276 colonoscopy frames from 564 patients that
underwent 1,043 procedures between December 2011 and July
2019 at the Department of Gastroenterology at Marmara Uni-
versity, School of Medicine. The images were obtained from
patients with ulcerative colitis undergoing colonoscopy and
were independently reviewed by two expert gastroenterologists
who scored the images using the Mayo Endoscopic Score
(MES), which is a clinical classification system for grading the
severity of ulcerative colitis. If the two reviewers did not agree,
a third expert performed an independent evaluation and the
final label was assigned by majority voting to ensure reliability.
Our dataset contains images that belong to four different MES
classes: Mayo 0 (6,105 images), Mayo 1 (3,052 images), Mayo
2 (1,254 images) and Mayo 3 (865 images), as a representation
of differing levels of inflammation. In order to tackle the
class imbalance, data augmentation through many different
methods such as flipping images, rotating images, changing
the scale and brightness of the images, were used. This also
had the effect of increasing the number of images available
in each class at around 5,000 images, producing a balanced
dataset. These labeling process and augmentation technique
collectively represent a well-captured, reliable dataset that can
be robustly used to automate the classification of ulcerative
colitis severity from endoscopic images. The dataset sample
image is given in Fig. 1.

B. Proposed Methodology

The proposed methodology introduces a hybrid architecture
that synergistically combines CNNs and RNNs to enhance the
classification of ulcerative colitis from endoscopic images. As
illustrated in Fig. 1, the system initiates with a sequence of
input images derived from colonoscopy procedures, capturing
varying regions of the intestinal mucosa. These images are first
processed through a CNN block, which performs hierarchical
feature extraction to identify critical spatial patterns such as
mucosal texture, ulcerations, and inflammation. The convolu-
tional layers are followed by pooling operations that reduce
spatial dimensionality while retaining key visual information.
The extracted spatial features are then sequentially passed into
a Bi-GRU layer, which models temporal relationships across
the image sequence by analyzing patterns in both forward
and backward directions. In order to better learn long-range
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Fig. 1. Sample images of LIMUC dataset.

dependencies, the output from the Bi-GRU is then passed into
a Bi-LSTM layer. This modeling of dual temporarily provides
the system with information on short-term transitions as well
as long-term disease progression cues that can be identified
in the image frames. Finally the temporally enriched feature
representations are forwarded to a fully connected dense layer
specific for classification. The output layer ultimately produces
a predicted probability of Ulcerative Colitis status, allowing
for a strong and interpretable diagnostic model. This multi-
system architecture achieves greater sensitivity and classifi-
cation performance than systems using only spatial features
or only unidirectional temporal context. Fig. 2 displays the
proposed architecture.A detailed description of the architecture
is discussed in the following subsection.

C. MobileNetV3Large + Bi-GRU + Bi-LSTM

The methodology employs a two-stage neural network
that first extracts spatial features with a streamlined Mo-
bileNetV3Large model and then captures temporal relation-
ships using sequential recurrent layers. RGB inputs sized at
224x224x3 are processed by MobileNetV3Large—initialized
with ImageNet weights and stripped of its final classi-
fier—yielding dense feature maps. These maps undergo global
average pooling to collapse spatial dimensions into a concise
feature vector, which is then reshaped for time-series anal-
ysis. Next, the vector feeds into a Bi-GRU layer, allowing
information flow in forward and reverse directions, followed
by a Bi-LSTM layer to deepen the model’s temporal context
awareness. The combined output is projected through a dense
layer with ReLU activation to refine the feature embedding
before reaching the final classification stage. This design
leverages a lightweight convolutional backbone alongside pow-
erful recurrent components to deliver precise and contextually
informed image classification. The proposed architecture is
given in Table I.
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Fig. 2. The proposed architecture.

