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Abstract—Proper management of pesticides and fertilizers is
critical towards effective control of the banana diseases, but
integration of various agricultural data has been a problem.
The novelty of this study is the hybrid recommendation system
which encompasses Content-Based Filtering (CBF) with Matrix
Factorization (MF) to be used when recommending chemical
treatment of bananas during cultivation. The system exploits the
use of heterogenous data- such as soil nutrient profiles (NPK, pH),
climatic variables, and disease signatures to create customized
chemical recommendation to manage the disease. A real-world
agricultural dataset was used in the evaluation of the hybrid
approach and the improvement, precision, recall, F1-score, and
the accuracy of the system were measured. The findings indicate
that the suggested model performed better than the traditional
models of single-method or user-based recommendation systems
and predicted the disease outbreak with high accuracy (F1-score)
up to 98 percent in Black Sigatoka; these results were highly
consistent across other disease classes and different chemical
interventions. Notably, the hybrid system helps not only to
optimize the costs of chemical use and crop yields, but also to
create the environmental sustainability by reducing the number
of the superfluous chemical use. Methodology, the characteristics
of the dataset and the measures that have been employed are
described, which explains how CBF and MF integration solve
the complexity and variability in agricultural data. The solution
provided in this work is a high-performance scalable tool in
precision agriculture, which assists further in the informed
decision-making of the farmer and agricultural planners.
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I. INTRODUCTION

Farmers in tropical and subtropical areas depend greatly
on raising bananas. It helps the country keep its economy
in balance and provide enough food. Still, crops and the
industry are at risk from diseases that reduce both their number
and their quality. Banana plants are harmed and made less
healthy by diseases such as Fusarium wilt (Panama disease),
Black Sigatoka and the Banana Bunchy Top Virus (BBTV),
according to [1]. As a result, we should immediately act to
prevent crop damage.

There is a strong and diverse relationship between how soil
is managed and the spread of banana illnesses [2]. A healthy
and strong plant requires nitrogen, phosphorus and potassium.
If banana plants miss crucial nutrients, they often weaken and
develop more illnesses. Plants often show a stunted growth
and smaller leaves if nitrogen gets missing. When potassium

is missing, diseases have an easier job of attacking the plant.
Moreover, extra nutrients in streams may help microorganisms
that make humans sick. Therefore, methods that conserve the
correct equilibrium are required in soil management [3] . Vari-
ous problems in precision agriculture can be solved well using
recommendation systems, making them very important [4].
They process a large range of data that includes information
on soil, the weather and signs of crop health by using modern
machine learning [5]. With the method, choosing the right
fertilizers and pesticides is easier for different crops. As a
result, plants can fight diseases and their output is boosted
[6], [7]. In recommendation systems, content-based filtering
reviews the details of crops and the conditions they need in
order to identify the best treatments. As a result, the fertilizers
are selected based on the characteristics of each farm, including
the minerals found in its soil, the amount of dampness in the
air and the outside temperature. Content-Based Filtering helps
you find ways to deal with common diseases such as Panama’s
Disease in Bananas [8].

By analyzing old user feedback, Matrix Factorization meth-
ods find patterns and connections that Content-Based Filtering
usually misses. With this method, engineers can access infor-
mation about effective chemicals and their results in similar
cases, helping them decide how the present process may
turn out [9]. Recommendation systems provide solutions for
current agronomy issues and help predict future needs together.
Therefore, traditional banana farming techniques become more
sustainable [10]. Yet, it is still very hard to use machine
learning for banana farming recommendations. Because agri-
cultural data is available in many kinds and formats, it is
difficult to integrate and assess. Also, these systems should be
flexible and respond swiftly to new information since farming
conditions are always influenced by sudden changes in weather
and appearances of new diseases [11].

Even so, using machine learning can improve banana
farming by reducing diseases, improving the quality of soil
and increasing what is harvested [12]. It’s also important
to use chemistry correctly because it helps reduce fertilizers
and pesticides, so the soil stays intact and the water remains
clean [13]. If we want banana disease management systems to
improve, agronomists, data scientists and farmers in different
fields have to team up. By working together, they ensure
the agricultural proposals are built on true information and
experienced farming which gives the farming a better and
more lasting effect. Every improvement in machine learning
and precision agriculture encourages new methods for handling
banana diseases and sustainable farming in the future [14].
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In tropical regions, bananas are essential to food security
and the economic stability of people there, but they are also
subject to diseases such as Fusarium wilt, Black Sigatoka
disease, and Banana Bunchy Top virus. Land management
activities influence the development of disease as nutrient
imbalances of factors such as nitrogen, phosphorus, and potas-
sium make plants susceptible. Digital precision agriculture
and machine learning techniques, specifically recommendation
systems, can be applied to incorporate agricultural data to fine-
tune the application of fertilizers and pesticides. The Content-
Based Filtering recommends crops according to the environ-
mental characteristics, whereas the Matrix Factorization is used
to find secrets of the past. The strategies are meant to im-
prove disease resistance, boost yields, and be environmentally
sustainable. Data heterogeneity and climatic variability pose
a challenge. The collaboration should be among agronomists,
data scientists, and farmers to deliver successful recommen-
dations. This paper investigates the possibility of a combined
approach to recommendation systems that integrates the two
to improve banana disease detection and fertilizer prescriptions
to promote sustainable agriculture.

