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Abstract—This research addressed the critical challenge of
class imbalance in classification, which is a prevalent issue in
real-world applications. Standard classifiers often struggled with
imbalanced datasets and frequently misclassified the minority
class (positive instances) due to the overwhelming presence of
the majority class (negative instances). The proposed Negative
Extreme Anomalous Undersampling Technique (NEXUT) was
introduced as a parameter-free approach. It leveraged the nega-
tive extreme anomalous score to strategically eliminate negative
instances located in overlapping regions. This targeted removal
was designed to improve the classifier’s ability to effectively
distinguish between the two classes. To evaluate the effectiveness
of the proposed method, we conducted a comprehensive compar-
ison with established undersampling techniques. The evaluation
utilized both synthetic datasets and twelve datasets from the UCI
repository. Six different classifiers were employed to ensure a
diverse and unbiased performance assessment. Results from the
Wilcoxon signed-rank test confirmed that the proposed method
achieved significantly higher performance compared to existing
techniques. These findings demonstrated the potential of NEXUT
as a robust and valuable tool for addressing class imbalance
problems.
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I. INTRODUCTION

Classification is an important topic in machine learning
and data mining. This is especially true for class-imbalanced
datasets, which frequently appear in many real-world applica-
tions. Examples include disease classification in the medical
field [1], credit card fraud detection [2], satellite-based re-
mote sensing [3], environmental pollution monitoring [4], and
network intrusion detection [5]. A class imbalance problem
[6] occurs when the number of instances in one class is
significantly smaller than that of another. The smaller class is
called the minority class, and the other is called the majority
class. An instance in the minority class is referred to as a
positive instance, whereas an instance in the majority class is
referred to as a negative instance.

A classification algorithm [7] has difficulty when trained on
class-imbalanced datasets because of the small proportion of
minority class instances. A classifier generated by a standard
classification algorithm tends to predict unknown instances as
negative, which leads to the misclassification of most positive
instances. However, correctly detecting positive instances is
usually crucial. For example, fraud cases in fraud detection

may cause significant financial losses, while missing cancer
patients in cancer detection [8] can lead to life-threatening
consequences.

To address the class imbalance problem, two method-
ologies have been proposed in the literature: data-level and
non-data-level approaches [9]. Data-level algorithms aim to
rebalance instances in a dataset so that standard classifiers
can better recognize the decision boundary and classify in-
stances from both classes correctly. In contrast, non-data-level
algorithms modify the classification process itself to improve
the detection of positive instances or assign higher penalty
costs to misclassified positive instances. Data-level methods
are generally more flexible because they can be applied to any
classification algorithm and do not require deep knowledge of
the classifier’s internal design [10].

Two primary data-level methods for rebalancing datasets
are oversampling and undersampling. Oversampling tech-
niques balance data by adding or generating positive instances,
which may not always represent valid cases in real-world
situations. In contrast, undersampling techniques rebalance
data by removing negative instances while preserving the
characteristics of the minority class. However, oversampling
increases the total number of instances, which leads to longer
computational times for classification algorithms. In big data
environments, oversampling may even require reimplementing
algorithms to handle the larger datasets. Undersampling, on
the other hand, reduces the number of instances and computa-
tional time [10], making it more suitable for large-scale data.
Moreover, removing negative instances around the decision
boundary of positive instances improves a classifier’s ability
to correctly predict positive instances. Therefore, this research
focuses exclusively on undersampling techniques.

Several undersampling techniques have been proposed to
address class imbalance, including Random Undersampling
[11], Tomek Links [12], Cluster Centroids [13], and Near
Miss [14]. However, these methods have certain limitations.
The Random Undersampling removes negative instances ran-
domly, which does not guarantee a clear decision boundary
between classes. The Tomek Links technique removes negative
instances from Tomek link pairs, which connect two instances
from different classes as their nearest neighbors. As a result,
it deletes only a small number of negative instances and
rarely clarifies the decision boundary. The Cluster Centroid
technique generates centroids of negative sub-clusters and
retains them along with all positive instances. Although effec-
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tive in reducing dataset size, this technique may also remove
many negative instances near the boundary region, potentially
reducing precision. The Near Miss technique retains only
negative instances located close to positive instances. However,
these selected negatives often come from boundary regions and
may represent noisy or overlapping data that are difficult to
classify.

In 2017, Chiamanusorn and Sinapiromsaran [15] proposed
the negative extreme anomalous score (NasS) for use in
oversampling techniques. The NaS of an instance is defined
as the maximum possible radius of an open ball centered at
that instance, such that no instances of the negative class are
contained within the ball. The Na.S represents the distance be-
tween the instance under consideration and its closest negative
neighbor, without being influenced by positive instances.

