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Abstract—The protection of sensitive medical information has
become a critical concern in modern digital healthcare. This
study introduces a Hybrid Architecture that ensures secure and
reliable healthcare data management through the integration of
blockchain technology with off-chain and on-chain mechanisms.
Patient records are encrypted using AES-256-GCM, stored in the
InterPlanetary File System (IPFS), and verified using Merkle Tree
structures, with only the root values anchored on Ethereum smart
contracts. This design guarantees data security and integrity
while achieving significant gas optimization by reducing on-chain
storage costs. Experimental evaluation demonstrates that the
proposed system achieves high scalability, efficient transaction
processing, and strong resistance to tampering, ensuring confiden-
tiality and auditability. By combining blockchain, cryptographic
techniques, and distributed storage, the framework addresses
pressing challenges of security, privacy, and trust in healthcare
ecosystems. The results highlight the potential of Hybrid Archi-
tecture models to deliver a cost-effective, privacy-preserving, and
scalable solution for next-generation Healthcare Data Security.
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I. INTRODUCTION

The digitization of healthcare data has led to increased
dependency on electronic health record (EHR) systems and
cloud-based platforms for storage and access. However, this
growing reliance introduces serious challenges related to data
privacy, integrity, interoperability, and unauthorized access.
Traditional centralized healthcare data management architec-
tures are susceptible to single points of failure, cyberattacks,
and restricted transparency. These limitations necessitate novel
architectural paradigms that can ensure secure, verifiable, and
patient-centric data handling.

Blockchain technology has emerged as a transforma-
tive solution to address these challenges by enabling de-
centralized and tamper-resistant systems. With its core at-
tributes—immutability, transparency, and consensus-driven
validation—blockchain can reinforce data trustworthiness and
facilitate secure data sharing across distributed healthcare
providers. A growing body of research has explored the in-
tegration of blockchain in healthcare, recognizing its potential
to decentralize control, enhance interoperability, and safeguard

sensitive clinical data [1], [2] Several works provide a founda-
tion for understanding the structural and operational principles
of blockchain. In [3], the authors presents a comprehensive
overview of blockchain architecture, consensus algorithms, and
anticipated evolution. Holbl et al. [1] systematically reviewed
the applicability of blockchain in healthcare, identifying both
opportunities and technical limitations. Ismail et al. [4] pro-
posed a lightweight blockchain framework tailored for health-
care environments, focusing on scalability and performance.
Kakei et al. [5] explored distributed authentication infrastruc-
tures based on Hyperledger Fabric, showing potential for cross-
institutional trust establishment.

Moreover, performance analysis of blockchain frame-
works such as Hyperledger Fabric have shown that pri-
vate blockchains can offer high throughput and low latency
for medical data exchanges [6]. Khan et al. [7] discussed
blockchain’s synergy with the Internet of Things (IoT) and
smart grid systems in healthcare. Rathi et al. [8] demonstrated
the value of blockchain-enabled orchestrators for multi-domain
edge computing, enabling secure data transactions at the net-
work edge. Edited volumes such as that by Namasudra and
Deka [9] further provide insights into real-world deployments,
regulatory constraints, and future trends in blockchain-driven
healthcare ecosystems. Despite this progress, challenges persist
in effectively linking on-chain and off-chain data management.
Storing complete medical files on-chain is impractical due to
gas fees and blockchain size constraints. Consequently, hybrid
models integrating blockchain with distributed file systems like
the InterPlanetary File System (IPFS) are gaining attention
[10]. These architectures allow for off-chain storage of large
medical files while maintaining their integrity through on-chain
hashes.

However, existing blockchain-based healthcare data man-
agement systems continue to face critical challenges, including
high gas costs from on-chain storage, limited scalability when
handling large datasets, and insufficient privacy-preserving
mechanisms. These limitations restrict their practical adoption
in real-world healthcare environments. To address these gaps,
this study proposes a hybrid blockchain architecture that com-
bines AES-256-GCM encryption, IPFS off-chain storage, and
Merkle root anchoring on Ethereum, thereby ensuring strong
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data confidentiality, verifiable integrity, and significant cost
reduction while maintaining scalability.

This study proposes a hybrid blockchain-based framework
that integrates Ethereum smart contracts and IPFS to create a
secure, scalable, and tamper-resistant infrastructure for health-
care data management. Our main contributions are summarized
as follows:

e A hybrid blockchain framework is proposed, where
only Merkle roots of encrypted file batches are stored
on-chain, achieving over 99% gas cost reduction com-
pared to traditional methods.

e Patient records are encrypted using AES-256-GCM,
ensuring data confidentiality, integrity, and secure off-
chain storage.

e The system supports batch-wise Merkle tree con-
struction and lightweight proof mechanisms, enabling
scalable, high-throughput, and verifiable healthcare
data management.