II. RELATED WORK

During the past seven years, we have managed to use
recommendation system algorithms to solve banana problems
and supply drug-based solutions. Thanks to these new con-
cepts, farming is improved and has new uses. Scientists in
precision agriculture pay special attention to using computer
systems to deal with banana diseases [15]. Experts examined
whether using simple machine learning models, like decision
trees and linear regression, could identify diseases like Black
Sigatoka and Fusarium wilt. The predictions made used envi-
ronmental and soil facts. Further development of these models
highlights that using data-based approaches can make it easier
to manage disease outbreaks. Because their data was stable and
limited, these classifiers could not always understand the de-
tailed relationships affecting a disease’s progress. Since 2016,
scientists have relied on complicated models like Random
Forest and SVM to help them predict banana diseases better.
Researchers decided to begin using remote sensing data at this
time. Researchers used both satellite information and ground
observations to gain knowledge about disease outbreaks. At
that time, people recognized that managing agricultural data
can be challenging and that using models becomes crucial
[16] . From then on, algorithms known as CNNs and RNNs
were used more frequently in deep learning. Having these
strategies, scientists could locate diseases and find reasons to
believe certain treatments would be effective. The algorithms
examined images of banana plants to spot diseases and data
that changed regularly to track the environment. Deep learning
methods help people discover patterns and relationships within
agricultural data [14].

Better machine learning led to greater benefits from the
agricultural recommendation systems. Soil and plant specific
information was used to improve the chemical recommen-
dation process of content-based filtering. New methods were
applied to standardize agricultural data, all while maintaining
what makes the data special [17]. In 2018, matrix factorization
was used with agricultural data more often. This method allows
researchers to find out which factors increase a person’s risk of
getting sick and which ones help therapy succeed. When you

put together Content-Based Filtering and Matrix Factorization,
your suggestions will become more precise [18]. Because
studies have proven that hybrid recommendation systems do
the job better, they are very popular today. Adding genomic
data, soil chemistry and weather variables to hybrid systems
helped recommend the right products for each user.

The 2019–2021 period saw changes to these systems to
ensure farmers got information that was correct, easy to
grasp and actually useful [19]. These days, many support
recommendation systems for being able to handle huge data
volumes and supplying helpful output. Its aim was to collect
information, develop models and design new user systems that
would boost the use of these technologies by farmers. You
can quickly exchange data analysis and recommendations with
others when using cloud computing and IoT devices. As a
result, the discipline can respond better to new forms of threats.
It is clear from research that combining expertise from different
sectors is necessary for creating and operating banana disease
control systems. Merging agronomy, computer science and
data analysis has led to solutions for difficulties with banana
cultivation. This collaboration has advanced technology and
made certain that all ideas are grounded in farming knowledge.
Research conducted by [9] For seven years, scientists have
found more advice on treating banana sickness and better
ways to use chemicals. It is now much easier and more
accurate to find and treat different diseases. They passed on
helpful hints for farmers. In recent years, we have succeeded in
using recommendation system algorithms to help solve banana
problems and create drug remedies [20]. Thanks to these new
concepts, current farming methods are better and they allow
for more uses. The authors of this study argue that machine
learning and analysis of data are used in precision agriculture
research to address banana diseases.

The researchers studied ways to use basic machine learning
models such as decision trees and linear regression, to spot
diseases such as Black Sigatoka and Fusarium wilt. Estimates
were made using data on the environment and the soil. Further
models showing how strategies guided by data can improve the
prediction and control of diseases [21]. Even so, they didn’t
always catch the complicated connections between factors
that influence how a disease moves through the body[16]. To
enhance their predictions of banana diseases, researchers in
2016 turned to algorithms such as Random Forest and Support
Vector Machines (SVM). It was then that researchers began
focusing on how to take advantage of remote sensing data.
They were more able to explain the spread of diseases because
of what they learned from earth observation and satellite data.
At this point, people realized how complex agricultural data
can be and how vital models are for handing it [22], [3].
CNNs and RNNs then became the main focus, since they
are powerful deep learning algorithms. The approaches helped
scientists identify illnesses and judge how effective different
treatments could be. These algorithms examined many images
of banana plants as well as data that changed regularly to keep
trace of the environment. Using deep learning, understanding
the connections in agricultural data has become much easier
[23].

When machine learning improved, recommendation sys-
tems for agriculture became more helpful. We upgraded
content-based filtering so it would guide users to suitable
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chemical treatments, based on their plants and soil types.
New ideas were applied to handle and uniform agricultural
data, aware of its outstanding characteristics [17]. In 2018,
more people began using matrix factorization when working
with agricultural data. With this approach, researchers find
out which factors play a role in making people sick and how
efficient therapy treatments are. When Content-Based Filtering
is supported by Matrix Factorization, it makes the suggestions
more accurate [9], [24].

