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Abstract—Cloud computing environments increasingly host
applications constructed from orchestrated service compositions,
which deliver enhanced functionality through distributed work-
flows. This paradigm, however, introduces vulnerabilities where
component failures can cascade, disrupting entire applications.
Conventional fault tolerance often falls short in these dynamic
settings. This paper introduces ML-Heal, an autonomous self-
healing framework architected to bolster the resilience of such
service compositions. ML-Heal leverages machine learning for
proactive failure detection, precise diagnosis, and intelligent
recovery strategy selection. The framework integrates real-time
monitoring data, applies ML-based anomaly detection and clas-
sification to identify faults, and plans corrective actions via a
learned policy or predictive models. Implemented using Python
with scikit-learn models and a custom orchestration layer, its
efficacy is demonstrated through simulated fault injection scenar-
ios. Illustrative system architecture and evaluation results show
that this ML-driven methodology significantly curtails recovery
time and augments availability when confronted with faults,
showcasing AI’s potential in creating more robust, self-adaptive
cloud service compositions with minimal human oversight.

Keywords—Cloud computing; service composition; self-healing
systems; autonomic computing; machine learning; anomaly detec-
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I. INTRODUCTION

Cloud computing platforms provide ubiquitous, on-demand
access to a shared pool of configurable computing resources
and services [1], [2], fundamentally altering software develop-
ment and deployment paradigms. Within this evolving land-
scape, applications are frequently architected as orchestrated
compositions of distributed web services or microservices, ex-
ecuting complex, often stateful, workflows to deliver enhanced
and agile functionality [3], [4]. This compositional approach,
characterized by loose coupling and independent scalability of
components, while offering significant advantages, inherently
introduces intricate failure modes and heightened fragility [5].
The failure of a singular component service—stemming from

network partitions, hardware malfunctions, software defects,
or even transient performance degradations—can propagate
insidiously through the workflow, leading to the disruption
or complete outage of the entire application [6], [7]. Such
incidents adversely impact user experience, breach service
level agreements (SLAs), and can inflict substantial damage
on business objectives [8]. Fig. 1 conceptually illustrates this
vulnerability.
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Fig. 1. Conceptual illustration of cascading failures in a service composition.
A fault in service B impacts downstream services C, D, and subsequently E.

Ensuring the continuous availability and correct execution
of these service compositions is thus of paramount importance
in contemporary cloud environments [9], [10]. Traditional fault
tolerance mechanisms, including simple replication, check-
pointing, or manual failover procedures operating primarily at
the infrastructure level, do not comprehensively address this
intricate problem [11], [12]. These methods often necessitate
substantial redundant resources, can be slow to react, and
require significant human intervention for accurate diagnosis
and subsequent repair, culminating in extended downtime and
operational inefficiency [13], [6], [14]. In stark contrast, the vi-
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sion of autonomic computing proposes systems capable of self-
management—including self-configuration, self-optimization,
self-protection, and critically, self-healing—with minimal hu-
man input [15], [16]. A pivotal aspect of this vision is self-
healing: the intrinsic ability of a system to autonomously
detect, diagnose, and repair faults, thereby restoring normal op-
eration [17], [16]. Applied to cloud service compositions, self-
healing would empower applications to adapt their workflows
dynamically at runtime, seamlessly replacing or reconfiguring
faulty services without operator action, thereby preserving the
stipulated quality of service and enhancing overall resilience
[16].

Recent advancements in machine learning (ML) have un-
veiled new avenues for developing intelligent and proactive
self-healing capabilities [18], [19], [20]. Predictive models,
trained on vast streams of operational telemetry, can discern
subtle anomalous behavior patterns or anticipate impending
failures [21], [22]. Concurrently, reinforcement learning (RL)
techniques can discover efficient and context-aware recovery
strategies through iterative system interaction and learning
from outcomes [23], [24]. Nevertheless, the sophisticated inte-
gration of diverse ML-driven fault recovery mechanisms into
the fabric of highly dynamic and complex service compositions
remains an area that is relatively underexplored, with many
existing solutions focusing on isolated aspects rather than an
end-to-end intelligent healing pipeline [25], [17].

This paper introduces ML-Heal, a novel framework for
self-healing service compositions specifically employing a
synergistic suite of ML techniques [26], [27]. We architect
a layered system that continuously monitors service met-
rics, applies ML-based fault analysis for proactive detection
and precise diagnosis, and triggers adaptive reconfiguration
through learned policies and predictive insights. The primary
contributions of this work are:

• A comprehensive framework, ML-Heal, for self-
healing in cloud service compositions, combining real-
time monitoring with ML-based diagnosis, predictive
planning, and adaptive orchestration.