The remainder of this study is organized as follows: Section
II reviews related work on blockchain-based healthcare data
management and highlights existing challenges. Section III
presents the proposed Hybrid Architecture, detailing the use
of AES-256-GCM encryption, IPES off-chain storage, Merkle
Tree verification, and Ethereum smart contracts. Section IV
discusses the experimental setup and performance evaluation,
focusing on data security, scalability, and gas optimization.
It provides a detailed discussion of the results, insights into
parameter influence, and implications for practical healthcare
deployment. Finally, Section V concludes the study by sum-
marizing the contributions and outlining directions for future
research.

II. RELATED WORK

Blockchain technology has gained significant attention in
healthcare for its potential to provide secure, tamper-proof data
management. However, the inherent limitations in scalability
pose ongoing challenges, particularly in high-volume environ-
ments, such as electronic health record (EHR) systems. Recent
studies have proposed architectural enhancements and hybrid
models to address these limitations.

Sadath et al. [11] introduced a hierarchical blockchain
architecture tailored to healthcare, utilizing both local and
global chains to minimize network congestion and improve
transaction throughput. This model supports distributed data
handling while preserving integrity, making it a viable solution
for large-scale deployments. Similarly, Ali et al. [12] proposed
a hybrid blockchain system augmented with deep learning
techniques to prioritize transactions dynamically. Their model
achieved improved responsiveness and reduced latency under
high data loads without compromising security.

Mazlan et al. [13] provided a systematic review highlight-
ing key scalability barriers, including throughput, latency, and
interoperability. The authors discussed theoretical mitigation
strategies such as Layer-2 solutions and sharding, but noted a
lack of real-world implementations. In contrast, Jayabalan and
Jeyanthi [14] presented a practical approach using IPFS for

Vol. 16, No. 8, 2025

off-chain storage combined with on-chain metadata manage-
ment, demonstrating measurable improvements in speed and
scalability.

Security-focused frameworks have also shown indirect
scalability benefits. Shamshad et al. [15] developed a
blockchain-based EHR system with embedded access control
via smart contracts. This reduced computational overhead on-
chain and facilitated secure sharing. Further, Mazhar et al. [16]
explored the convergence of blockchain, generative Al, and
IoT in healthcare. Their study emphasized enhanced privacy,
patient personalization, and interoperability, though challenges
related to resource demands and decentralized storage remain.

Bathula et al. [17] conducted a comprehensive review
of over 400 studies and concluded that blockchain—Al in-
tegration holds substantial promise for strengthening EHR
reliability, supporting diagnostics, and managing pandemics.
Collectively, the literature affirms that scalable blockchain
solutions—especially those involving Al integration and off-
chain data architectures—are central to building resilient, effi-
cient, and secure healthcare infrastructures.

In the study by Taherdoost [18], the author explores the in-
tegration of blockchain technology within the healthcare sector,
emphasizing its potential to enhance data privacy and security.
The study provides a comprehensive overview of blockchain
applications such as secure electronic health records (EHRs),
patient consent management, and pharmaceutical supply chain
tracking. It highlights key challenges including scalability, reg-
ulatory compliance, and interoperability with existing health-
care systems. Furthermore, the study discusses future research
directions focused on improving the efficiency, adaptability,
and ethical implementation of blockchain in healthcare. This
work serves as a foundational reference for understanding both
the opportunities and limitations of blockchain adoption in
sensitive data environments like healthcare.

Kasyapa and Vanmathi [19] presents a thorough examina-
tion of blockchain integration in the healthcare domain, focus-
ing on practical use cases, performance-related challenges, and
corresponding mitigation strategies. Their investigation spans
a variety of healthcare applications, including patient data
management, clinical trials, and remote monitoring systems,
where blockchain’s decentralization and immutability offer
clear benefits. The authors delve into performance bottlenecks
such as latency, throughput, and energy consumption, and
propose solutions involving lightweight consensus mechanisms
and hybrid architectures. Their work not only showcases the
transformative potential of blockchain in improving healthcare
infrastructure but also provides critical insights into addressing
technical and operational barriers for real-world deployment.

A comparative critique of notable blockchain-based health-
care frameworks is summarized in Table I. The table highlights
the strengths and limitations of prior studies and clarifies
how the proposed method advances beyond these works by
integrating end-to-end encryption, scalable off-chain storage,
and gas-efficient Merkle root anchoring.

III. METHODOLOGY

The proposed architecture for secure and scalable health-
care data management is structured into four sequential phases:
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TABLE I. COMPARATIVE ANALYSIS OF HEALTHCARE BLOCKCHAIN FRAMEWORKS AND RELATION TO THE PROPOSED METHOD

Framework Strengths

Weaknesses / Assumptions

Relation to Proposed Method

Sadath et al.[11] Hierarchical chain reduces
congestion; improves

throughput.