Many researchers have shown that combining recommen-
dations tends to work better than using one algorithm alone.
Ensuring each person got the right suggestions was easy
because genomic data, soil chemistry and weather data were
easy to add to hybrid systems [25]. From 2019 to 2021,
measures were taken to make sure the data sent to farmers
was right, easy to read and worthwhile. Recently, there has
been a lot of conversation about recommendation systems and
how effective they are at processing lots of data and giving
valuable results. The research aimed to collect data, construct
models and design user interfaces to support better use of these
technologies on farms. Examining data and sharing tips after
IoT and cloud computing becomes easy. As a result, the field
finds it simpler to manage new dangers.

A. Research Gaps

Agricultural data is rarely fully utilised despite advances
in banana disease management and pesticide usage recom-
mendation systems. Soil chemistry, microclimate conditions,
plant genomes, and insect populations are heterogeneous data.
Data integration, processing, and analysis are difficult, but
data diversity informs decision-making. Current models cannot
evaluate all data kinds, which is concerning. Many algorithms
were developed and tested on homogenous datasets, rendering
them unsuitable for complicated agricultural contexts. Texture,
structure, and pH and NPK levels make up soil composition.
Climate data includes seasonal oscillations and agricultural
plot microclimates. Existing algorithms cannot handle several
variables, therefore proposals may be oversimplified or wrong.

Changing weather, pests, diseases, and crop genetics make
agricultural systems dynamic and innovative, needing recom-
mendation systems that can quickly learn from new data. Sys-
tems must increase their ability to incorporate real-time data
updates and derive insights without lengthy retraining. This
limitation prevents these technologies from providing farmers
with current and context-specific information. Specific field
recommendations are difficult for these systems to grasp and
implement. Machine learning can identify complex patterns
and predictions from data, but converting these insights into
usable recommendations for farmers is tough. Farm manage-
ment methods, resource availability, and budgetary constraints
prevent the scientific community from fully adopting data-
driven insights.

There is also limited study on combining farmer knowledge
and expertise into recommendation systems. Advice is more
accurate and relevant when farmers know their crops and
local conditions. Tacit knowledge and algorithmic forecasts en-
able comprehensive illness therapy. Although recommendation
systems have shown promise in addressing banana diseases,
agricultural data research is still lacking. Computers must

aggregate many data sources, adapt swiftly to new knowledge,
turn projections into practical recommendations, and include
farmer expertise to fill these gaps. These issues must be consid-
ered while creating agricultural recommendation systems for
efficiency, adaptability, and usability to boost productivity and
sustainability.

III. SYSTEM ARCHITECTURE

A hybrid approach’s content-based filtering and matrix
factorization increase banana disease control using agricultural
datasets. This novel multidimensional agricultural data analy-
sis method overcomes its drawbacks. Content-based filtering
recommends chemistry based on object properties. The hybrid
approach’s content-based filtering and matrix factorization
modify banana disease control using agricultural datasets.
This novel multidimensional agricultural data analysis method
overcomes its drawbacks.

Recommender
Banana  Dataset

 
 the Data

Train Hybrid
Recommender

Algorithm
Test Data

Performance
Evaluations

Visualization

Patterns and 
recommendations

Fig. 1. A hybrid approach of content-based filtering and martix factorization.

Fig. 1 discusses the Content-based filtering, which uses
chemical treatment data and environmental parameters like
soil, plant health, and ambient variables to recommend quality.
Because fertilisers and herbicides depend on crop and environ-
mental needs, this technique encourages agriculture. Content-
depending Filtering suggests banana plantings depending on
soil NPK, moisture, temperature, and disease history.

Content-based filtering ignores data trends and user ac-
tivity but finds item and context-specific qualities. Content-
based techniques gain from matrix factorization. Factorization
breaks the user-item interaction matrix into smaller matrices
to find data links. Reducing banana illnesses requires finding
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microscopic links between environmental factors, treatment
techniques, and outcomes across locales and time periods. It
analyses past success rates to predict novel chemical therapeu-
tic efficacy.

Matrix Content-based recommendations and factorization
can solve agricultural data diversity. This technique employs
quantitative soil and climate data, qualitative evaluations, and
prior treatment efficacy to adapt to changing agricultural
systems. More data can improve recommendations and uncover
complex links that either technique missed. Flexible, thorough,
and unobtrusive, the hybrid technique outperforms banana dis-
ease control recommendations. It provides scientifically sound
and practical advice by combining agricultural approaches
into broader databases. Farmers use personal data to manage
illnesses.

Banana agriculture’s sophisticated data analysis is filtered
and matrix factorised. Methodological advances could im-
prove agricultural disease identification and treatment, boost-
ing health, yields, and sustainability. Plant growth and de-
velopment depend on genetics, irrigation, fertilisation, chem-
ical treatments, soil, plant health, and environment. Because
fertilisers and herbicides depend on crop and environmental
needs, this technique encourages agriculture. Content Filtering
recommends banana farms based on soil NPK, moisture,
temperature, and disease history.