• Detailed exposition of diverse machine learning
methodologies (e.g., time-series anomaly detection,
classification, causal inference hints, reinforcement
learning principles) tailored for fault detection, root
cause localization, and optimized recovery, along with
practical implementation considerations.

• Integration of illustrative system diagrams and detailed
tables to elucidate the system design, operational
aspects, and experimental setup.

• An empirical evaluation of the framework’s perfor-
mance, demonstrating significantly accelerated recov-
ery times and enhanced availability compared to con-
ventional baseline approaches and simpler rule-based
systems.

The remainder of this paper is structured as follows.
Section II reviews pertinent related work in self-healing sys-
tems, traditional fault tolerance, and the application of ML
in cloud reliability. Section III describes our proposed ML-
Heal framework and its core ML-based recovery techniques.
Section IV presents implementation specifics, including data

handling, code snippets, and system diagrams. Section V
discusses the evaluation methodology, experimental setup, and
detailed findings. Finally, Section VI concludes the paper and
outlines potential future research directions.

II. LITERATURE REVIEW

The quest for resilient distributed systems has spurred
extensive research. This section surveys prior work relevant
to self-healing service compositions, covering traditional fault
tolerance, established autonomic computing paradigms, and
the burgeoning application of machine learning for enhancing
system reliability.

Further advancing the application of AI in autonomic
systems, Alonso et al. [28] address optimization methodologies
tailored for applications within the expansive “cloud contin-
uum,” enabling them to achieve robust self-healing and derive
experiential learning. Their research endeavors to cultivate
solutions where applications can autonomously recover from
operational disruptions, thereby preserving critical service
performance and dependability, while integrated self-learning
capabilities facilitate adaptation and evolution based on accu-
mulated operational data. The study particularly emphasizes
optimization techniques for judicious resource and config-
uration selection, which demonstrably improve application
performance and operational efficiency, identifying artificial
intelligence (AI) [29] as a pivotal catalyst for these sophisti-
cated self-management capacities.

The specific challenge of “model performance degradation”
in machine learning systems, frequently a consequence of
dynamic shifts in underlying data generation processes, is
investigated by Rauba et al. [30]. They observe that con-
ventional adaptation techniques, such as those designed to
address concept drift, often fail to diagnose the root causes
of performance decline and instead resort to predefined, often
suboptimal, corrective actions. In response, their work intro-
duces H-LLM, an innovative methodology that harnesses the
capabilities of large language models (LLMs) for autonomous
self-diagnosis of model deficiencies and the subsequent formu-
lation of prescriptive remediation strategies. Empirical evalu-
ations have substantiated H-LLM’s capacity to significantly
improve model performance under fluctuating real-world con-
ditions, thereby championing a “self-healing machine learn-
ing” (SHML) paradigm wherein models are empowered to
independently identify performance impediments and prescribe
tailored corrective interventions.

Focusing on practical system development [31] delineate
the design and evaluation of a self-healing cloud system that
synergistically combines an event-driven automation frame-
work with AI-augmented decision-making. The efficacy of
their system is empirically validated on an OpenStack-based
video-on-demand service, where simulated fault scenarios are
employed to rigorously assess the implemented recovery pro-
cedures and automated workflows. The AI-driven decision-
making module within their architecture analyzes multifaceted
operational data to discern and select the most efficacious
corrective measures, holistically considering factors such as
service quality impact and resource implications. While the
recovery engine relies on initial human expertise for parameter-
izing and optimizing decision models, the study compellingly
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demonstrates that AI-driven decision support can substantially
reduce mean time to repair (MTTR) and enhance overall
service quality within complex cloud environments.

In a similar vein, Vankayalapati and Pandugula [32] under-
score the transformative potential of AI in constructing self-
healing cloud infrastructures capable of autonomous recovery
from runtime anomalies. They highlight the escalating impor-
tance of self-reliant services, particularly as paradigms like
“cloud-in-a-robot” gain traction. Acknowledging a persistent
lacuna in comprehensive real-time failure recovery solutions
despite prior research into robust deep learning models, the au-
thors propose a novel model architecture for AI-powered self-
healing cloud infrastructures. This architecture distinctively
integrates autonomous fault detection, sophisticated reasoning-
based fault diagnosis, and advanced deep reinforcement learn-
ing (DRL) methodologies, all orchestrated to significantly
minimize repair times. Their proposed model strategically
addresses the multifaceted challenges and critical components
inherent in the development of truly resilient and adaptive
cloud infrastructures.