Lacks end-to-end encryption; assumes scal-
ability alone ensures privacy.

Employs AES-256-GCM encryption to
ensure confidentiality while retaining
scalability.

Batch-root commitments im-
prove auditability and verifi-
cation efficiency.

Matani et al.[20]

Limited scalability on large datasets; no
off-chain optimization.

Uses batch-wise Merkle root anchoring
with IPFS off-chain storage for scalable
verification.

HealthBlock[21] Strong decentralization and

patient-centric control.

On-chain metadata storage increases gas
cost and causes state bloat.

Achieves about 99.85% gas reduction by
anchoring only Merkle roots on-chain.

MEDACCESSX][22] Modular contracts improve

flexibility for access control.

Complex contracts; confidentiality not
guaranteed system-wide.

Maintains lightweight contract logic
with strong encryption for end-to-end
security.

AdaSec-Health[23] Shard-level tuning enhances

scalability. unclear.

Relies on tuning; encryption is partial or

Provides scalable hybrid storage with
explicit AES-256-GCM protection.

Preprocessing, On-Chain storage, Off-Chain storage, and Veri-
fication & Decryption. Each component contributes to ensuring
data confidentiality, integrity, and blockchain efficiency.The
methodology involves the following key stages, as depicted
in Fig. 1.

A. Dataset Preprocessing

The first stage of the proposed system involves prepro-
cessing a structured healthcare dataset to prepare it for secure
encryption, hashing, and metadata extraction. The dataset,
typically stored in CSV format, contains fields such as pa-
tient_uid, PMID, file_path, title, patient, age, gender, and
relevant_articles.

Table II presents representative entries from the raw dataset
before preprocessing. The detailed preprocessing steps are
outlined below.

1) Missing value handling: Records with null or incom-
plete values in critical fields (patient_uid, age, gender)
are removed to ensure consistency and integrity throughout the
encryption and verification pipeline.

2) Duplicate removal: Duplicate rows are identified and re-
moved based on a composite key consisting of patient_uid
and PMID, which uniquely represent each patient case and
publication reference.

3) Age field normalization: The age field is often stored
as a nested structure (e.g., [[60.0, "year"]]). A regular
expression parser is used to extract the numeric value (e.g.,
60) and convert it to an integer format for uniformity.

4) JSON conversion: Each row of the cleaned dataset
is serialized into a standalone JSON object. These objects
serve as the input to the encryption module and include
metadata required for downstream file hashing and Merkle
proof construction.

5) File organization: Each JSON record is saved as
an individual file and assigned a filename based on its
patient_uid. These files are stored in a staging directory
for encryption and off-chain upload.

This preprocessing pipeline ensures the dataset is complete,
uniquely identifiable, and structurally standardized before it
enters the AES-256 encryption and Merkle tree computation
stages.

B. On-Chain Processing

The on-chain component of the proposed system is re-
sponsible for storing cryptographic summaries (Merkle roots)
of encrypted patient record batches to ensure tamperproof
verification. The process is carried out using smart contracts
deployed on the Ethereum Sepolia testnet and consists of the
following steps:

1) Network connection: The system connects to the
Ethereum Sepolia testnet using Infura as the remote Ethereum
node provider. The Web3.py library is employed to facilitate
interaction between the local Python environment and the
blockchain network.

2) Smart contract integration: A pre-deployed smart con-
tract, written in Solidity, is used to register and manage Merkle
roots corresponding to batches of encrypted patient records.
The contract contains methods for both storing and retrieving
root values associated with batch identifiers. The smart contract
behavior is formalized in Algorithm 1.

Algorithm 1 Merkle Root Commitment Smart Contract

1: State Variables:
2: owner : Address of the contract deployer
3: roots : Mapping from batch ID to Merkle root

4: Functions:

5: function CONSTRUCTOR

6: owner <— msg.sender

7: end function

8: function STOREMERKLEROOT(bI D, root)
9: if msg.sender # owner then

10: return "Unauthorized"

11: end if

12: if roots[bID] # null then

13: return "Already submitted"
14: end if

15: roots[bI D] < root

16: Emit MerkleRootStored(blD, root,

block.timestamp)
17: end function
18: function GETMERKLEROOT(bI D)
19: return roots[bl D]
20: end function

3) Merkle root storage: For each batch of 1,000 encrypted
files, a Merkle root is computed from their SHA-256 hashes.
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Fig. 1. System architecture of the proposed hybrid blockchain system.