Content-based filtering evaluates item and context proper-
ties. Data trends and user behaviour may be missed. Content-
based techniques gain from matrix factorization. Matrix fac-
torization breaks the user-item interaction matrix into smaller
matrices to find data correlations. Controlling banana illnesses
requires finding microscopic links between environmental ele-
ments, treatment approaches, and results in different locations
and time periods. Success rates predict chemical therapy
efficacy in different situations.

Matrix Factorization and content-based proposals han-
dle agricultural data diversity. Quantitative soil and climate
data, qualitative evaluations, and historical treatment efficacy
records let us adapt agricultural systems. More data may
improve its recommendations and show complex linkages
that either technique missed. Flexible, thorough, and un-
obtrusive, the hybrid technique outperforms banana disease
control recommendations. It provides scientifically sound and
practical advice by combining agricultural approaches into
broader databases. Personalised data helps farmers control
illnesses. Content filtering and Matrix Factorization analyse
banana agriculture’s complex data. Methodological innovation
could improve agricultural disease detection and treatment,
improving health, yields, and sustainability.

Hybrid Recommendation Algorithm: Mathematical Formu-
lation

Variables and Data Representation

Let U = {u1, u2, . . . , u|U|} be the set of users (farmers),
where u ∈ U .

Let I = {i1, i2, . . . , i|I|} be the set of items (chemical
treatments), where i ∈ I.

Let xi ∈ Rd be the feature vector for item i (e.g., soil
NPK, moisture, temperature).

Let R ∈ R|U|×|I| be the user-item interaction matrix,
where rui represents the effectiveness of item i for user u.

Let P ∈ R|U|×k and Q ∈ R|I|×k be the user and item
latent factor matrices, respectively, where k is the rank or
number of latent features.

Let pu ∈ Rk be the latent factor vector for user u (a row
of P).

Let qi ∈ Rk be the latent factor vector for item i (a row
of Q).

A. Content-Based Filtering

1) Feature extraction: For each item i, the feature vector
is:

xi ∈ Rd (1)

2) Normalization of features: Normalize the features per
dimension:

x̃i =
xi − µ

σ
(2)

where µ and σ are the mean and standard deviation vectors
of the features, respectively.

B. User Profile Creation

For each user u:

pu =
1

|Iu|
∑
i∈Iu

rui · xi (3)

where Iu = {i ∈ I | rui is known}.

1) Recommendation score (cosine similarity):

scoreui =
pu · xi

∥pu∥ ∥xi∥
(4)

where · denotes the dot product and ∥ · ∥ denotes the
Euclidean norm.

C. Matrix Factorization

1) Latent factor model: Approximate R by matrix factor-
ization:

R ≈ PQT (5)

Learn P and Q by minimizing the loss:

min
P,Q

∑
(u,i)∈K

(rui − pu · qi)
2 + λ(∥pu∥2 + ∥qi∥2) (6)

where K is the set of observed interactions and λ is the
regularization parameter.
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2) Prediction:
r̂ui = pu · qi (7)

D. Hybrid Combination

Combine Scores:

finalui = α · scoreui + β · r̂ui

where α, β ≥ 0 are weights, often α+ β = 1.

E. Recommendation

For each user u, recommend items with the highest finalui
values:

Recommend to user u : argmax
i∈I

finalui

F. Summary Table of Symbols

Symbol & Description:

• U , u & Set of users, user index

• I, i & Set of items, item index

• xi & Feature vector for item i

• pu & Profile vector for user u (content-based)

• qi & Latent factor vector for item i (matrix
factorization)

• rui & Actual effectiveness of item i for user u

• r̂ui & Predicted effectiveness (matrix factorization)

• scoreui & Content-based similarity score

• finalui & Final combined recommendation score

• α, β & Weights for combining methods

Fig. 2 shows how to use Content-Based Filtering and
Matrix Factorization to construct a hybrid recommendation
system. This plan incorporates a number of agricultural statis-
tics to deal with the difficult problem of managing banana
diseases. Feature extraction is the first step in the procedure.
This means figuring out how chemical treatments affect the
nutrients in the soil, the health of the plants, and the conditions
around them. All of the following suggestions are based on
this strategy. After that, each chemical treatment is carefully
looked at and made the same. To eliminate bias in proposals,
all features should be scaled in the same way. The approach
moves on to consumers after item-centricity. Farms or pieces
of land may be users in the agricultural industry. There is a

Fig. 2. Flow diagram of hybrid algorithm.

profile for each individual that lists their interests and farming
history. Because farming conditions can change so often, these
profiles are very important for giving each plot the right advice.