A. Traditional and Rule-Based Fault Tolerance

Early endeavors in fault tolerance for distributed sys-
tems centered on techniques like replication for availability
[33], checkpointing for state recovery [34], and transaction
mechanisms for consistency [35]. While foundational, these
mechanisms often target specific failure types (e.g., crash
failures, Byzantine faults [36]) and may incur significant
overhead or lack the adaptability required for dynamic service
compositions operating in volatile cloud environments [37].

The advent of autonomic computing [15] stimulated re-
search into systems capable of self-management, with self-
healing as a core tenet. Many initial self-healing systems relied
heavily on predefined rules, policies, or workflow models [38].
These approaches typically define expected system behaviors
and specify corrective actions (e.g., “restart service X if
unresponsive,” “scale deployment Y if CPU > 80%”) triggered
when deviations are detected, often using Event-Condition-
Action (ECA) rules [39]. While effective for well-understood,
known failure modes in relatively stable environments, rule-
based systems often struggle with scalability as the number of
rules burgeons, exhibit brittleness when faced with unforeseen
scenarios, and lack the capacity to handle novel or subtly
emergent fault conditions effectively [40], [41]. Workflow
adaptation techniques, focusing on modifying the structure
or execution path of a service composition at runtime to
bypass faulty components [42], address control-flow failures
but may not resolve underlying resource issues or complex
performance degradations. Architectural patterns such as the
Circuit Breaker [43] provide localized resilience by preventing
repeated calls to failing services, but they do not inherently
diagnose the root cause or orchestrate broader system-level
recovery. Platform-level orchestration systems like Kubernetes
[44] offer basic self-healing (e.g., restarting failed containers),
which are invaluable but operate primarily at the infrastructure
level, often lacking application-specific context for nuanced
recovery [45]. Fig. 2 provides a conceptual comparison of these
approaches.

B. Autonomic Computing and the MAPE-K Loop

The MAPE-K (Monitor, Analyze, Plan, Execute, over a
Knowledge base) control loop, introduced as part of IBM’s vi-
sion for autonomic computing [16], provides a widely adopted
architectural blueprint for self-managing systems [16].

• Monitor: Collects data from managed resources (met-
rics, logs, traces).

• Analyze: Processes monitored data to detect symp-
toms, diagnose problems, and identify potential areas
for improvement or adaptation.

• Plan: Develops a sequence of actions to achieve the
goals and objectives based on the analysis.

• Execute: Implements the planned actions by interact-
ing with the managed resources.

• Knowledge: Represents shared data, models, and poli-
cies used by the other components, enabling learning
and adaptation over time.

Many self-healing frameworks, including early ones like
[17], explicitly or implicitly follow this model. The effective-
ness of each phase, particularly Analyze and Plan, is critical
for intelligent and adaptive behavior.

C. Machine Learning in Cloud Reliability and Management

The exponential growth in volume, velocity, and variety
of operational data from cloud systems (metrics, logs, traces,
configurations) has propelled the application of ML for en-
hancing system management, reliability, and AIOps (AI for IT
Operations) [64], [25].

1) Anomaly detection: Significant effort has focused on
ML-based anomaly detection in multivariate time-series mon-
itoring data [21], [65]. Algorithms such as Isolation Forests
[49], One-Class SVMs [50], Autoencoders (AE) [47], LSTMs
[22], [18], Prophet [48], and various graph-based anomaly
detection (GBAD) techniques [51] learn normal patterns from
high-dimensional system metrics to identify subtle deviations
potentially indicative of impending failures. Proactive detec-
tion is pivotal for timely recovery [52].

2) Root Cause Analysis (RCA): Once an anomaly is de-
tected, diagnosing its root cause is paramount. ML techniques
are increasingly explored for RCA [59]. Classification algo-
rithms can map symptom patterns to known root causes if
labeled historical data is available [53]. Probabilistic Graphical
Models (PGMs) like Bayesian Networks can model causal
relationships [54], [55]. Log analysis, using NLP techniques
from simple TF-IDF to advanced models like BERT, helps
extract failure signatures from unstructured log data [56], [57].
Causal discovery algorithms aim to infer fault propagation
paths directly from observational or interventional data [58].

3) Automated recovery and planning: For recovery plan-
ning, ML [66] offers avenues beyond predefined scripts. Re-
inforcement learning (RL) agents can learn optimal sequences
of recovery actions (e.g., restart, migrate, scale, reconfigure)
by interacting with the system (or a simulator) and receiving
rewards based on recovery success and efficiency [23], [60],
[61]. Predictive models can estimate the success probability,
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Fig. 2. Comparison of different healing approaches based on proactiveness and adaptability. ML-Heal aims for high proactiveness and adaptability.