TABLE II. SAMPLE INSTANCES FROM THE RAW PMC-PATIENTS DATASET

id | patient_uid PMID file_path title patient age gender | relevant_articles

0 7665777-1 33492400 | comm/PMC... Early Physic... This 60-year [[60.0, *year’]] M {’32320506:1, ...}
1 7665777-2 33492400 comm/PMC... Early Physic... A 39-year-c [[39.0, "year’]] M {732320506’:1, ...}
2 7665777-3 33492400 | comm/PMC... Early Physic... One week a [[57.0, *year’]] M {’32320506°:1, ...}
3 7665777-4 33492400 | comm/PMC... Early Physic... This 69-year [[69.0, *year’]] M {’32320506’:1, ...}
4 7665777-5 33492400 comm/PMC... Early Physic... This 57-year [[57.0, *year’]] M {’32320506’:1, ...}

The root, along with a unique batch identifier, is then sub-
mitted to the blockchain using the smart contract function
storeMerkleRoot (batchId, root). This ensures im-
mutability, auditability, and decentralized verification of the
batch integrity.

C. Off-Chain Storage and IPFS Upload

The off-chain component handles encryption, decentralized
file storage, hash computation, and metadata management. This
process is organized into six key steps:

1) Encrypt patient JSON files: Each patient’s data is se-
rialized into JSON format and encrypted using AES-256-
GCM [24], [25]. This encryption ensures both data confi-
dentiality and integrity. The full procedure of encryption is
presented in Algorithm 2.

2) Upload encrypted files to IPFS: The encrypted files are
uploaded to the InterPlanetary File System (IPES), a distributed
storage network. The returned content identifier (CID) for each
file is saved for future reference and verification.

3) Compute SHA-256 hash: The SHA-256 hash of each
encrypted file is computed. These hashes act as the leaf nodes
of the Merkle tree and serve as unique digital fingerprints of
the file content.

4) Batch file hashes: File hashes are grouped into batches
of 1,000 files per batch. Each batch is prepared independently
for Merkle tree construction.

5) Build Merkle tree: For each batch, a Merkle tree is
constructed using the SHA-256 hashes. The root of each tree is
computed and serves as a compact, verifiable summary of the
batch contents. The batched Merkle construction is detailed in
Algorithm 3.

6) Store off-chain metadata: For each file, corresponding
metadata including patient UID, CID, file hash, batch ID, and
Merkle proof is compiled and stored in a structured CSV
file. This metadata supports efficient file retrieval and integrity
verification. To verify the integrity of any file, its SHA-256
hash is recomputed and used along with the Merkle proof to
reconstruct the root hash. This reconstructed root is compared
with the on-chain Merkle root associated with the batch. If
the verification succeeds, the file is decrypted using the AES-
256 key. This ensures that only authenticated, untampered files
are accessed and utilized, thereby preserving both security and
data reliability.The procedure of decryption is presented in
Algorithm 4.

Algorithm 2 AES-256-GCM Encryption of Patient Records

Require: Patient record D; 256-bit AES key K; 12-byte nonce N
Ensure: Encrypted blob E containing {N, ciphertext, tag}
1: plaintext <— SERIALIZE(D)
cipher < AESGCMINIT(K, N)
(ciphertext,tag) < ENCRYPT(cipher, plaintext)
. E + N || ciphertext || tag
return £

beAlE R
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Algorithm 3 Merkle Root Construction from Encrypted Files

Require: Encrypted files F' = {f1,..., fn}; batch size B
Ensure: Merkle roots R = {r1,...,7;}
1: H+[]
2: for each f; € F do
3. h; < SHA256(f;)
4 APPEND h; to H
5: end for
6: Partition H into batches {B;} of size B; R « []
7
8
9

> List of SHA-256 hashes

: for each batch B; do
while |B;| is not a power of 2 do
: APPEND last(B;) to B;
10: end while
11: while |B;| > 1 do

> Pad with last hash

12: L+ ]

13: for k < 1 to |Bj| step 2 do

14: p « SHA256(B;[k] || B; [k+1])
15: APPEND p to L

16: end for

17: Bj« L

18: end while
19: APPEND Bj[1] to R
20: end forreturn R

> Merkle root for this batch

Algorithm 4 AES-256-GCM Decryption of Patient Records

Require: Encrypted blob E = N || C'|| T'; 256-bit key K; (optional)
AAD A

Ensure: Decrypted patient record D

1: if |E| < 28 then
2 return Error: malformed input
3: end if
4: N < E[0:12]
5: T + E[—16 ]
6
7
8

> 12-byte nonce
> 16-byte tag

: C « E[12: —16] > ciphertext
: cipher + AESGCMINIT(K, N)
: if A provided then

9: AESGCMUPDATEAAD (cipher, A)

10: end if

11: plaintert + DECRYPTANDVERIFY (cipher, C, T)

12: if verification fails then

13: return Error: authentication failed
14: end if

15: D + PARSEJSON(plaintext)

16: return D

IV. RESULTS AND EVALUATION

This section presents the experimental setup, evaluation
metrics, and performance analysis of the proposed hybrid
blockchain architecture. The system is evaluated for gas effi-
ciency, latency, throughput, scalability, and data security using
real-world datasets.