The Negative Extreme Anomalous Undersampling Tech-
nique (NEXUT) is introduced in this study as a data-level
approach that utilizes NaS to eliminate negative instances.
It removes redundant negative instances and noise in the
overlapping regions of both classes. This clarifies the boundary
of the minority class, enabling classifiers to more effectively
identify positive instances located near negative ones.

This study introduces a novel approach that:

e  Offers flexibility by allowing any classifier to be
applied to any dataset.

e  Addresses the challenge of imbalanced data without
requiring specific parameter settings.

e Enhances the decision boundary through undersam-
pling techniques.

This study is organized into five sections: Section I presents
the motivation for this study. Section II reviews related work.
Section III describes the proposed NEXUT algorithms. Section
IV reports the experimental results conducted on both synthetic
datasets and twelve real-world datasets from the UCI reposi-
tory. Finally, Section V concludes the study.

II. RELATED WORK

Extensive research on undersampling techniques has fo-
cused on addressing class-imbalanced data. This effort has led
to the development of methods that improved classification
performance. In recent years, several surveys and system-
atic reviews have provided comprehensive discussions on the
challenges of class imbalance and the evolution of related
techniques [16], [17], [18], [19]. These studies highlight that
early undersampling methods, such as Tomek Links [12], ENN
[20], and CNN [21], remained important baselines. However,
more recent approaches emphasized the need for robust and
adaptive solutions, particularly in modern applications such as
deep learning and remote sensing. Numerous undersampling
techniques have been proposed and can be categorized into
four main types.

A. Type I: Size-Based Undersampling

These techniques eliminated instances from the majority
class until its size became equivalent to that of the minority
class. Examples included Random Undersampling (RUS) [11],
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Cluster Centroids (ClusterCentroids) [13], and Clustering-
Based Undersampling (CBU) [22].

e RUS was the simplest technique, randomly removing
negative instances from the majority class. This ap-
proach tended to lose some important negatives.

e  ClusterCentroids applied the K-means algorithm to
represent negative instances with their centroids, while
retaining all positive instances.

e CBU applied K-means clustering to select or generate
negative instances that represented the majority class.

Limitation: These methods often removed informative neg-
atives and ignored overlapping regions with the minority class.

B. Type II: Overlap-Based Undersampling

These techniques focused on eliminating negative instances
in regions overlapping with positive instances. Examples in-
cluded Tomek Links (TomekLinks) [12], One-Sided Selection
(OSS) [23], Edited Nearest Neighbor (ENN) [20], Repeated
ENN (RENN) [24], AIIKNN [24], Neighborhood Cleaning
Rule (NCL) [25], Majority Undersampling Technique (MUTE)
[26], and Neighborhood-Based Undersampling Technique with
Modified Tomek Link Search (NB-Tomek) [27].

e  Tomek Links was a well-known method for addressing
class overlap. It identified pairs of instances from dif-
ferent classes that were each other’s nearest neighbors,
and removed only the negative instances in these pairs.

e OSS applied the 1-NN rule to identify misclassified
instances and then removed negative instances from
Tomek links.

e ENN applied the k-NN rule, removing majority class
instances if at least half of their k-nearest neighbors
belonged to the minority class. By default, a 3-NN
setting was used.

e RENN iteratively applied the ENN procedure until
all remaining majority class instances had at least
half of their k-nearest neighbors also belonging to the
majority class.

e AIIKNN used the k-NN rule across a range of k
values (typically from 1 up to a specified k). It
eliminated majority class instances if at least half of
their neighbors were positive.

e NCL implemented a two-step cleaning process. First,
it applied ENN to remove noise. Then, it used the
k-NN rule to remove misclassified majority class
instances. The default setting for k was 3.

e MUTE, proposed by Bunkhumpornpat et al. in 2011
[26], was later enhanced in 2014 with a safe-level
graph [28]. The original version removed only noise,
while the adaptive version could remove noise, border-
line instances, or even reduce the majority class to core
instances, depending on the safe-level configuration.

e NB-Tomek removed a majority class instance if it had
a minority class neighbor and was also one of the k-
nearest neighbors of that minority instance.
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Limitation: These methods required parameter tuning (e.g.,
k in k-NN) and often failed to preserve the overall data
distribution, discarding important negatives.

C. Type IlI: Neighbor-Based Undersampling

These techniques retained negative instances based on their
neighbors. Examples included Near Miss (NearMiss) [14] and
Condensed Nearest Neighbor (CNN) [21].

e NearMiss had three variants (NearMiss-1, 2, 3) that
selected majority class instances based on different
proximity criteria.

o  NearMiss-1 chose negative instances with the
smallest average distance to their three nearest
positive instances.

o  NearMiss-2 chose negatives closest to all posi-
tive instances, typically using the farthest three.

o  NearMiss-3 selected a fixed number of nearest
negatives for each positive instance. However,
this approach removed many negatives, often
damaging the decision boundary of the minor-
ity class. Moreover, the selected negatives were
difficult to classify.

e  CNN used the nearest neighbor (NN) rule to identify
misclassified instances located near the class bound-
ary, which were retained as reference points for future
classification.

