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Abstract—Accurate object detection and classification are
paramount in precision agriculture for assessing ripeness stages
and optimizing yield, particularly for high-value crops like toma-
toes. Traditional manual inspection methods are laborious, time-
consuming, and error-prone. Furthermore, existing deep learning
models often struggle with real-world agricultural challenges such
as varying lighting, occlusions from foliage or other fruits, and
dense clustering of small objects. To address these limitations
and enhance tomato production efficiency and quality in diverse
agricultural conditions, this study introduces YOLOv8s-Swin, an
advanced object detection model. YOLOv8s-Swin integrates the
powerful YOLOv8s architecture with a Swin Transformer module
(C3STR) to capture global and local contextual information,
crucial for robust small object detection. It also incorporates Fo-
cus, Depthwise Convolution (DWconv), Spatial Pyramid Pooling
with Contextual Spatial Pyramid Convolution (SPPCSPC), and
C2 modules for preserving fine details, reducing computational
overhead, enhancing multi-scale feature fusion, and improving
high-level semantic feature extraction, respectively. The Wise In-
tersection over Union (WIoU) loss function is adopted to enhance
localization and address convergence issues. Evaluated on a com-
prehensive tomato image dataset, YOLOv8s-Swin demonstrated
superior performance with a mean Average Precision (mAP@0.5)
of 88.3%, precision of 84.4%, recall of 79.9%, and an F1-Score
of 0.821. This significantly surpasses the base YOLOv8s (84.7%
mAP@0.5, 0.795 F1-Score) and other models like Faster R-CNN,
SSD, YOLOv4, YOLOv5s, and YOLOv7, all under identical
conditions. Maintaining a competitive inference speed of 166.67
FPS, YOLOv8s-Swin offers a robust and efficient solution for
AI-driven crop management and sustainable food production.
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I. INTRODUCTION

The agricultural sector is undergoing a profound trans-
formation driven by advancements in computer vision (CV)
and deep learning algorithms. Accurate object detection, a
key facet of CV, plays a pivotal role in modern precision
agriculture, enabling automated tasks such as crop variety
identification and ripeness assessment. For high-value crops
like tomatoes, optimizing yield and quality within dynamic
agricultural environments necessitates precise and timely de-
tection and classification of their ripeness levels [1]. Traditional
manual inspection methods are laborious, time-consuming,
and error-prone. Convolutional Neural Networks (CNNs) have
spearheaded significant progress in this domain, providing
robust solutions for extracting hierarchical visual features from
images [2]. Among the prominent deep learning architectures,
the You Only Look Once (YOLO) series has revolutionized
object detection by achieving remarkable speed and accuracy

in a single forward pass [3]. Each iteration of the YOLO ar-
chitecture strives to push the boundaries of both computational
efficiency and detection performance. This study focuses on
leveraging and enhancing the YOLOv8 architecture, known
for its balance of speed and precision, particularly in detecting
smaller objects [4].

Despite the efficacy of current deep learning models, chal-
lenges persist in real-world agricultural settings. Factors such
as varying lighting conditions, occlusions from foliage or other
fruits, and dense clustering can significantly impact detection
accuracy [5]. Small objects, in particular, often lack sufficient
semantic information due to limited pixels, making their
accurate detection difficult [6]. To address these challenges,
researchers have increasingly explored the integration of atten-
tion mechanisms and advanced architectural components into
object detection models. Attention mechanisms allow models
to selectively focus on the most relevant features in an image,
improving feature representation and reducing the influence of
irrelevant background noise [7], [8].

Inspired by the success of transformer-based architectures
in capturing long-range dependencies and global contextual
information in natural language processing and, more recently,
in computer vision [9], this study proposes YOLOv8s-Swin, an
enhanced object detection model for tomato ripeness detection
in smart agriculture. Previous versions of YOLO, including
YOLOv4 and YOLOv5s, have shown strong performance in
object detection but face significant challenges when it comes
to detecting small, occluded, or densely clustered objects
in complex environments [25]. These models often struggle
with contextual awareness, which is critical for distinguish-
ing between closely packed fruits or handling occlusions
from foliage. While YOLOv8s introduced improvements in
detection speed and accuracy, particularly for small object
detection, it still shares similar limitations to its predecessors.
The base YOLOv8s model’s focus on local feature extraction
and its relatively shallow architectural layers hinder its ability
to capture broader contextual information needed for accu-
rate detection in agricultural environments [26]. The model’s
performance drops when faced with the dense clustering
of tomatoes or partial occlusions by other fruits or leaves.
To address these issues, YOLOv8s-Swin integrates the Swin
Transformer module, which allows for better capture of both
local and global context through its self-attention mechanism.
This integration, along with additional architectural improve-
ments such as the Focus, Depthwise Convolution (DWconv),
SPPCSPC, and C2 modules, enhances the model’s ability to
handle small and occluded objects while improving feature
extraction, computational efficiency, and multi-scale feature
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fusion. Thus, YOLOv8s-Swin overcomes the limitations of the
base YOLOv8s model, providing a more robust and efficient
solution for detecting tomatoes at various ripeness stages under
diverse agricultural conditions.