TABLE I. MOBILENETV3LARGE + BI-GRU + BI-LSTM ARCHITECTURE

TABLE II. INCEPTIONV3 + BI-GRU + BI-LSTM ARCHITECTURE

Operation Data Dim. Weights  Details Operation Data Dim. Weights  Details
MobileNetV3Large (None, 7, 7, 960) 2,996,352 Feature extractor inception_v3 (None, 2048) 21,802,784 Feature extractor
(Functional) (Functional)

batch_normalization (None, 7, 7, 960) 3,840 Batch normalization flatten (Flatten) (None, 2048) 0 Flatten
ii]?;t)chNormahza- reshape (Reshape) (None, 1, 2048) 0  Prepare for RNN
flatten (Flatten) (None, 47,040) 0  Flatten l();g[r;cnonal (Bi-  (None, 1, 1024) 7,870,464 Bi-GRU layer
dense (Dense) (None, 256) 12,042,496 Fully connected bidirectional_I (Bidi-  (None, 128) 557,568  Bi-LSTM layer
dropout (Dropout) (None, 256) 0 Dropout rectional LSTM)

reshape (Reshape) (None, 1, 256) 0 Prepare for RNN batch_normalization_94 (None, 128) 512 Batch normalization
bidirectional (GRU)  (None, 1, 512) 789,504  Bi-GRU layer (BatchNormalization)

bidirectional_I (Bidi-  (None, 256) 656,384  Bi-LSTM layer dense (Dense) (None, 4) 316 Output logits (4-way)
rectional LSTM)

dense_1 (Dense) (None, 4) 1,028 Output logits (4-way)

D. Inception v3 + Bi-GRU + Bi-LSTM

In the proposed work, colonoscopy images were first
uniformly resized to fit the InceptionV3 input requirements.
Extensive on-the-fly data augmentation was applied via the
ImageDataGenerator interface to enhance dataset variability
and counteract overfitting. Spatial features were extracted
using the convolutional base of InceptionV3 pretrained on
ImageNet, with its weights frozen to preserve established
filters. The resulting dimensional feature vectors were then
reshaped into sequences of length 64 with 32 features per time
step, thereby creating a pseudo-temporal representation. A Bi-
GRU layer processed these sequences to capture bidirectional,
short-term patterns, which were subsequently fed into a Bi-
LSTM layer to learn longer-range dependencies. Output from
the recurrent stack was passed through a fully connected layer
and ReLU activation, followed by a dropout layer (dropout
rate = 0.3) to further mitigate overfitting. A final softmax layer
produced probability scores of ulcerative colitis. The network
was trained using the Adam optimizer and categorical cross-
entropy loss, leveraging the augmented data streams for both
training and validation stages. The proposed architecture is
given in Table II.

E. InceptionResNetV2 + Bi-GRU + Bi-LSTM

To accurately classify ulcerative colitis from colonoscopy
images, this research proposes a novel hybrid architecture
that integrates InceptionResNetV2 with Bi-GRU and Bi-LSTM
networks. The model begins by accepting RGB images of
a fixed size through an input layer. Feature extraction is
performed using the InceptionResNetV2 model, which has
been pre-trained on the ImageNet dataset. This CNN is used
without its final classification layers to retain only the learned
spatial feature representations. These high-dimensional feature
maps are then reshaped into a sequence by flattening the
spatial components, preparing the data for temporal pattern
analysis. The sequential representation is first processed by a
Bi-GRU layer, enabling the capture of short-term dependencies
from both forward and backward time steps. Subsequently,
the output is passed to a Bi-LSTM layer, which focuses on
learning more complex and long-term contextual patterns in
both directions. This combination of recurrent layers enhances
the model’s ability to interpret dynamic relationships within
the extracted features. Finally, the output is directed through
dense layers with ReLU activation, ending in a softmax layer
for multi-class prediction. The model is optimized using the
Adam algorithm. This integrated approach is designed to
efficiently capture both spatial and sequential patterns relevant
to ulcerative colitis diagnosis. The proposed architecture is
given in Table III.
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TABLE III. INCEPTIONRESNETV?2 + B1-GRU + BI-LSTM