Limitation: Neighbor-based methods often removed too
many negatives, weakening the minority decision boundary.

D. Type 1V: Anomaly-Based Undersampling

These techniques eliminated majority class instances by
identifying them as anomalies or outliers relative to the data
distribution. The assumption was that atypical majority in-
stances were less representative and acted as noise in the
learning process. Examples included Anomaly Scoring Based
Ensemble (ASE) [29] and Geodesic Based Outlier Detection
(GDLD) [30].

e ASE combined anomaly scores from multiple de-
tectors to identify and remove unrepresentative ma-
jority class instances. Although effective, it required
hyperparameter tuning for score normalization and
ensemble weighting.

e GDLD leveraged geodesic distances and manifold
properties to identify extreme negative outliers. While
it preserved complex class boundaries, it often intro-
duced significant computational overhead.

Limitation: Although anomaly-based undersampling was
effective in detecting atypical negatives, most approaches
depended heavily on predefined thresholds, scoring functions,
or hyperparameters. This reliance reduced robustness across
diverse datasets and complicated practical application.

Although a wide range of undersampling methods has
been developed, several limitations remain [16], [17]. Many
techniques required parameter tuning, and improper settings
often led to the removal of informative negatives, degrading
performance. Moreover, some methods failed to maintain
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the inherent data distribution of each class, particularly in
overlapping regions. These weaknesses reduced the robustness
and generalizability of current approaches, as emphasized in
domain-specific contexts such as remote sensing and semi-
supervised learning [19], [18].

To address these limitations, we propose the Negative
Extreme Anomalous Undersampling Technique (NEXUT).
Unlike existing anomaly-based methods, which relied heav-
ily on hyperparameters or thresholds, NEXUT was entirely
parameter-free. It automatically identified and removed ex-
treme anomalous negatives while preserving all minority in-
stances and maintaining the original class structure. This
design ensured robustness across diverse datasets and avoided
the performance degradation caused by improper parameter
settings. Therefore, NEXUT introduced both a clear novelty
and a practical advantage over existing anomaly-based ap-
proaches.

III. THE PROPOSED TECHNIQUE: NEXUT

This section describes the proposed Negative Extreme
Anomalous Undersampling Technique (NEXUT). The tech-
nique aims to eliminate noisy or overlapping majority class
instances while preserving all minority class instances. This
ensures that the original distributions of both the majority and
minority classes remain unchanged. NEXUT incorporates three
distinct removal approaches, namely NEXUT-All, NEXUT-
Plus, and NEXUT-PlusMinus.

Definition 3.1: Let D be a dataset with numeric attributes
that contains a set of negative instances, Neg, representing
the majority class, and a set of positive instances, Pos,
representing the minority class. Let * € D be an instance
in the dataset. The extreme anomalous score of an instance x,
denoted as EaS(x), is defined by the following notation:

EaS(z) = sup{d > 0||B(z,d) N (D\{z})| = 0}

where, B(x,d) denotes an open ball of radius d centered
at x.

It should be noted that the negative extreme anomalous
score, NaS(x), for an instance & € D, is equivalent to
EaS(x) when it is calculated using only majority class in-
stances:

NaS(x) = sup{d > 0||B(x,d) N (Neg\{x})| = 0}.

NEXUT employs the negative extreme anomalous score
(NaS) to identify majority class instances for removal, thereby
rebalancing the dataset. It removes negative instances that lie
on the boundary of an open ball centered at each instance, with
a radius equal to its NaS value. This approach effectively
eliminates majority class instances that lie close to minority
class examples. Consequently, it expands the minority regions
within the dataset. NEXUT offers three strategies for select-
ing which negative instances to remove: “All”, “Plus”, and
“PlusMinus”. The application of each selection approach
defines a specific NEXUT variant: NEXUT-All, NEXUT-Plus,
or NEXUT-PlusMinus. The NEXUT algorithm is presented in
Algorithm 1.
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Algorithm 1: Negative Extreme Anomalous Under-
sampling Technique (NEXUT) Algorithm

Input: Dataset D contains negative instances from a
majority class, Neg, and positive instances
from a minority class, Pos, and selection

approach
Output: Undersampling dataset U
1 DD=g

2 n_diffNegPos = |Neg| — | Pos|
3 Compute the negative extreme anomalous score,
NaS(x), for each instance & € D

4 if selection approach == “All”
5 Sort the NaS(x) scores for all € D in descending
order

6 for ranking of NaS(x) < 1 to n_diffNegPos do
Collect the negative instance that lies on the
boundary of the open ball centered at x € D
with a radius equal to NaS(z), and store it in