TABLE I. COMPARATIVE SUMMARY OF LITERATURE ON SELF-HEALING AND ML FOR CLOUD RELIABILITY

Category / Reference(s) Domain Primary Technique(s) / Approach Strengths Limitations / Gaps Addressed by ML-Heal

Traditional Fault Tolerance Distributed Systems
Reliability

Replication [33], Checkpointing [34],
Transactions [35], BFT [36], [37]

Foundational for specific failures,
consistency guarantees

High overhead, limited adaptability to
dynamic cloud/novel faults, often reactive.

Rule-Based Autonomic
Systems

Self-Management,
Self-Healing

Predefined rules, policies, ECA [39],
workflow models [46], [38]

Simple for known faults, direct
control flow

Brittle with novel faults, scalability issues,
lacks learning, often limited context.

Workflow Adaptation Service Composition
Resilience

Runtime modification of execution path [42] Handles control-flow failures,
structural adaptation

May not address resource/performance
issues, limited beyond workflow logic.

Platform-Level Orchestration Infrastructure Healing
(e.g., Kubernetes [44])

Health checks, automated restarts, replica
management

Basic instance-level resilience, some
automation

Lacks deep application context [45], limited
diagnosis, fixed recovery actions.

Autonomic Computing
(MAPE-K)

General Self-Management
Blueprint

Monitor-Analyze-Plan-Execute-Knowledge
Loop [16]

Holistic management cycle,
structured approach

Early instances often relied on simpler
analysis/planning; ML integration is key for
advancement.

ML for Anomaly Detection Proactive
Fault/Performance Issue
Identification

Time-series analysis (LSTM [22], [18], AE
[47], Prophet [48]), Isolation Forest [49],
OC-SVM [50], GBAD [51]

Handles complex patterns, proactive
detection [52]

Often standalone; requires integration with
diagnosis and recovery for end-to-end
healing.

ML for Root Cause Analysis
(RCA)

Fault Diagnosis and
Localization

Classification [53], PGMs (Bayesian Nets
[54], [55]), Log Analysis (NLP/BERT [56],
[57]), Causal Discovery [58]

Data-driven diagnosis, identifies
complex causes [59]

Requires quality (labeled) data or causal
models, often separate from healing
execution.

ML for Automated
Recovery/Planning

Intelligent Action Selection Reinforcement Learning [23], [60], [61],
Predictive Modeling [62], [63]

Adaptive decision-making,
optimizes recovery strategy

RL can be complex to train/ensure safety;
predictive models need robust historical data.

AI for Cloud
Continuum/Self-Learning

Optimization AI for resource/config selection, experiential
learning [28]

Performance / efficiency gains,
adaptation over time

Focus on optimization; specific healing
mechanisms might vary.

Self-Healing Machine
Learning (SHML)

Model Performance
Degradation

LLMs for self-diagnosis and remediation
prescription [30]

Addresses data drift by
self-correcting ML models

Specific to ML model healing, not general
system/service healing.

AI-Driven Cloud Healing
Systems

Holistic System Recovery Event-driven automation + AI
decision-making [31], DRL for recovery [32]

Reduced MTTR, improved service
quality, autonomous recovery from
runtime issues

Highlights benefits of AI; ML-Heal aims for
a more comprehensive, deeply integrated ML
pipeline.

ML-Heal (This Work) Self-Healing for Cloud
Service Compositions

Integrated ML Pipeline (Proactive
Anomaly Detection, Diagnostic
Classification/RCA, ML-guided Recovery
Planning), Adaptive Learning via
Knowledge Base

Proactive, adaptive, context-aware
healing across the full MAPE-K
cycle; aims to handle novel faults
and continuously improve
through integrated learning.

Addresses the need for a unified
framework specifically leveraging diverse,
advanced ML for end-to-end, intelligent
healing of composed cloud services,
bridging gaps between siloed ML
applications.

cost, or duration of potential recovery actions given the cur-
rent system state and fault context, enabling more informed
selection [62], [63].

Table I describe summarizes representative approaches.
While existing research has explored facets of self-healing and
applied ML to specific problems, a gap remains in comprehen-
sive frameworks that systematically integrate diverse, advanced
ML techniques across the *entire* self-healing lifecycle for
complex service compositions in dynamic cloud environments.
Many ML applications remain siloed. ML-Heal aims to bridge
this by providing a unified architecture where ML models
collaborate for holistic self-healing, moving beyond simple

restarts or rigid rules towards context-aware, learned recovery.