Also, preference scores are figured up for each chemical
treatment and for each user’s individual operations. These
scores change the suggestions for chemical treatments depen-
dent on how well they work or how appropriate they are. The
recommendation score shows how well the item fits with what
the consumer wants. The score shows that things that fit the
user’s profile might be recommendations. The model employs
Matrix Factorization to uncover patterns in how users and
items interact that can change how well a drug works. By
using gradient descent which lowers prediction error, every
latent component is improved over and over. Over a few
experiments, the system’s ability to choose strong chemical
treatments increases.

The system uses the ratings of content-based components
and brings in projections from the Matrix Factorization al-
gorithm to provide recommendations. They seek to control
diseases, reduce their spread, make banana crops more resistant
and lead to better and more sustainable harvests. It shows how
a hybrid recommendation system operates which is a cutting-
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edge way to practice precision farming. Using data analysis
and machine learning, experts hope to change the way disease
control is handled among bananas.

IV. PROOF OF THEORY: DEMONSTRATION ON SAMPLE
DATASET

Users: U = {u1, u2}

Items: I = {i1, i2, i3}

Item Features:

xi1 =

[
1
2

]
, xi2 =

[
2
1

]
, xi3 =

[
2
3

]

Ratings Matrix:

R =

[
5 3 0
4 0 2

]

A. Step 1: Content-Based Filtering

1) User profile vectors: For u1:

pu1
=

1

2
(5 · xi1 + 3 · xi2) =

1

2

(
5

[
1
2

]
+ 3

[
2
1

])
=

1

2

[
11
13

]
=

[
5.5
6.5

] (8)

For u2:

pu2
=

1

2
(4 · xi1 + 2 · xi3) =

1

2

(
4

[
1
2

]
+ 2

[
2
3

])
=

1

2

[
8
14

]
=

[
4
7

] (9)

2) Recommendation scores (cosine similarity): For
(u1, i3):

scoreu1,i3 =
pu1

· xi3

∥pu1
∥ · ∥xi3∥

=
5.5 · 2 + 6.5 · 3√

5.52 + 6.52 ·
√
22 + 32

=
30.5√

72.5 ·
√
13

≈ 30.5

8.5147 · 3.6056
≈ 30.5

30.73
≈ 0.993

(10)

For (u2, i2):

scoreu2,i2 =
4 · 2 + 7 · 1√

42 + 72 ·
√
22 + 12

=
15√

65 ·
√
5

≈ 15

8.0623 · 2.2361
≈ 15

18.02
≈ 0.833

(11)

B. Step 2: Matrix Factorization

1) Suppose after factorization:

p(MF)
u1

=

[
2
1

]
, p(MF)

u2
=

[
1
3

]
qi1 =

[
1
1

]
, qi2 =

[
2
0

]
, qi3 =

[
1
2

]
2) Predicted scores: For (u1, i3):

r̂u1,i3 = p(MF)
u1

· qi3 = 2 · 1 + 1 · 2 = 4 (12)

For (u2, i2):

r̂u2,i2 = p(MF)
u2

· qi2 = 1 · 2 + 3 · 0 = 2 (13)

C. Step 3: Hybrid Combination

Let α = 0.5, β = 0.5.

For (u1, i3):

finalu1,i3 = 0.5 · 0.993 + 0.5 · 4 = 0.4965 + 2 = 2.4965

For (u2, i2):

finalu2,i2 = 0.5 · 0.833 + 0.5 · 2 = 0.4165 + 1 = 1.4165

D. Recommendation Results

• For u1, recommend i3 with score 2.4965.

• For u2, recommend i2 with score 1.4165.

V. RESULTS AND ANALYSIS

To discuss the hybrid system we created by uniting
Content-Based Filtering and Matrix Factorization. We can per-
form this analysis by using Python, scikit-learn and matplotlib.
Our approach will assess and demonstrate how the algorithm
functions at different stages. Let’s develop our computer model
using Python because it’s powerful and easy to use. Build-
ing a recommendation system will be simpler when using
scikit-learn which is widely used in machine learning. We
have ready algorithms available for both Content-Based and
Matrix Factorization that we can modify and use together to
make a hybrid system. We should do the simulation after we
have developed the model. There is a significant amount of
agricultural data for us to work with. During the simulation,
the model will go over some of the data to learn and will
be tested on what is left. As a result, we will measure the
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model’s performance by how well it uses its data to make
guesses. Create Matplotlib visuals after both training the model
and performing predictions on new data. Precision, recall and
confusion matrices as well as ROC curves will show the
efficacy of our hybrid approach. Click on photos or illustrations
to obtain more information. Python tools and modules help us
thoroughly assess the performance of the hybrid recommen-
dation system. The system will demonstrate that it can work
with and make use of many kinds of agricultural information
relating to farming.

Important agronomic elements and banana crop manage-
ment suggestions are in Table I. Columns list observed and
prescribed events. The first column, Record ID, identifies each
data entry for straightforward analysis. N, P, and K measure
soil nitrogen, phosphorus, and potassium. Nutritional balance
affects banana crop health and plant growth.