DD
8 end
9 if selection approach == “Plus”
10 Sort the NaS(x) scores for all € Pos in ascending
order

u if |Pos| > n_diffNegPos then

12 for ranking of NaS(x) + 1 to n_diffNegPos do
13 Collect the negative instance that lies on the
boundary of the open ball centered at

x € Pos with a radius equal to NaS(z), and
store it in DD

14 end
15 else
16 Collect all negative instances that lie on the

boundary of an open ball centered at € Pos
with a radius equal to NaS(x), and store them

in DD
17 end
18 if selection approach == “PlusMinus”
19 Sort NaS(x) scores for all € Pos in ascending
order

20 if |Pos| > n_diffNegPos then

21 for ranking of NaS(x) + 1 to n_diffNegPos do
22 Collect the negative instance that lies on the
boundary of the open ball centered at

x € Pos with a radius equal to NaS(z), and
store it in DD

23 end
24 else
25 Collect all negative instances that lie on the

boundary of an open ball centered at € Pos
with a radius equal to NaS(z), and store them
in DD

26 Sort NaS(x) scores for all & € Neg in ascending
order

27 for ranking of NaS(x) + 1 to

n_diffNegPos — |DD| do

28 Collect the negative instance that lies on the
boundary of the open ball centered at

@ € Neg with a radius equal to NaS(x),
and store it in DD

29 end
30 end
streturn U =D — DD

Vol. 16, No. 8, 2025

Fig. 1 illustrates the flowchart of the proposed NEXUT
technique. Given the training set D, the initial step is to
compute the size difference between the majority and minority
classes, defined as n_diffNegPos = |Neg| — | Pos|. Next, the
negative extreme anomalous score (N a.S) is computed for each
instance in D. Then, a selection approach is applied to identify
negative instances in the majority class Dmajority that should be
removed, resulting in a drop dataset DD.

Fig. 2a illustrates an example of a class-imbalanced dataset.
Fig. 2b visualizes the corresponding NaS of the dataset.
These illustrations highlight the problem setting that motivates
NEXUT and provide an intuitive understanding of how NaS
guides the removal of majority instances.

These three approaches lead to different algorithmic be-
haviors, depending on which classes are considered during the
selection process. The “All” approach considers both negative
and positive instances. The “Plus” approach considers only
positive instances. The “PlusMinus” approach considers pos-
itive instances first, followed by negative instances. NEXUT
then removes the selected negative instances in the set DD
from the majority class Dy,jority- The resulting undersampled
training set U is obtained by removing DD from the original
dataset D.

A. NEXUT-All

The NEXUT-AII technique employs the Negative Anoma-
lous Score (NaS) to identify negative instances for removal
while considering data from both classes. It begins by sorting
all NaS values, from both the minority and majority classes,
in descending order. Subsequently, it eliminates negative in-
stances whose NaS rank is below the numerical difference
between the minority and majority class sizes (see Fig. 2c).

To maintain a balance between the remaining negative and
positive instances, the method also removes negative instances
located near the boundaries of both classes. This removal
process is biased toward instances closer to the minority class,
since their NaS values generally tend to be higher than those
of the majority class after sorting. The complete NEXUT-AII
algorithm, using the “All” selection approach, is detailed in
Algorithm 1.

Sort the NaS(x) scores for all € D in descending order

for ranking of NaS(x) < 1 to n_diffNegPos do
Collect the negative instance that lies on the boundary of
the open ball centered at © € D with a radius equal to
NaS(x), and store it in DD

end

B. NEXUT-Plus

The NEXUT-Plus technique computes the Negative
Anomalous Score (NaS) exclusively from positive instances.
The process begins by sorting each NaS value (derived
from positive instances) in ascending order. Negative instances
whose NasS rank is less than the absolute numerical difference
between the minority and majority class counts are then
removed (Fig. 2d).

To ensure that the number of remaining negative instances
does not drop below the number of positive instances, this
method specifically targets negative instances located in close
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Fig. 1. The flowchart of NEXUT (Algorithm 1).

proximity to the minority class. The ascending sort order
inherently prioritizes the removal of such negative instances.

It should be noted that when the numerical difference be-
tween the majority and minority classes equals or exceeds the
number of positive instances, all negative instances associated
with the minority class’s NaS are removed. The complete al-
gorithm for NEXUT-Plus, which applies the “Plus” selection
approach, is detailed in Algorithm 1.

ascending order, and additional negative instances are removed
until the total number of eliminated negatives across both
stages equals the absolute class-size difference. This cumu-
lative process, illustrated in Fig. 2e, ensures that the final
number of remaining negative instances does not fall below the
count of positive instances. The complete NEXUT-PlusMinus
algorithm, which uses the “PlusMinus” selection approach,
is detailed in Algorithm 1.