III. PROPOSED FRAMEWORK ML-HEAL

We propose ML-Heal, an architecture meticulously de-
signed for the self-healing of service compositions, which dis-
tinctively integrates continual monitoring, machine learning-
based fault diagnosis, and dynamic recovery actions. Fig. 3
illustrates the comprehensive design of this framework. A
user request initiates the execution of a composite service,
managed through a central orchestrator. Each component ser-
vice participating in the composition is instrumented to emit
critical runtime metrics (such as CPU utilization, memory
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Fig. 3. Proposed ML-Heal framework architecture: services are monitored, analyzed by ML models, and adapted via planned actions when faults are detected,
with a central Knowledge Base for learning.

consumption, response times, error logs) and local health
indicators. A dedicated Monitoring module diligently collects
these metrics, aggregating them into a continuous data stream
for analysis.

The core intelligence of ML-Heal resides in an ML-based
Analyzer. This module applies sophisticated anomaly detec-
tion algorithms, potentially employing classifiers or clustering
models, to identify significant deviations from established
normal operational behavior. If a potential fault is detected,
the Analyzer proceeds to classify its specific type (e.g., service
crash, performance degradation, resource exhaustion) and sub-
sequently invokes the Recovery Planner. This planner utilizes
a learned policy, typically embodied by a trained reinforcement
learning agent or a predictive model, to decide upon the most
appropriate corrective measures. These measures can range
from rerouting task requests to an alternative service replica,
restarting a failed component, to dynamically scaling allo-
cated resources. Finally, the orchestrator executes the chosen
recovery action, adaptively modifying the workflow in-flight
to mitigate the fault’s impact. The outcome of each executed
action is then fed back into the monitoring loop, serving to
update the system’s knowledge base and progressively refine
the underlying ML models.

Key features of the ML-Heal framework include:

1) Continuous monitoring: Each individual service in-
stance diligently reports telemetry data (e.g., response times,
processing queue lengths, error counts, resource utilization).
Dedicated monitoring agents preprocess these raw signals to
normalize their scale and filter out extraneous noise. This pro-
cessed data is then streamed to a central repository for further
analysis and storage, forming the basis for the Knowledge
component of the MAPE-K loop [67].

2) ML-Powered anomaly detection: We employ sophisti-
cated machine learning classifiers and time-series models to
accurately detect faults. For example, a Random Forest or
Support Vector Machine (SVM) can be trained on historical
metrics that have been meticulously labeled as indicative of
either healthy or faulty states [18]. Time-series models like
LSTMs or Autoencoders can learn normal temporal patterns

and flag deviations [22], [68]. Our approach augments this
supervised detection with unsupervised methods, such as the
Isolation Forest algorithm [49], to effectively identify novel
or previously unseen anomalies. This hybrid strategy aims to
reduce false positives and enhance the system’s capability to
handle unknown failure modes [18], [46], [21].

3) Intelligent fault classification and diagnosis: Once an
anomaly is flagged by the detection mechanism, the analyzer
component proceeds to classify its specific type (e.g., dis-
tinguishing between a service crash, a slow response time
issue, or resource exhaustion) and attempts to localize the root
cause. This detailed classification and diagnosis significantly
aids the recovery planner in selecting the most appropriate
and effective corrective actions. Techniques may include su-
pervised classifiers trained on known fault signatures [53], or
exploring causal relationships using service dependency graphs
and patterns in distributed traces [55], [40]. Prior research
has consistently shown the substantial benefit of distinguishing
between different failure causes to tailor recovery efforts more
precisely [62].

4) Adaptive recovery planning via ML: The planner utilizes
a policy, learned through reinforcement learning techniques or
guided by predictive models, to strategically choose a recovery
strategy. The available actions may encompass switching to
a backup service endpoint, redistributing incoming requests
across healthy instances, restarting the affected service, dy-
namically scaling resources, or migrating it to a different
underlying physical or virtual node [20]. Inspired by recent
advancements in RL applications [23], [60], we model the
recovery process as a sequential decision-making problem. An
RL agent (e.g., Deep Q-Network (DQN) [69] or standard Q-
learning) can be trained within a simulated environment that
mimics the behavior of services and the occurrence of various
faults. Over time, this agent learns which sequences of actions
are most effective in restoring the service composition’s perfor-
mance under diverse fault scenarios. Alternatively, predictive
models can estimate the utility (e.g., success probability,
recovery time) of different actions [63].
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TABLE II. MACHINE LEARNING TECHNIQUES IN ML-HEAL MODULES