TABLE IV. XCEPTION + B1-GRU + BI-LSTM ARCHITECTURE

ARCHITECTURE
Operation Data Dim. Weights  Details
MobileNetV3Large (None, 7, 7, 960) 2,996,352 Feature extractor
(Functional)
batch_normalization (None, 7, 7, 960) 3,840 Batch normalization
(BatchNormaliza-
tion)
flatten (Flatten) (None, 47,040) 0 Flatten
dense (Dense) (None, 256) 12,042,496 Fully connected
dropout (Dropout) (None, 256) 0 Dropout
reshape (Reshape) (None, 1, 256) 0 Prepare for RNN
bidirectional (GRU) (None, 1, 512) 789,504 Bi-GRU layer
bidirectional_1 (Bidi- (None, 256) 656,384 Bi-LSTM layer
rectional LSTM)
dense_1 (Dense) (None, 4) 1,028 Output logits (4-way)

F. Xception + Bi-GRU + Bi-LSTM

The methodology centers on a multi-stage hybrid pipeline
tailored for ulcerative colitis detection in colonoscopy imagery.
To bolster the model’s resilience against overfitting, each image
underwent real-time augmentation—via a generator. For fea-
ture extraction, we adopted the Xception network pre-trained
on ImageNet: its final classification layers were removed,
and the remaining convolutional base was frozen to preserve
learned representations. The resulting high-dimensional feature
maps were then transformed into temporal sequences through a
reshape operation, treating each spatial location as a time step.
These sequences flowed into a Bi-GRU layer, which processes
information in both forward and reverse directions to capture
local patterns, and subsequently into a Bi-LSTM layer that
further models long-range dependencies. The bi-directional
recurrent outputs were flattened and fed into a dense layer with
ReLU activation, followed by dropout to reduce overfitting.
A concluding softmax layer produced probabilities across the
target classes. Model optimization employed the Adam algo-
rithm. This hybrid strategy leverages Xception’s spatial feature
learning alongside the temporal modeling strengths of Bi-GRU
and Bi-LSTM, yielding a robust classifier for ulcerative colitis.
The proposed architecture is given in Table IV.

IV. RESULTS

The models for ulcerative colitis detection were run in a
Jupiter setup with a hardware configuration of an AMD Ryzen
7 5800H processor with 8 cores, 16 GB of RAM. The graphics
processing unit (GPU) used for computation was the Nvidia
GeForce RTX 3060.

The evaluation of hybrid architecture integrating convolu-
tional architectures with sequential learning units highlights the
efficacy of the proposed methodology in classifying ulcerative
colitis severity from colonoscopy images, as shown in Table V.
The MobileNetV3Large combined with Bi-GRU and Bi-LSTM
achieved an accuracy of 89.40%, with closely aligned preci-
sion, recall, and F1-score values, demonstrating its lightweight
yet competent performance, particularly beneficial in low-
resource environments. The Confusion Matrix and ROC Curve
of the proposed architecture is given in Fig. 3 and Fig. 4.

Operation Data Dim. Weights  Details

xception (Functional) (None, 2048) 20,861,480 Feature extractor

batch_normalization_4  (None, 2048) 8,192 Batch normalization

(BatchNormaliza-

tion)

repeat_vector (None, 10, 2048) 0 Replicate features

(RepeatVector) into  sequence of
length 10

bidirectional (Bi- (None, 10, 1024) 7,870,464 Bi-GRU layer

GRU)

bidirectional_1 (Bidi-  (None, 10, 128) 557,568  Bi-LSTM layer

rectional LSTM)

time_distributed (None, 10, 128) 16,512 Time-distributed

(TimeDis- dense projection

tributed(Dense

128))

flatten (Flatten) (None, 1280) 0 Collapse time & fea-
ture dims

dense_1 (Dense) (None, 4) 5,124 Final output logits (4-

way classification)

TABLE V. RESULTS ON LIMUC DATASET

Proposed Hybrid Architec- Acc.(%) Prec.(%) Rec.(%) F1-S.(%)
ture
MobileNetV3Large + Bi-GRU 89.40 89.31 89.40 89.29
+ Bi-LSTM
Inception v3 + Bi-GRU + Bi- 92.62 92.59 92.62 92.56
LSTM
InceptionResNetV2 + Bi-GRU 91.28 91.23 91.28 91.25
+ Bi-LSTM
Xception + Bi-GRU + Bi- 93.10 93.05 93.10 93.05
LSTM
400
300
4}
=
=
200

100

2

Predicted

Fig. 3. Confusion matrix using Mobilenetv3large + Bi-GRU + Bi-LSTM.