Sort the NaS(x) scores for all € Pos in ascending order
if |Pos| > n _diffNegPos then
for ranking of NaS(x) < 1 to n_diffNegPos do
Collect the negative instance that lies on the boundary
of the open ball centered at © € Pos with a radius
equal to NaS(«), and store it in DD
end
else
Collect all negative instances that lie on the boundary of
an open ball centered at € Pos with a radius equal to
NaS(x), and store them in DD
end

C. NEXUT-PlusMinus

The NEXUT-PlusMinus technique extends the NEXUT-
Plus method by employing a sequential two-stage removal
strategy. In the first stage, it calculates the Negative Anomalous
Score (NasS) exclusively from positive instances and sorts
these values in ascending order. Negative instances whose
NaS rank is less than the absolute difference between the
minority and majority class counts are then removed.

In the second stage, NaS is computed for the remaining
negative instances (majority class). These values are sorted in

Sort NaS(x) scores for all & € Pos in ascending order
if | Pos| > n_diffNegPos then

for ranking of NaS(x) < 1 to n_diffNegPos do
Collect the negative instance that lies on the boundary
of the open ball centered at © € Pos with a radius
equal to NaS(x), and store it in DD

end
else
Collect all negative instances that lie on the boundary of
an open ball centered at * € Pos with a radius equal to
NaS(x), and store them in DD
Sort NaS(x) scores for all € Neg in ascending order
for ranking of NaS(x) < 1 to n_diffNegPos — |DD| do
Collect the negative instance that lies on the boundary
of the open ball centered at * € Neg with a radius
equal to NaS(x), and store it in DD

end
end

IV. EXPERIMENT

This section presents the datasets used to assess the ef-
fectiveness of NEXUT compared with several established un-
dersampling methods, namely AIIKNN, NCL, OSS, and NB-
Tomek. For baseline comparison, the original dataset without
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Fig. 2. Illustration of NEXUT: (a) Class-imbalanced dataset, (b) NaS ball visualization, and (c)—(e) Results of NEXUT-All, NEXUT-Plus, and
NEXUT-PlusMinus, respectively.

any resampling is also included. Further details regarding the
experimental design and dataset properties are outlined below.

A. Experimental Setup

This study evaluates the effectiveness of the three proposed
undersampling methods in comparison with well-established
techniques, including AIIKNN [24], NCL [25], OSS [23],
and NB-Tomek [27]. A set of six classification algorithms is
employed for the evaluation: the C4.5 decision tree [31], the
k-nearest neighbors (k-NN) with £ = 3 [32], the multilayer
perceptron (MLP) [33], the naive Bayes [34], the random forest

[35], and the logistic regression [36].

The experiments are conducted on a total of fourteen
datasets: twelve real-world datasets obtained from the UCI
Machine Learning Repository [37] and two synthetically
generated datasets. Each experiment is performed with 30
replications of 10-fold cross-validation to ensure statistically
robust and reliable results. Table I presents the parameter
configurations used for each method. The experimental en-
vironment is based on Google Colaboratory (Colab), and all
implementations are carried out using the Python programming
language.

www.ijacsa.thesai.org

907 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

In the experiments, the selected undersampling techniques
(AIIKNN, NCL, OSS, and NB-Tomek) aim to remove neg-
ative instances based on their neighbors or to clean noisy
data. However, these methods are not primarily designed to
rebalance the dataset. Similar to these existing techniques, the
proposed methods also focus on removing negative instances
and reducing noise. Nevertheless, the proposed techniques are
capable of eliminating a larger number of negative samples,
which often leads to a more balanced dataset. In addition,
they tend to preserve the underlying structure of the data
distribution.

TABLE I. PARAMETER SETTINGS FOR THE PROPOSED TECHNIQUES AND
COMPARISON TECHNIQUES

Techniques
NEXUT-All
NEXUT-Plus
NEXUT-PlusMinus
AIIKNN n_neighbors = 3

NCL n_neighbors = 3, threshold_cleaning = 0.5
0SS n_seeds_S =1

NB-Tomek

Parameters setting

B. Datasets

To evaluate the performance of NEXUT-All, NEXUT-Plus,
and NEXUT-PlusMinus against well-known undersampling
methods such as AIIKNN, NCL, OSS, and NB-Tomek, a
total of fourteen datasets are used. These include twelve
datasets from the UCI Machine Learning Repository [37] and
two synthetically generated datasets. The twelve UCI datasets
are Abalone, BreastCancer, Pima, BreastTissue, Haber, Glass,
Vehicle, Ecoli, Yeast, Ozone8hr, Libras, and Ozonelhr. Table
II presents descriptions of these datasets, arranged in ascending
order based on their imbalance ratio (IR). The imbalance ratio
is defined as IR = |‘];,[§§||, where [Neg| and |Pos| represent
the numbers of negative and positive instances, respectively.
A dataset is considered balanced if /R = 1, and imbalanced
if IR>1.