The Soil pH column is neutral, acidic below 7, alkaline
above 7. Soil pH affects plant nutrition and microbes. Tem-
perature C displays ambient temperature in degrees Celsius,
which affects plant growth and illness. Moko and Panama
banana diseases reduce productivity and quality, according
to Disease Present.Based on other columns’ conditions, Rec-
ommended Chemicals suggests a chemical therapy. Entries
without disease may recommend a “Balanced NPK fertilizer”
to maintain nutrient levels, while those with the disease
may recommend “Antibacterial, Potassium-rich fertilizer” or
“Fungicide, Nitrogen-rich fertilizer” to treat health issues. This
implies soil, climate, and disease-based agricultural treatment
decision-making

Fig. 3. Correlation distribution of disease and chemicals.

Fig. 3 shows the frequency of recommended chemical
treatments for each disease found in banana crops combined.
Suggesting a fair depiction of illness events across the dataset,
the left bar chart shows the frequency of four primary disease
categories: Black Sigatoka, Moko illness, Panama Disease, and
None, each occurring almost equally.

The right bar chart shows the range of suggested chemical
treatments. Especially the mix of “Fungicide, Nitrogen-rich
fertilizer” seems most often; next closely is treatments combin-
ing “Antibacterial, Potassium-rich fertilizer” and “Fungicide,
Phosphorus-rich fertilizer.” These high frequencies point to
a closer relationship between certain illness prevalence and

particular chemical prescriptions. Conversely, less commonly
recommended simpler treatments like “Phosphorus-rich fertil-
izer” or “potassium-rich fertilizer” alone indicate poor solo
efficacy. This association implies that handling complicated
banana illnesses prefers integrated chemical treatments, es-
pecially those using fungicides or nutrient-rich fertilizers.
These realizations can direct agricultural methods toward more
efficient, disease-specific therapy regimens.

Fig. 4. Heat map corelation NPK with temperature and soil PH valuse.

Fig. 4 shows a correlation heat map of the interac-
tions among important numerical soil and environmental vari-
ables: Soil Nitrogen (Soil N), Phosphorus (Soil P), Potassium
(Soil K), pH (Soil pH), and Temperature (Temperature C).
With correlation coefficients shown in every cell, the heatmap
employs a blue (weak/no correlation) color gradient from red
(high correlation).

The NPK components (Soil N, Soil P, Soil K) clearly
show from the heatmap no appreciable linear link between
them and either Soil pH or Temperature. Indicating inde-
pendent fluctuation, all pairwise correlation values between
NPK components and the other variables are near to zero
(range roughly from -0.01 to 0.01). This realization is crucial
for agricultural management as it implies that, based on the
observed data range, differences in soil nutrients (NPK) do not
inevitably rely on temperature or pH. Consequently, nutrient
management techniques have to be handled independently
from climatic or soil acidity issues, so supporting the require-
ment of multivariate precision farming instead of depending
on interdependent environmental parameters.

VI. HYBRID ALGORITHM RESULT

Fig. 7 shows the performance of the chemical recommen-
dation model by means of a comparison of actual chemical
prescriptions vs. expected outputs over seven treatment groups.
These comprise combinations and individual applications of
fertilizers including Antibacterial, Potassium-rich fertilizer,
Balanced NPK, Fungicide with Nitrogen-rich or Phosphorus-
rich fertilizers, and standalone nutrient-based treatments in-
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TABLE I. SAMPLE DATASET

Record ID Soil N Soil P Soil K Soil pH Temperature C Disease Present Recommended Chemicals

1 10 30 209 6.8 26 None Balanced NPK fertilizer

2 5 26 221 5.2 23 Moko Disease Antibacterial, Potassium-rich fertilizer

3 8 29 209 5.4 22 Moko Disease Antibacterial, Potassium-rich fertilizer

4 8 28 191 6.5 30 None Nitrogen-rich fertilizer

5 12 28 205 5.6 21 Black Sigatoka Fungicide, Nitrogen-rich fertilizer

6 14 26 195 6.3 29 None Phosphorus-rich fertilizer

7 8 30 203 6.7 27 Panama Disease Fungicide, Phosphorus-rich fertilizer

8 10 29 189 6 31 Moko Disease Antibacterial, Potassium-rich fertilizer

9 7 28 183 7.2 33 Black Sigatoka Fungicide, Nitrogen-rich fertilizer

10 9 34 223 5.4 25 Moko Disease Antibacterial, Potassium-rich fertilizer

Fig. 5. Histograms compare “‘MOKO disease”’ soil conditions (SOIL N,
SOIL P, SOIL K, SOIL PH) versus those without.

Fig. 6. Confusion matrix for disease prediction.

Fig. 7. Confusion matrix for chemical prediction.

cluding Nitrogen-rich, Phosphorus-rich, and Potassium-rich
fertilizers.

Fig. 8. ROC for disease prediction.
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Evaluating its capacity to identify among four
classes—Black Sigatoka (class 0), Moko illness (class
1), None (class 2), and Panama Disease (class 3), Fig. 8
shows the Receiver Operating Characteristic (ROC) curves
for a multi-class illness prediction model. Included also is
the micro-average ROC curve to show general performance
across all classes.