The Inception v3 + Bi-GRU + Bi-LSTM model performed
significantly better, yielding a 92.62% accuracy. Its superior
feature extraction capabilities, combined with the bidirectional
temporal analysis of GRU and LSTM, enabled accurate identi-
fication of inflammation patterns across all Mayo classes. The
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Fig. 4. ROC Curve using Mobilenetv3large + Bi-GRU + Bi-LSTM.

Confusion Matrix and ROC Curve of proposed architecture is
given in Fig. 5 and Fig. 6.

True
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Fig. 5. Confusion matrix using Inception v3 + Bi-GRU + Bi-LSTM.
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Fig. 6. ROC curve using Inception v3 + Bi-GRU + Bi-LSTM.

The InceptionResNetV2-based model with Bi-GRU and Bi-
LSTM followed closely with a 91.28% accuracy, benefitting
from the residual-inception hybrid architecture which helps
preserve spatial feature depth while maintaining computational
efficiency. This combination proved robust in learning hierar-
chical and sequential representations effectively. The confusion
matrix and ROC Curve of proposed architecture is given in Fig.
7 and Fig. 8.
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Fig. 7. Confusion matrix using InceptionResNetV2 + Bi-GRU + Bi-LSTM.
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Fig. 8. ROC curve using InceptionResNetV2 + Bi-GRU + Bi-LSTM.

Among all, the Xception + Bi-GRU + Bi-LSTM model out-
performed others, achieving the highest accuracy of 93.10%,
with a precision of 93.05%. Its depthwise separable convo-
lutions facilitated highly efficient spatial learning, and the
dual RNN layers enhanced temporal feature understanding,
resulting in a strong overall classification performance across
all metrics. The confusion matrix and ROC Curve of proposed
architecture is given in Fig. 9 and Fig. 10.

True

100

0 1 2 3
Predicted

Fig. 9. Confusion matrix using Xception + Bi-GRU + Bi-LSTM.
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Fig. 10. ROC curve using Xception + Bi-GRU + Bi-LSTM.

V. CONCLUSION

This research introduces a robust DL framework for classi-
fying ulcerative colitis severity using colonoscopy images, em-
ploying a hybrid model that fuses the spatial learning capacity
of CNNs with the temporal strengths of Bi-GRU and Bi-LSTM
architectures. Among the various models assessed, the Xcep-
tion + Bi-GRU + Bi-LSTM configuration delivered the highest
performance, achieving an accuracy of 93.10%. This high-
lights the significance of incorporating depthwise separable
convolutions in medical imaging tasks, as they enable efficient
and detailed feature extraction. Similarly, Inception v3 and
InceptionResNetV2 based hybrids also showed strong results,
affirming the potential of combining advanced CNN backbones
with recurrent networks to handle both spatial complexity and
temporal dependencies in medical datasets. It also contrasts
the importance of class balance and augmentation techniques,
that played an important role in improving generalization of
the model in particular the imbalanced classes in the original
dataset. Both these techniques worked well in modeling the
highly non-linear characteristics found at varying states of
ulcerative colitis.

In the future, there are many avenues to build upon this
work. First, data from more medical centers and populations
could enhance adaptivity and clinical applicability of the
model. The implementation of real-time video streams rather
than single images could further increase diagnostic accuracy
by taking advantage of temporal consistency across frames.
Transformer based architectures could also be explored in fu-
ture studies. Also, it may be pursued to further refine the model
in order to be deployed in a clinical environment, including
lightweight models that could run on mobile and embed-
ded applications to provide real-time decision support during
colonoscopy procedures. Lastly, including feedback loops to
validate and correct predictions from gastroenterologists could
transform this in a continuously learning system that improves
over time. Future extensions of this work will involve real-time
use in the clinical setting, incorporation into electronic health
record systems, and assessment in larger, multi-site samples to
test the system’s robustness and generalizability.
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