Module ML Technique(s) Primary Input Primary Output Adaptation Mechanism

Monitoring (Data Preprocessing) Signal Pro-
cessing, Feature Engineering

Raw telemetry (metrics, logs,
traces)

Cleaned, normalized feature
vectors

Configuration updates, filter
adjustments

Analyzer (Detection) LSTM Autoencoders, Isolation
Forest, Random Forest
(Supervised)

Feature vectors from Monitor-
ing

Anomaly scores, binary
anomaly flags

Periodic retraining on new
normal data, threshold tuning,
model updates based on feed-
back

Analyzer (Diagno-
sis/RCA)

Supervised Classifiers (e.g., SVM,
Gradient Boosting), Bayesian Net-
works, Log Pattern Analysis (e.g.,
LogCluster, Drain)

Anomaly details, contextual
metrics, service dependency
graph, historical incidents

Probable root cause(s), fault
type, confidence scores

Retraining with new labeled
incidents, updating causal
models, refining log parsers

Planner (Recovery) Q-Learning/DQN, Predictive Mod-
els (e.g., Regression for MTTR
prediction), Case-Based Reasoning

Diagnosed fault, system state,
action repertoire, recovery ob-
jectives

Optimal recovery plan/action
sequence

Updating Q-tables/policy net-
works, retraining predictive
models with action outcomes,
adding new cases to CBR sys-
tem

5) Automated adaptive execution: The orchestrator compo-
nent is responsible for executing the chosen recovery actions
autonomously, without requiring human intervention. Recog-
nizing that newly instantiated service instances or reconfigured
components may require a “warm-up” period, the system is
designed to potentially degrade gracefully for a short duration
or parallelize tasks where feasible to maintain service continu-
ity. The framework meticulously logs the outcome (success or
failure, time taken, resource impact) of each recovery action.
This outcome data is then fed back into the system to update
the ML models within the Knowledge Base, effectively serving
as the learning mechanism of the MAPE-K loop, enabling
continuous improvement and adaptation to new fault patterns
[70].

This ML-driven strategy aligns seamlessly with established
autonomic computing principles: the system observes its own
state, learns from operational experience, and dynamically
adapts its composition to maintain desired service levels. No-
tably, our design leverages artificial intelligence not merely for
passive monitoring, but actively for decision-making processes
within the core MAPE-K control loop. Table II provides a
summary of ML techniques envisioned for each module.

IV. IMPLEMENTATION ARCHITECTURE AND PROTOTYPE

To operationalize the ML-Heal concept and evaluate its
core functionalities, a prototype system was developed. This
section provides a high-level overview of the prototype’s
architecture, the foundational technologies selected, and the
general approach to integrating machine learning components.

A. System Design and Technologies

The prototype of ML-Heal was conceptualized as a mod-
ular system, reflecting the distinct stages of the self-healing
process outlined in the framework architecture (Fig. 3). Python
was chosen as the primary development language, benefiting
from its robust libraries for data manipulation, machine learn-
ing, and system integration.

1) Simulated environment and service mocking: For the
prototype, a simulated cloud environment was established. This

involved creating mock service instances that could emulate
basic computational tasks and exhibit various fault behaviors
upon simulated injection. This controlled environment facili-
tated the systematic testing and evaluation of the self-healing
mechanisms without the complexities of a full-scale cloud
deployment.

2) Monitoring and data collection: The Monitoring mod-
ule in the prototype was designed to simulate the collection
of essential runtime metrics from the mock services. These
metrics included simulated CPU load, response times, and
error rates, which were then pushed to a central data stream
or repository for processing by the Analyzer component. This
setup mimicked how real-world monitoring agents (e.g., using
REST APIs or Prometheus exporters) would function.

3) Machine learning model integration:

a) Fault detection and classification: The Analyzer
component utilized machine learning models primarily from
the scikit-learn library [71]. For instance, a Random
Forest classifier was implemented for fault detection, trained
on pre-labeled datasets representing ‘healthy’ and ‘faulty’
service states based on the collected features. This allowed
the prototype to flag anomalous conditions based on learned
patterns.

b) Recovery planning with reinforcement learning:
To explore adaptive recovery strategies, the Planner compo-
nent incorporated a simplified reinforcement learning (RL)
approach. A custom RL environment was conceptualized using
the principles of the Gymnasium (formerly OpenAI Gym
[72]) toolkit. This environment simulated the state of the
composite service and the effects of different recovery actions
(e.g., ‘retry,’ ‘switch replica’). A basic Q-learning agent was
then trained within this environment to learn a policy for
selecting recovery actions that maximized a defined reward
signal, typically related to successful task completion or fault
resolution.