Synthetic datasets are used to evaluate whether the data
distribution structure is preserved after applying each un-
dersampling technique. These synthetic datasets are class-
imbalanced and exhibit specific data distributions, namely the
Moons dataset (Fig. 3a) and the Circles dataset (Fig. 3b)
[38]. Each class-imbalanced Moons dataset and Circles dataset
contains 200 negative instances and 20 positive instances,
resulting in an imbalance ratio (IR) of 10.

C. Performance Evaluation

This research uses precision, recall, and Fj score to
evaluate the performance of the proposed techniques. These
metrics are commonly applied in class-imbalanced research
[39], [40]. Precision, recall, and F; score are computed using
the following formulas:

Precision = L
TP+ FP
TP
ll= ———
Reca TP+ FN
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and

2 x Precision X Recall
F =

Precision + Recall

where, TP denotes the number of positive instances ac-
curately classified as positive, F'P represents the number of
negative instances misclassified as positive, and F'N indicates
the number of positive instances misclassified as negative.

D. Statistical Test

To compare the performance of each technique on each
classifier, the Wilcoxon signed-rank test is employed. This test
[41] is a non-parametric statistical method designed to evaluate
paired performance outcomes between NEXUT and each of the
alternative undersampling approaches. A two-tailed Wilcoxon
signed-rank test with a 95% confidence level (« = 0.05)
is conducted, and the null and alternative hypotheses are
formulated as follows:

Hy : There is no significant difference in the median of
the average F) scores between NEXUT and one of the other
techniques.

H; : There is a significant difference in the median of
the average I} scores between NEXUT and one of the other
techniques.

To perform the Wilcoxon signed-rank test, the differences
in F; scores between NEXUT and one of the other techniques
are calculated for each dataset. These differences are ranked
after removing zero differences and ignoring the signs, with the
remaining values sorted in ascending order. The sums of the
ranks corresponding to the positive and negative differences
are denoted as Rk+ and Rk—, respectively.

The test statistic (7'S), used for comparison with the
critical value, is defined as the smaller of {Rk+, Rk—}. If T'S
corresponds to Rk—, it suggests that NEXUT outperforms the
compared method; otherwise, the alternative method performs
better. When 7'S is less than the critical value, the null hypoth-
esis is rejected, indicating a statistically significant difference
in the median of average F} scores between NEXUT and the
other technique.

E. Results

The average F) scores obtained from 30 replications of
10-fold cross-validation are reported for the original (unresam-
pled) dataset and for seven resampling techniques: NEXUT-
All, NEXUT-Plus, NEXUT-PlusMinus, AIIKNN, NCL, OSS,
and NB-Tomek. These results are generated using the six
classifiers—namely, the decision tree (C4.5), the k-nearest
neighbors (k = 3), the multilayer perceptron (MLP), the naive
Bayes, the random forest, and the logistic regression—applied
to twelve datasets from the UCI Machine Learning Repository.
The results are summarized in Table III and Table IV. Table III
presents the average F) scores for the decision tree (C4.5),
the k-nearest neighbors (k = 3), and the multilayer perceptron
(MLP). Table IV summarizes the results for the naive Bayes,
the random forest, and the logistic regression. For each dataset,
the techniques are ranked in descending order according to
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Fig. 3. Synthetic datasets: (a) The Moons dataset and (b) The Circles dataset.

their average F} scores, with rank 1 assigned to the method
that achieves the best performance.

As illustrated in Table III and Table IV, NEXUT-AIl
consistently achieves the highest average rank when paired
with the random forest classifier. NEXUT-Plus demonstrates
the best performance with both the decision tree (C4.5) and
the k-nearest neighbors (k-NN) classifiers. NEXUT-PlusMinus
attains the top rank when evaluated with the logistic regression,
while NCL performs best in combination with the multilayer
perceptron (MLP). For the naive Bayes classifier, the highest
average rank is shared by OSS and the original dataset without
resampling.

Table V presents the statistical comparison between

NEXUT and five other techniques—namely, the original
dataset (without resampling), AIIKNN, NCL, OSS, and NB-
Tomek—across the six classifiers. The analysis is based on the
Wilcoxon signed-rank test with a two-tailed evaluation at the
95% confidence level (v = 0.05) using F} score. For twelve
datasets (n = 12), the corresponding critical value is 13.

In Table V, the notation is interpreted as follows:
e A single plus sign (+) indicates that NEXUT outper-
forms the compared technique, but the result is not
statistically significant (T'S = Rk—, and T'S > 13).