A. Experimental Setup

The proposed framework was implemented using Python
3.x and deployed in Google Colab for off-chain processing.
SHA-256 hashing and AES-256-GCM encryption were per-
formed using the hashlib and cryptography libraries,
respectively. IPFS Desktop and go-ipfs were used for
decentralized file storage, while Web3.py and Infura were
employed to interact with smart contracts on the Ethereum
Sepolia testnet. Smart contracts were developed using Solidity
and deployed via the Hardhat framework.

Experiments were conducted on a computing system
equipped with an Intel(R) Core(TM) i7-4510U CPU operating
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at 2.00 GHz (with a turbo frequency of 2.60 GHz) and 6 GB
of RAM, running on Windows 10 Pro (64-bit). The proposed
hybrid blockchain architecture was implemented and evaluated
using the Ethereum Sepolia testnet, accessed via the Infura
gateway. Encryption of patient records was performed using
the AES-256-GCM algorithm to ensure both data confiden-
tiality and integrity. The experimental dataset consisted of
39,936 encrypted patient records in JSON format, which were
processed and managed across the off-chain and on-chain
components of the system.

B. Evaluation Metrics

The performance of the proposed system is evaluated using
five core metrics: gas cost, latency, throughput, scalability,
and data security. Two of these metrics—latency and gas
consumption—are further analyzed mathematically to validate
the framework’s efficiency.

1) Latency modeling: The total system latency (L) is the
cumulative delay incurred during data preprocessing, storage,
and verification phases. The overall system latency (L) can
be modeled as the sum of initiation, confirmation, and off-
chain delays, as formulated in Eq. (1):

Ltotal = (tiniliation + tconﬁrmation)
+ (tpFs_upload + tIPES_retrieval )
+ (thash_compule + thash_compare) (1)

where, tinitiation and feonfirmation represent the time taken
for transaction submission and blockchain block confirmation,
respectively. tiprs_upload aNd t1PFS_retrieval COTTEspond to the de-
lays associated with decentralized storage operations in IPFS.
Finally, ?hash_compute and hash_compare denote the time required
for computing file hashes and verifying file integrity.

Empirical results show that blockchain transaction latency
(Lon-chain) averages around 14.3 seconds, while IPFS upload
and retrieval (Loft.chain) contribute an additional 2 to 4 seconds.
As shown in Eq. (2), the overall system latency is modeled as
the sum of on-chain and off-chain delays.

Ltolal ~ Lon—chain + Loff—chain (2)

Thus, the total latency for the hybrid blockchain—IPFS
framework is approximately in the range of 16 to 18 seconds,
validating the framework’s suitability for non-real-time health-
care applications.

2) Throughput modeling: Throughput (Tiysem) is defined
as the rate at which encrypted patient records are processed,
verified, and committed within the system. It is a critical
performance metric that reflects the system’s efficiency in han-
dling large-scale healthcare datasets. As expressed in Eq. (3),
the system throughput is defined as the ratio of the total
number of records to the overall system latency.

N, records
TZ%ystem = 7, (3)
total
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where, Niecords 1S the number of encrypted records in
a given batch and Ly, is the total latency (as defined in
Equation 1) required to process and verify the batch.

3) Gas cost matrices: In blockchain-based systems, partic-
ularly those utilizing Ethereum smart contracts, the transaction
execution cost is quantified through gas consumption. As
shown in Eq. (4), the gas cost in Ethereum is determined by
multiplying the gas used by the gas price.

Gas Cost (ETH) = Gas Used x Gas Price (ETH) (4)

where, Gas Used denotes the actual number of gas units
consumed during transaction execution, and Gas Price (ETH)
is the market price of one unit of gas, typically denominated in
Gwei (where 1 Gwei = 10~ ETH).As formulated in Eq. (5),
the gas cost in USD is obtained by multiplying the gas cost
in ETH with the current ETH price in USD.

Gas Cost (USD) = (Gas Used x Gas Price (ETH))
x ETH Price (USD) o)

C. Gas Cost Efficiency

In Ethereum-based smart contract systems, the cost of
executing a transaction is determined by gas consumption. The
proposed method significantly reduces gas costs by batching
encrypted file hashes into Merkle trees and storing only the
Merkle root on-chain. As defined in Eq. (6), the total gas
consumption is obtained by multiplying the number of batches
with the gas required per root.

Gtotal =N batches X Gper_root (6)

where,

®  Npaches = 40 is the number of file batches.