4) Knowledge representation (conceptual): While a full-
fledged, persistent Knowledge Base with sophisticated data
stores was beyond the scope of the initial prototype, the
design accounted for the conceptual need to store historical
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data, learned models, and system state information. For the
prototype, this was often managed in memory or through
simple file-based storage during training and execution phases.

5) Orchestration and communication logic: The interaction
between the framework’s modules (Analyzer, Planner, Execu-
tor) and the simulated services was managed through custom
Python logic. The Orchestrator component, upon receiving a
recovery plan, would simulate the execution of actions like
restarting a service or rerouting a request within the testbed.
Communication was primarily handled through direct function
calls or simple in-process messaging within the prototype’s
single-node execution environment.

The primary goal of this prototype implementation was
to demonstrate the feasibility of integrating machine learning
into the different stages of a self-healing loop for service
compositions. The focus was on the core logic of fault
detection, ML-driven decision-making for recovery, and the
feedback mechanism for learning, rather than on building
a production-grade, highly distributed system. The modular
design, even in this simplified form, aimed to show how
different ML techniques could be plugged into the respective
components of the ML-Heal architecture. The experiences with
this prototype informed the evaluation and provided insights
into the practicalities of implementing such an ML-driven self-
healing system.

The system diagram depicted in Fig. 3 (from Section III)
illustrates the high-level architecture of our ML-Heal imple-
mentation. Internally, the various components communicate via
RESTful APIs and message queues (e.g., Kafka, RabbitMQ
[73]) to ensure loose coupling and scalability. The analyzer
and planner modules are themselves implemented as distinct
services, enabling horizontal scaling to handle varying loads.
Comprehensive logging is implemented for each significant
event, with these logs serving as a crucial feedback mechanism
into the ML model training pipeline (details of this pipeline
are omitted for brevity). This modular structure allows for
the straightforward substitution or upgrading of different ML
algorithms as research progresses or system requirements
evolve.

V. EVALUATION AND FINDINGS

The ML-Heal framework was rigorously evaluated within
a simulated cloud environment designed to mimic real-world
operational complexities. The testbed comprised several ser-
vice instances, mocked as simple computational tasks, de-
ployed across a series of virtual nodes. Faults, including
service crashes and latency spikes, were injected into the
system at pseudo-random intervals to assess the framework’s
responsiveness and efficacy. Table III outlines the types of
faults simulated. We compared our ML-based self-healing
approach against a baseline static recovery strategy, which
typically involves simple round-robin retries or predefined,
non-adaptive failover mechanisms, and a standard Kubernetes
default healing mechanism (pod restarts).

Two primary metrics were employed for this comparative
evaluation:

• Mean Recovery Time (MRT): The average duration
from the moment a fault is detected until the affected

service or composition is restored to its normal oper-
ational state.

• Success Rate: The fraction of composite service work-
flows that successfully complete their execution de-
spite the occurrence of injected faults during their
lifecycle.

Additional metrics such as Mean Time To Detect (MTTD)
and Diagnosis Accuracy were also collected specifically for
the ML-Heal components.

Fig. 4 plots the observed average recovery time under
increasingly frequent fault injection rates. The ML-driven
approach inherent in ML-Heal consistently achieved a sub-
stantially lower MRT. For instance, at a 5% fault injection
rate (meaning 5% of service invocations encountered an in-
jected fault), the average recovery time for ML-Heal was
approximately 50ms. In contrast, the baseline static policy
exhibited an average recovery time of around 90ms under
the same conditions. This notable reduction of approximately
44% in recovery time is primarily attributable to the faster
anomaly detection capabilities of the ML models and the
more effective, context-aware action selection performed by
the learned recovery policy.
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Fig. 4. Average recovery time versus fault injection rate. The ML-Heal
ML-driven policy (red squares) adapts and recovers faster than the static

baseline policy (blue circles).

Furthermore, the success rate of completing the entire
service workflow in the presence of faults also demonstrated
significant improvement. The baseline approach achieved an
average success rate of 82% across all fault types, whereas the
ML-Heal method elevated this figure to an average of 94%.
Fig. 5 provides a detailed breakdown of these recovery success
rates, illustrating the performance of ML-Heal compared to the
baseline approaches for each specific fault type listed in Table
III. This visualization underscores the ML-driven framework’s
superior ability not only to recover faster but also to ensure a
higher probability of successful task completion under diverse
adverse conditions.