A single minus sign (-) indicates that NEXUT under-
performs, though again without statistical significance
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TABLE II. THE DESCRIPTIONS OF UCI DATASETS

Datasets #Inst #Attr Min. class Maj. class Pos. inst. Neg. inst. IR

Breast Cancer 683 9 ‘malignant’ ‘benign’ 239 (34.99%) 444 (65.01%) 1.86
Pima 768 8 ‘1 ‘0 268 (34.90%) 500 (65.10%) 1.87
Breast Tissue 106 9 ‘CAR’,'FAD’ Others 36 (33.96%) 70 (66.04%) 1.94
Haber 306 3 ‘survived 5 years or longer’ ‘died within 5 years’ 81 (26.47%) 225 (73.53%) 2.78
Glass 214 9 5°,°6°,‘T Others 51 23.83%) 163 (76.17%) 3.20
Vehicle 846 18 ‘van’ Others 199 (23.52%) 647 (76.48%) 3.25
Ecoli 336 7 “im’ Others 77 (22.92%) 259 (77.08%) 3.36
Yeast 1484 8 ‘ME3’,'ME2’,'EXC’,VAC’,’POX’,’ERL’ Others 304 (20.49%) 1180 (79.51%) 3.88
Ozone8hr 1848 72 ‘1 ‘0 128 (6.93%) 1720 (93.07%) 13.44
Libras 360 90 ‘r Others 24 (6.67%) 336 (93.33%) 14.00
Abalone 731 7 ‘18’ ‘o 42 (5.75%) 689 (94.25%) 16.40
Ozonelhr 1848 72 ‘1 ‘0 57 (3.08%) 1791 (96.92%) 31.42

(IT'S = Rk+, and T'S > 13).

e A double plus sign (++) denotes that NEXUT’s per-
formance is significantly better at the 95% confidence
level (T'S = Rk— and T'S < 13).

e A double minus sign (-) signifies that NEXUT per-
forms significantly worse ('S = Rk+ and T'S < 13).

From the statistical results of F; score, NEXUT-All’s F}
score is better than all other techniques for the decision tree
classifier, the multilayer perceptron, the random forest, and
the logistic regression. Notably, for the logistic regression,
NEXUT-AII performs significantly better than all other tech-
niques. NEXUT-AII’s F; score for the k-NN classifier is better
than other techniques except OSS. Moreover, NEXUT-AIl’s
F} score is higher than those of NCL and NB-Tomek for all
classifiers.

Regarding NEXUT-Plus, its F score is better than all other
techniques for the decision tree classifier, the k-NN classifier,
the multilayer perceptron, and the random forest. Furthermore,
NEXUT-Plus’s F} score is higher than that of NB-Tomek for
all classifiers.

For NEXUT-PlusMinus, its F} score is better than all
other techniques for the random forest and the logistic regres-
sion. NEXUT-PlusMinus achieves better F scores than other
techniques for the decision tree classifier, except for NCL,
where both methods perform equally. Additionally, NEXUT-
PlusMinus’s F} score is higher than that of NB-Tomek for all
classifiers.

From the statistical results of F; score, NEXUT-AIl is
suitable for use with the decision tree classifier, the multilayer
perceptron, the random forest, and the logistic regression.
NEXUT-Plus is suitable for use with the decision tree classifier,
the k-NN classifier, the multilayer perceptron, and the random
forest. NEXUT-PlusMinus is suitable for use with the random
forest and the logistic regression.

For the synthetic datasets (the Moons dataset and the
Circles dataset), the results after applying each undersampling

technique, as well as the original datasets without applying any
undersampling technique, are illustrated in Fig. 4 and Fig. 5,
respectively. The proposed techniques successfully preserve
the overall structure of the data distribution, even after a
significant number of negative instances are removed.

Table VI and Table VII present the average F} scores
obtained using the six classifiers: the decision tree classifier
(C4.5) [31], the k-nearest neighbors (k = 3) [32], the multi-
layer perceptron [33], the naive Bayes [34], the random forest
[35], and the logistic regression [36], evaluated on the Moons
dataset and the Circles dataset, respectively. The techniques
are ranked for each classifier in descending order of Fj score,
with Rank 1 representing the best-performing method.

For the Moons dataset, the results presented in Table VI
indicate that NEXUT-PlusMinus achieves the highest F; score
rank for the k-NN classifier, the multilayer perceptron, and the
random forest. NEXUT-AIl obtains the highest rank for the
logistic regression. For the decision tree classifier, NCL and
NB-Tomek share the highest F; score rank. NCL also secures
the highest rank for the naive Bayes classifier. Considering F}
scores across all techniques, NEXUT-PlusMinus demonstrates
the highest overall average rank.