TABLE II. BY DISEASE WISE ACCURACY CALCULATED COMPARISONS
IN HYBRID ALGORITHM

Disease Name Accuracy Precision Recall F1-Score Support

Black Sigatoka 0.98 0.963736 0.975862 0.969663 261

Moko Disease 0.92 0.909877 0.909877 0.909877 243

None 0.95 0.970161 0.964822 0.967465 253

Panama Disease 0.93 0.958475 0.951029 0.954697 243

Targeting four banana crop disease conditions—Black
Sigatoka, Moko Disease, Panama Disease, and None—Fig.
6 shows the confusion matrix for a multi-class classification
model. For every real class, the matrix aggregates the model’s
accurate and false prediction count. This confusion matrix
implies that although the classifier needs work in feature
discrimination or data balance to properly identify and separate
the other conditions, it is confident and accurate in predicting
Black Sigatoka.

Fig. 9. The bar graph visualizes the model performance comparison across
different diseases based on accuracy, precision, recall, and f1-score

Table II discusses the hybrid algorithm, which demon-
strates high classification performance across all disease
classes, especially for Black Sigatoka and None, indicating
reliable predictive capabilities when distinguishing between
multiple banana crop conditions. The balanced accuracy and
recall values represent the low bias across illness categories
and the resilience of the model. Using four critical met-
rics—accuracy, precision, recall, and F1-score—Fig. 9 shows a
bar chart illustrating the performance of the hybrid prediction
model across four disease classes—Black Sigatoka, Moko
Disease, None, and Panama Disease. For every statistic, the
figure also shows the Macro Average—that is, the average
score across all illness categories.

Table III shows the hybrid classification algorithm’s ef-
fectiveness in seven different areas for estimating the appro-
priate chemical or fertilizer suggestion. Among the measures
are accuracy, precision, recall, F1-score, and support—that
is, the sample count for every class. With accuracy ratings

exceeding 0.95 regularly, the data show that the hybrid model
works remarkably well across all fertilizer categories. With
an accuracy of 0.99, precision of 0.97, and recall of 0.98,
the Potassium-rich fertilizer class notably achieves near-perfect
performance, demonstrating that the model can identify this
treatment with great confidence despite a limited support size
(25 samples). With F1-scores of 0.94 to 0.95, which represent
great predictive dependability in more complicated treatment
scenarios, fungicide-based combinations, both with nitrogen
and phosphorus, show robust and balanced performance across
all criteria. Although Phosphorus-rich fertilizer has a somewhat
lower recall (0.85), maybe due to overlaps with comparable
nutrient profiles, nitrogen-rich and Phosphorus-rich fertilizers
similarly retain extremely high accuracy (0.99). With an F1-
score of 0.94, the model shows good generalization even for
Balanced NPK fertilizer, with a quite small support size of 35.
Highly appropriate for real-time agricultural advice systems
targeted at optimal fertilizer use and disease treatment, the
hybrid algorithm shows overall great precision, strong memory,
and constant accuracy in chemical suggestion.

Fig. 10. The line graph above compares fertilizer chemical
recommendations. The lines show each chemical fertilizer’s accuracy,

precision, recall, and f1 score.

Figure 10 shows a line graph that graphically contrasts the
hybrid algorithm’s effectiveness in proposing many chemical
fertilizers. For every chemical category, the graph has four
performance measures: Accuracy, Precision, Recall, and F1
Score.

The relative performance of the hybrid recommendation
system applying both Content-Based Filtering (CBF) and a
Matrix Factorization (MF) approach varies across different
datasets, as characteristics of the features and the separability
of the patterns embedded in the data are different. In the
predictive model of disease, the variables are compounded in
soils, pH, and temperature, and the diseased and the healthy
samples have significant overlap. As shown in Fig. 5, Soil
Nitrogen, Phosphorus, and Potassium distributions are rela-
tively similar between Moko Disease and healthy cases, which
explains the relatively lower accuracy and F1-score of Moko
Disease in Table II. Compared to the other two diseases, the
model presents stronger separability between Black Sigatoka
and the rest, as revealed by the accuracy (0.98) and F1-score
(0.97) in Table II, and the confusion matrix in Fig. 6 shows that
the model defines this disease quite accurately. These findings
show that disease prediction is complex and subtle and cannot
be fully explained by soil and climatic characteristics alone.
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TABLE III. CHEMICALS FERTILIZERS COMPARISON HYBRID ALGORITHM