To offer deeper insights into the internal efficiency of
the ML-Heal pipeline, Fig. 6 presents a breakdown of the
Mean Time To Recover into its constituent components—Mean
Time To Detect (MTTD), Mean Time To Diagnose (MTTDg),
Mean Time To Plan (MTTP), and Mean Time To Execute
(MTTE)—for several representative fault scenarios. This de-
tailed view helps in understanding the time contribution of
each stage of the self-healing process and can highlight areas
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TABLE III. SIMULATED FAULT INJECTION SCENARIOS FOR EVALUATION

Fault Type Targeted Component(s) Expected Impact

Pod Crash Single service instance Service unavailability, errors

CPU Exhaustion Single service instance High latency, potential crash

Memory Leak Single service instance Gradual performance degradation, eventual crash

Network Latency Inter-service communication link Increased end-to-end latency, timeouts

Service Bug (High Error Rate) Single service instance High application error rate

Database Unavailability Backend database service Failures in dependent services
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Fig. 5. Comparative recovery success rates for different fault types.
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Fig. 6. Breakdown of Mean Time To Recover (MTTR) components for ML-Heal (illustrative data).

for further optimization within the framework. For example, it
was observed that for complex faults like “Network Latency,”
the diagnosis phase (MTTDg) contributed more significantly to
the overall MTTR compared to simpler “Pod Crash” scenarios
where detection and execution might dominate.

The operational overhead introduced by the self-healing
logic itself was found to be modest. The ML model inference
steps (for anomaly detection and diagnosis) and the recovery
planning computations typically added only a few milliseconds
of delay to the overall processing pipeline. Table IV provides a

more granular view of performance metrics, including MTTD
and Diagnosis Accuracy for ML-Heal, alongside compara-
tive MRT and Success Rate data for all tested approaches
across specific fault types. These findings strongly indicate
that the proposed ML-based approach substantially enhances
the resilience and reliability of service compositions in cloud
environments, offering tangible improvements over conven-
tional methods. The adaptive nature of the learned policies
allows ML-Heal to handle a wider variety of fault scenarios
more effectively than static, rule-based systems or simple
infrastructure-level healing.
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TABLE IV. EVALUATION RESULTS FOR SPECIFIC FAULT TYPES

Fault Type Metric K8s Default Rule-Based ML-Heal

MTTD (ms) Diag. Acc. (%) MRT (ms)

Pod Crash MRT (ms) 150 120 20 98 60
Success Rate (%) 90 92 99

CPU Exhaustion MRT (ms) N/A (not handled) 250 55 92 110
Success Rate (%) 60 75 95

Network Latency MRT (ms) N/A (not handled) N/A (not handled) 40 88 130
Success Rate (%) 55 65 90

Service Bug (High Error Rate) MRT (ms) 180 (if restart helps) 160 30 95 85
Success Rate (%) 70 78 96

VI. CONCLUSION

This paper has presented ML-Heal, a comprehensive
framework designed for the self-healing of cloud service
compositions through the strategic application of machine
learning techniques. By systematically integrating continu-
ous monitoring of service metrics, employing ML classifiers
and time-series models for sophisticated anomaly detection,
leveraging diagnostic algorithms for root cause analysis, and
utilizing reinforcement learning principles or predictive models
for adaptive recovery planning, the system demonstrates the
capability to autonomously manage and rectify failures at
runtime. Our prototype implementation, developed in Python
and illustrated with practical code snippets, alongside the em-
pirical evaluation results graphically represented and detailed
in tables, substantiates the effectiveness of this ML-centric
approach. Service compositions managed by ML-Heal exhibit
significantly faster recovery from faults, higher diagnostic
accuracy, and maintain superior levels of availability when
compared to traditional baseline strategies and simpler rule-
based systems, all achieved with minimal requirement for
human intervention.

The promising outcomes of this research pave the way for
several exciting future directions. A key area for further inves-
tigation involves the exploration and integration of advanced
predictive analytics and causal inference models at scale,
enabling the system to anticipate failures even more proac-
tively and understand fault propagation with greater precision
[74]. Deploying and validating the ML-Heal framework in
real-world, large-scale cloud environments, particularly those
utilizing complex microservices architectures orchestrated by
platforms like Kubernetes and Istio [75], will be crucial for
assessing its practical viability and robustness under diverse
operational loads and highly intricate failure scenarios. Further
research into explainable AI (XAI) techniques [76] for the ML
models used in diagnosis and planning would also enhance
operator trust and facilitate easier debugging of the self-healing
system itself. The inherent synergy between artificial intel-
ligence and cloud orchestration technologies holds immense
promise for constructing distributed applications that are not
only more resilient but also possess advanced self-managing
capabilities, adapting intelligently to the ever-changing condi-
tions of dynamic cloud ecosystems [77].
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