®  Gper oot = 30,000 gas is the average gas consumed
to store a single Merkle root on-chain.

Substituting into Eq. (6), the total gas cost becomes Eq. (7):

Growl = 40 x 30,000 = 1,200,000 gas )

TAs shown in Eq. (8), the total gas consumption for
processing all files individually is computed as:

G(individual = Niies X Gper_hash
= 39,936 x 20,000
= 798,720, 000 gas (8)

Using this value, the gas savings ratio is then derived in
Eq. (9) as:

1,200,000
=1—-——"7—— 0998 (9

Gtotal _
798,720,000

=1—
Ngas G

individual
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This demonstrates that the proposed system achieves a
remarkable gas savings ratio of approximately 0.9985, which
corresponds to a reduction of nearly 99.85% in gas cost
compared to executing all transactions, individually.

D. Gas Cost Analysis in Ethereum

The following parameters:

e Total gas used to store 40 Merkle roots: G =
1,200,000 gas

e  Gas price: 30 Gwei = 30 x 10~° ETH
e ETH/USD exchange rate: $3,000

The total ETH cost is computed as:

Costgry = 1,200,000 x 30 x 107°
= 0.036 ETH (10

Then, converting to USD:

Costysp = 0.036 x 3000 = $108 arn

The total ETH cost is computed, as shown in Eq. (10), and
then converted into USD using Eq. (11).

E. Latency Analysis

Fig. 2 illustrates the latency distribution across 40 batches
of encrypted patient records during off-chain processing and
on-chain Merkle root submission. Each batch consists of
approximately 1,000 encrypted files. The measured latency
includes file encryption, IPFS upload, SHA-256 hash com-
putation, Merkle tree construction, and Ethereum transaction
confirmation.

The latency across batches ranges from approximately 11.4
seconds to 28.1 seconds, with most batches falling within the
18 to 26 second interval. Variations are primarily attributed to
network fluctuation during IPFS storage and Ethereum block
confirmation delays. Notably, the final batch exhibits the lowest
latency due to a reduced number of files.

This consistent and bounded latency behavior demonstrates
the system’s ability to maintain predictable performance while
processing large-scale healthcare datasets, making it suitable
for near real-time and secure health data workflows.

F. Throughput Performance

Throughput is defined as the number of encrypted patient
records processed per second, including encryption, IPFS
upload, Merkle tree construction, and Merkle root submission.
Fig. 3 illustrates the throughput achieved across 40 batches
of encrypted files, each consisting of approximately 1,000
records.

As shown, throughput ranges from approximately 36 to 74
files per second, depending on batch size, system load, and
network conditions. Batches with fewer files (e.g., Batch 40)
naturally exhibit higher throughput due to reduced processing
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Fig. 2. Latency distribution for 40 batches of encrypted patient records.

time. The consistent throughput across most batches reflects
the stability of the proposed system under typical workloads
and validates its ability to handle large volumes of healthcare
data efficiently.

G. Off-Chain Scalability Analysis

To evaluate the system’s scalability in terms of storage
distribution, the off-chain encrypted files were grouped into
40 batches of approximately 1,000 files each. Fig. 4 illustrates
the estimated storage size per batch in megabytes (MB).

As shown, most batches maintain a consistent size of
approximately 194 to 195 MB, demonstrating balanced storage
allocation and predictable performance. The final batch, con-
taining fewer files, exhibits a slightly lower size, validating the
linear scaling behavior of the proposed system. This confirms
that batch-based off-chain file management is both scalable
and storage-efficient for large-scale healthcare datasets.

H. Security Assurance

AES-256-GCM encryption provided confidentiality and
integrity through its built-in authentication tag. In conjunction
with Merkle proof-based integrity verification, the system
offers a secure mechanism for handling sensitive healthcare
data in decentralized environments.

1. Comparative Analysis with Prior Works

Table III presents a comparative analysis of the pro-
posed hybrid blockchain system against three recent healthcare
blockchain frameworks: HealthBlock [21], Sadath et al. [11],
and Matani et al. [20]. The comparison focuses on ten key
criteria, including storage architecture, on-chain data strategy,
encryption, scalability, and verification methodology.

Unlike existing models that either store full metadata
on-chain or rely on non-scalable storage mechanisms, the
proposed system leverages off-chain IPFS storage and stores
only 40 Merkle roots on-chain—one for each batch of 1,000
encrypted patient records. This significantly reduces on-chain
data bloat while preserving verifiability through Merkle proofs.
The use of AES-256 encryption further ensures end-to-end

confidentiality and integrity, which is either partially imple-
mented or entirely missing in the compared systems.