For the Circles dataset, the results presented in Table
VII indicate that NEXUT-AIl achieves the highest F; score
rank for the decision tree classifier and the random forest.
NCL secures the highest rank for the k-NN classifier. For
the multilayer perceptron, the naive Bayes, and the logistic
regression, several techniques demonstrate the highest Fj score
rank, notably NEXUT-All, NEXUT-Plus, NEXUT-PlusMinus,
AIIKNN, NCL, OSS, and the original dataset. It is important
to note that, for these specific classifiers, all techniques except
NB-Tomek exhibit comparable performance. Considering the
overall F; scores for all techniques on the Circles dataset,
NEXUT-AII achieves the highest average rank.
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F. Discussion

The experimental results demonstrate that the proposed
NEXUT variants consistently improve classification perfor-
mance across multiple classifiers and datasets. Specifically,
NEXUT-AII yields superior F) scores when applied to four
classifiers: the decision tree, the multilayer perceptron (MLP),
the random forest, and the logistic regression. These results
indicate the consistent performance of NEXUT-AIl across
different learning models. NEXUT-Plus performs best with
the decision tree, the k-NN, the MLP, and the random forest
classifiers, while NEXUT-PlusMinus excels with the random
forest and the logistic regression classifiers. These findings
highlight the effectiveness of the NEXUT approach in selec-
tively removing extreme anomalous negative instances while
preserving the overall class distribution.

When compared with established undersampling tech-
niques such as AIIKNN [24], NCL [25], OSS [23], and NB-
Tomek [27], NEXUT achieves consistently higher or com-
parable performance across multiple classifiers. As shown
in Table V, NEXUT-AIl significantly outperforms OSS and
NB-Tomek on the logistic regression and the random forest
classifiers at the 95% confidence level. This result aligns with
previous findings showing that OSS [23] and NB-Tomek [27]
sometimes removed informative instances, thereby reducing
classifier performance. Similarly, NCL [25], which was de-
signed to clean overlapping examples, was sometimes too
aggressive in certain domains.

These findings are consistent with Batista et al. [42],
who observed that Tomek-based approaches were effective
at reducing class overlap. However, they sometimes removed
informative instances, which degraded classifier performance.
In addition, Drummond and Holte [43] reported that random
or overly aggressive undersampling could eliminate useful
majority instances. Chawla et al. [44] emphasized the impor-
tance of maintaining the class distribution to achieve balanced
decision boundaries. More recently, Blagus and Lusa [45]
noted that oversampling methods, such as SMOTE and its
variants, could alter data variability and introduce correlations
between samples, which reduced classifier robustness.

By contrast, NEXUT minimizes these drawbacks by target-
ing only extreme anomalous negatives. It also avoids excessive
data removal and synthetic data generation, thereby preserving
meaningful sample diversity while enhancing classification
performance.

Despite these advantages, NEXUT has some limitations. It
is primarily designed for binary class-imbalanced datasets, and
its extension to multi-class scenarios requires further investi-
gation. In cases of extreme data sparsity within the majority
class, NEXUT’s ability to retain representative instances is
reduced. This limitation may affect classifiers that rely heavily
on boundary information. While NEXUT is computationally
efficient for moderate-sized datasets, further optimization will
be necessary for large-scale applications.

In terms of practical applications, NEXUT is well-suited
to domains where class imbalance is prevalent and accu-
rate minority detection is critical. For example, in medical
diagnosis, detecting rare diseases requires minimizing false
negatives to avoid life-threatening errors. In fraud detection,

Vol. 16, No. 8, 2025

reducing the influence of anomalous majority instances im-
proves the identification of rare fraudulent transactions. In
industrial anomaly detection, NEXUT enhances reliability by
retaining representative operational data while isolating rare
faults. Similarly, in cybersecurity, malicious activities often
represent only a very small fraction of network traffic. In
such cases, NEXUT helps to preserve decision boundaries that
are critical for intrusion detection. By reducing the impact of
extreme anomalous negatives, while maintaining meaningful
class distributions, NEXUT improves classifier reliability in
real-world scenarios where parameter tuning is challenging.

Overall, NEXUT demonstrates higher predictive perfor-
mance compared to conventional undersampling methods
while preserving the class distribution. Future work should
explore integrating NEXUT with oversampling techniques to
further enhance performance and address more challenging
imbalanced datasets.

V. CONCLUSION

In this research, the Negative Extreme Anomalous Un-
dersampling Technique (NEXUT) is proposed to address the
imbalanced classification problem. Unlike other undersam-
pling techniques from the imbalanced-learn Python package,
which require user-defined parameters, NEXUT is parameter-
free. It outperforms the existing undersampling techniques on
continuous, binary, class-imbalanced datasets across the six
classifiers. NEXUT applies negative extreme anomalous scores
to identify negative instances for elimination. The negative
instances selected by NEXUT may be noisy, affecting both
the minority and majority classes, or they may simply be
redundant. NEXUT effectively addresses overlapping instances
between classes while maintaining the data distribution of
each class. Moreover, it reduces the size of the majority
class, resulting in a more balanced dataset. Thus, the proposed
technique helps rebalance class instances.

For future work, NEXUT will be improved by integrating
an oversampling technique to enhance performance efficiency.
It is suggested to prioritize oversampling the minority class
to balance the data, followed by applying undersampling to
the majority class to remove noise and potentially overlapping
instances.
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Fig. 4. The Moons dataset after using each undersampling technique and without technique.
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Fig. 5. The Circles dataset after using each undersampling technique and without technique.
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