Chemicals Fertilizers Accuracy Precision Recall F1-Score Support

Antibacterial, Potassium-rich fertilizer 0.95 0.94 0.97 0.95 243

Balanced NPK fertilizer 0.95 0.93 0.96 0.94 35

e Fungicide, Nitrogen-rich fertilizer 0.98 0.96 0.95 0.95 261

Fungicide, Phosphorus-rich fertilizer 0.98 0.93 0.94 0.94 243

e Nitrogen-rich fertilizer 0.99 0.96 0.93 0.94 127

Phosphorus-rich fertilizer 0.99 0.96 0.85 0.89 66

Potassium-rich fertilizer 0.99 0.97 0.98 0.97 25

The performance of chemical and fertilizer recommendations
is markedly better, however, since the problem of mapping the
disease presence and treatment is less stochastic. Fig. 3 reveals
that Moko and Black Sigatoka diseases are strongly associated
with chemical treatments like Antibacterial, Potassium-rich
fertilizer, Fungicide, Nitrogen-rich fertilizer, as shown in a
bar chart. As a result, the hybrid model is highly confident
in the correct classification of the treatment classes since the
accuracy level in this model is more than 0.95 in most cases,
as shown in Table III. Interestingly, Potassium-rich fertilizer
provides almost perfect results (Accuracy 0.99, Recall 0.98,
F1-score 0.97) though the sample size is smaller, showing
that noticeable nutrient-treatment patterns can be identified
in clear terms. Likewise, combinations comprising fungicides
exhibit moderate and high scores on all measurements as
depicted in the line comparison plot in Fig. 10 since they
are closely related to disease-specific combinations. Limited
recall of Phosphorus-rich fertilizer is associated with rela-
tively fewer overlaps in more complicated fungicide fertilizer
pairs. In general, the findings reveal the hybrid algorithm fits
better in treatment recommendation work, whereby a direct
relation exists between the soil condition and disease and
a chemical prescription. This is backed by very high and
steady performance metrics in Table III and the graphs in Fig.
7-10. Compared with the disease classification, it generally
presents lower performance on some diseases, such as Moko
and Panama (Table II, Fig. 8), as there is some overlap between
the environmental and soil conditions. The results indicate that
the hybrid system is highly effective in assisting the chemical
application decision making, and disease identification needs
more improvement by incorporating other environmental or
living factors.

VII. CONCLUSION

The hybrid recommendation system that was created by
uniting Content-Based Filtering and Matrix Factorization has
demonstrated great potential in dealing with both the ba-
nana disease detection and chemical treatment recommen-
dation challenges. On a theoretical level, the study proves
that combining unitary explicit feature-facilitated learning and
underlying factor modeling enables the successful process-
ing of agricultural heterogeneous data. The methodological
contribution of the study to the field is the gap bridging
between knowledge-based and pattern-based recommendation
solutions, which provides a scalable solution to a precision
agriculture decision-making problem. Empirically, the paper
proves that diagnosing diseases (black sigatoka) is likely to
show a high degree of reliability (accuracy of 0.98 and F1-

score of 0.9697). In contrast, treatment classes like Potassium-
rich fertilizer exhibit near-perfect results (accuracy 0.99, recall
0.98, F1-score 0.97). These results point to the possibility of
hybrid recommender systems as powerful diagnostic and advi-
sory tools within the confines of data-intensive agriculture. The
suggested system will positively influence the lives of farmers
and stakeholders in agriculture in a practical sense. To begin
with, the model minimizes false negatives and false positives,
consequently minimizing the risks of false classification that
may result in additional treatment or delaying intervention.
Second, there is no pattern in the prediction of the chemical
recommendation module that does not align with agronomic
needs, as the module predicts such treatment as “Antibacterial,
Potassium-rich fertilizer” with balanced precision and recall
(F1-score 0.95). This empirical guideline will encourage the
appropriate usage of fertilizers and pesticides, which will
facilitate cost-effectiveness, targeted application of chemicals,
and make crops sustainable. Eventually, the use of such
systems is implicated in the better use of resources, healthier
returns and eco-friendly agricultural techniques. Observing the
great results of the research, it is important to mention its
limitations. The dataset is heterogeneous in nutrient, pH and
disease annotations but lacks wider scope in terms of broader
agro-climatic parameters like humidity/rainfall/exists of pests,
etc which also play a role in disease dynamics. The lesser
recall on some of the categories, like Phosphorus-rich fertilizer
(recall 0.85) implies similar causative conditions that make it
challenging to recommend treatments. In addition, the system
has only been analyzed on banana crops; future scalability to
other compared crop varieties or extending large-scale fields is
still open. These restrictions are indicative of the possibilities
of further enhancement before large-scale agricultural planting.
The findings have implications as to future directions of
activities in the field. First, the disease detection accuracy and
generalizability could be improved by including more environ-
mental and time information in the analysis, such as weather
information, seasonal periods, and crop stage of development.
Second, the use of hybridization with deep learning methods,
e.g. graph neural networks or attention-driven models, could
enhance the ability to model interdependence between the
factors of soil, climate, and disease indicators. Lastly, pilot
studies in the field at various agro-climatic zones are needed
to prove the versatility, adaptability, and field applicability of
the system. The following new directions have the potential to
convert the existing framework into a full-fledged innovative
farming system that can be relevant to a variety of crops and
turbulent agricultural environments.
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