In terms of scalability, the proposed framework supports
high-volume batch uploads and demonstrates high data scala-
bility. It adopts a public Ethereum testnet (Sepolia), offering
better decentralization and accessibility compared to permis-
sioned or hybrid networks like Fabric and sharded blockchains.
Furthermore, it incorporates a robust security model combin-
ing AES encryption, Merkle proof, and access control lists
(ACLs), making it well-suited for large-scale, privacy-sensitive
healthcare environments.

J. Comparative Results Across Datasets

The differences observed in comparative results across
datasets can be attributed to the architectural limitations of
existing frameworks. Approaches such as Sadath et al.[11] and
Matani et al.[20] perform adequately on smaller datasets but
exhibit reduced scalability at higher volumes due to limited
batching and lack of off-chain storage. HealthBlock empha-
sizes decentralization but incurs significant gas costs from on-
chain metadata storage, which becomes inefficient as data size
grows. In contrast, the proposed method consistently main-
tains scalability and efficiency across datasets by integrating
AES-256-GCM encryption, IPFS off-chain storage, and batch-
wise Merkle root anchoring. These design choices make the
algorithms particularly well-suited for structured and semi-
structured healthcare data, including electronic health records,
demographic information, prescriptions, and transaction logs.
For unstructured or multimedia data such as medical imaging
or continuous IoT sensor streams, additional preprocessing into
metadata or compact representations is necessary, as direct
storage may increase retrieval latency.

1) Latency comparison with existing methods: Fig. 5
presents a comparative latency analysis between the proposed
method and three existing blockchain-based healthcare frame-
works: Matani et al. [20], Sadath et al. [11], and Health-
Block [21]. The x-axis represents the number of transactions,
while the y-axis shows latency in seconds.

The proposed method consistently demonstrates the lowest
latency across all transaction scales (1,000 to 6,000), ranging
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Criteria Proposed System HealthBlock [21] Sadath et al. [11] Matani et al. [20]
Storage IPFS Remote (~180 MB/batch) OrbitDB + IPFS CouchDB Shard-distributed
On-Chain Data 40 Merkle Roots Per-file metadata Batch root Per-level TX hashes
Hashing SHA-256 SHA-256 SHA-256 SHA-256
Merkle Tree Yes (40 roots) No No Used in scoring phase
Encryption AES-256 Partial (OrbitDB/IPFS) No encryption No encryption
Batch Uploads 1,000 per batch No Yes

Implied via sharding

Blockchain Type

Public (Ethereum Sepolia)

Private (Fabric)

Private (Fabric)

Hybrid Sharded

Verification Type

Merkle proof

Log traceability

Proof of computation

Hash-linked consensus

Data Scalability

High

Low

Medium

Medium

Security Model

AES + Merkle + ACL

N/A

Metadata only

Hierarchical + scoring

TABLE IV. COMPARATIVE ANALYSIS OF GAS COST AND ARCHITECTURE: PROPOSED SYSTEM AGAINST PRIOR WORK

Criteria

Proposed System

MEDACCESSX [22]

AdaSec-Health [23]

Blockchain Type

Public (Ethereum Sepolia)

Private Ethereum Testnet

Public (Ethereum EIP-1559)

Storage Strategy

Off-chain IPFS + Merkle Root anchor-
ing

On-chain smart contracts for access
+ data metadata

IPFS + ECOA-optimized shard
blockchain

On-Chain Data

40 Merkle Roots for 39,936 files

User, access, data, and policy con-
tracts (UMC, ACC, etc.)

Dynamic block/meta parameters
via ECOA

Gas Optimization Method

Merkle batching, minimal on-chain state

Modular contracts but fixed logic

Shard tuning: validation degree,
block size, interval

Total Gas Used

1.2M gas for 39,936 files

3.1M gas for deployment (all con-
tracts)

Avg. marginal cost = 0.47 gas units
per transaction

Gas Cost in USD

$108 @ 30 Gwei, $3K/ETH

$154.65 (same rate)

Not directly priced, implied sav-
ings

Gas Savings (%)

99.85% vs. per-file storage

Not explicitly reported

Reported via performance gains
under ECOA

Smart Contract Complexity

Minimal (root commit/retrieve only)

High (RBAC, ABAC logic, events)

Medium to high (governance, con-
sensus, voting)

Batch Handling

1,000 per batch

Per access/role

Per 4-block shard optimization

Security Model

AES-256-GCM + Merkle + ACL

Access logs
ABAC/RBAC

on-chain +

ECOA-based scoring + CP-ABE +
reputation

Scalability Focus

Gas-efficient IPFS and Merkle design

Functional control granularity

Adaptive shard configuration for
forks/delay

from 1.8 to 3.2 seconds. This efficiency is attributed to the
use of Merkle root batching, AES-256-GCM encryption, and
lightweight on-chain commitment. In contrast, the methods

by Matani et al.[20] and Sadath et al.[11] exhibit signif-
icantly higher and more variable latency, primarily due to
per-transaction or per-batch on-chain data handling without
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Fig. 4. Off-chain scalability analysis: estimated file size distribution across
40 batches.

optimized batching. HealthBlock performs moderately but
lacks Merkle-based verification and full encryption, leading
to comparatively higher overhead.

This result confirms that the proposed system is well-suited
for secure healthcare applications where low-latency process-
ing is essential for real-time or near-real-time interactions.

Latency Comparison of Healthcare Blockchain Methods
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Fig. 5. Latency comparison of the proposed hybrid blockchain system with
existing methods across increasing transaction volumes.

2) Throughput comparison with prior methods: Fig. 6
illustrates the throughput performance of the proposed method
compared to existing blockchain-based healthcare systems
developed by Matani et al. [20], Sadath et al. [11], and
HealthBlock [21]. Throughput is measured as the number of
transactions successfully processed per second across increas-
ing transaction volumes.

The proposed method demonstrates superior scalability,
with throughput values rising linearly from approximately
560 to over 1,850 transactions per second, as the number of
transactions increases from 1,000 to 6,000. This is attributed to
the efficient batch processing design, lightweight Merkle root
anchoring, and minimal on-chain data overhead. In contrast,
existing approaches such as Matani et al. and Sadath et al.
show relatively static or non-linear throughput behavior due to
more extensive on-chain storage and lack of optimization in
data handling.

HealthBlock performs moderately well but exhibits incon-

Vol. 16, No. 8, 2025

sistent throughput beyond 4,000 transactions. The consistent
and scalable performance of the proposed system confirms its
suitability for high-throughput healthcare data environments.

Throughput Comparison of Healthcare Blockchain Methods
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Fig. 6. Throughput comparison of the proposed system with existing
methods under varying transaction volumes.

3) Gas cost comparison with prior healthcare blockchain
frameworks: Table IV provides a detailed comparative analysis
of the proposed hybrid blockchain system against two no-
table healthcare blockchain frameworks—MEDACCESSX and
AdaSec-Health. The evaluation focuses on gas optimization
techniques, contract architecture, batch processing strategy,
and scalability models.

K. Influence of Parameters

The influence of algorithmic parameters has been system-
atically examined to highlight their role in the performance
of the proposed architecture. The batch size has a direct
impact on gas optimization: larger batches significantly re-
duce transaction costs by minimizing the number of on-chain
commitments, although they may introduce a slight increase
in latency during Merkle root computation. The AES-256-
GCM encryption parameters ensure robust data security while
imposing only negligible overhead on processing time, making
them suitable for large-scale deployments. In contrast, IPFS
upload and retrieval times contribute substantially to off-chain
latency, as formalized in Eq. (1) and Eq. (2). The gas price
in the Ethereum network strongly influences the overall de-
ployment cost; however, the batching mechanism employed in
this study demonstrates resilience against network congestion
and fluctuating gas conditions. Finally, the Merkle tree depth,
inherently determined by batch size, affects proof generation
and verification complexity. Collectively, these observations
underscore the necessity of careful parameter tuning to achieve
a balanced trade-off among scalability, security, and efficiency
in real-world healthcare data management scenarios.

V. CONCLUSION

The findings demonstrate that the proposed hybrid
blockchain framework achieves a practical balance between
privacy preservation, scalability, and cost efficiency in health-
care data management. By integrating AES-256-GCM encryp-
tion, IPFS-based off-chain storage, and Merkle root anchoring
on Ethereum, the system ensures end-to-end confidentiality and
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verifiable integrity while reducing gas consumption by nearly
99.85% compared to conventional on-chain storage.

An important observation is that off-chain operations—
particularly IPFS upload and retrieval—dominate overall sys-
tem latency. This suggests that optimizing distributed storage
through improved node configurations, caching strategies, or
integration with Layer-2 storage solutions may yield greater
performance benefits than adjusting blockchain parameters
alone.

In comparison with existing healthcare blockchain frame-
works, the proposed design introduces novelty by simulta-
neously ensuring confidentiality, integrity, and scalability in
a cost-effective manner. This positions the framework as a
practical and viable solution for strengthening trust, security,
and reliability in digital healthcare ecosystems.

Future work will extend this study by deploying the
framework in real-world blockchain environments, integrating
decentralized identity mechanisms for stronger patient-centric
control, and implementing adaptive access control for secure
multi-stakeholder sharing. Additional directions include ex-
ploring Layer-2 scalability enhancements, supporting unstruc-
tured healthcare data such as medical imaging and IoT streams,
and enabling cross-chain interoperability to facilitate secure
record exchange across healthcare institutions.
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