The primary contributions of this study are:

• Development of YOLOv8s-Swin, an enhanced ar-
chitecture for robust tomato ripeness detection. This
model integrates the Swin Transformer (C3STR), Fo-
cus, DWconv, SPPCSPC, C2 modules, and the WIoU
loss function, optimizing feature extraction and local-
ization for challenging agricultural scenes.

• Demonstration of superior performance in classifying
tomato ripeness across diverse agricultural conditions.
YOLOv8s-Swin achieved an 88.3% mAP@0.5, sig-
nificantly outperforming the base YOLOv8s (84.7%)
and other models, effectively handling occlusions and
lighting variations.

• Achieving high accuracy while maintaining real-
time inference capabilities. With an FPS of 166.67,
YOLOv8s-Swin offers a practical and efficient solu-
tion for AI-driven crop management and sustainable
food production.

The remainder of this study is organized as follows: Section
II provides a comprehensive review of relevant literature on
object detection, with a focus on advanced architectures. Sec-
tion III details the materials and methods used, including data
acquisition, preprocessing, and the architectural specifics of the
proposed YOLOv8s-Swin model, as well as the experimen-
tal setup. Section IV presents and discusses the quantitative
and qualitative results, including a comparative analysis with
baseline models. Finally, Section V concludes the study by
summarizing key findings and outlining directions for future
research.

II. RELATED WORK

Object detection has been a cornerstone of computer vision
for decades. Early approaches, such as two-stage detectors
like R-CNN [10], Fast R-CNN [11], and Faster R-CNN [12],
achieved high accuracy by first generating region proposals
and then classifying and refining them. While accurate, these
methods often struggled with real-time applications due to their
computational intensity.

The advent of one-stage detectors, notably the YOLO (You
Only Look Once) series, marked a significant shift by perform-
ing object localization and classification in a single forward
pass, dramatically increasing detection speed [3]. Subsequent
YOLO versions, including YOLOv2 [13], YOLOv3 [14],
YOLOv5 [15], YOLOv7 [16], and YOLOv8 [4], have contin-
uously pushed the boundaries of speed and accuracy, making
them highly suitable for real-time applications. YOLOv8, in
particular, introduced advancements in its backbone network
and decoupled heads, enhancing its performance, especially
for smaller objects.

Small object detection remains a challenging problem due
to the limited pixel information available for feature extraction
and the lack of sufficient contextual background [6], [27]. To
address this, various strategies have been proposed. Attention

mechanisms have also gained prominence, allowing models
to focus on important features and suppress irrelevant ones,
thereby improving representation [7], [8]. Channel attention
(e.g., Squeeze-and-Excitation Networks [17]) and spatial at-
tention (e.g., Convolutional Block Attention Module (CBAM)
[18]) are widely used variants. Recent works, such as those
by Chien et al. [19] and Najihah Muhamad Zamri et al.
[20], have demonstrated the benefits of integrating attention
mechanisms into YOLO models for improved detection in
various applications.

The introduction of Transformer architectures, initially
successful in natural language processing, has significantly
impacted computer vision. The Swin Transformer [9] is par-
ticularly relevant for its hierarchical vision transformer using
shifted windows, enabling it to capture global and local contex-
tual information efficiently while maintaining computational
feasibility[28]. This makes it a strong candidate for enhancing
object detection models, especially for challenging scenarios
like small object detection in complex environments. Shi et al.
[6] successfully integrated a Swin Transformer module into a
YOLOv8 network (STF-YOLO) for small object detection of
tea buds, demonstrating significant improvements in accuracy.

In the context of crop ripeness detection, several studies
have leveraged YOLO-based models. Li et al. [21] used
YOLOv5 for tomato maturity detection in greenhouses, achiev-
ing high precision but facing potential limitations in outdoor
conditions. Li et al. [22] proposed MHSA-YOLOv8 for tomato
grading and counting, which performed well in complex en-
vironments but struggled with severe occlusion. Lightweight
approaches like those by Zeng et al. [23] and Su et al. [24]
emphasized real-time performance but sometimes faltered with
dense small targets. While these studies show the promise of
YOLO in agriculture, the specific challenges of dense fruit
clusters, occlusions, and varied lighting in tomato detection
within smart agriculture, combined with the need for robust
small object detection, highlight the necessity for further ar-
chitectural enhancements. Our proposed YOLOv8s-Swin aims
to bridge this gap by combining the strengths of YOLOv8s
with the contextual awareness of the Swin Transformer and
other efficient modules to improve tomato ripeness detection.

III. MATERIALS AND METHODS

This section details the proposed YOLOv8s-Swin model,
its integration of key components, and the comprehensive
methodological workflow for enhanced tomato ripeness detec-
tion in smart agriculture.

A. Data Acquisition

For this research, the Laboro Tomato dataset (https://
github.com/laboroai/LaboroTomato) was utilized. This dataset
contains images of tomatoes at three ripeness stages (fully-
ripened, half-ripened, and green), reflecting diverse agricultural
conditions and camera variations. As shown in Fig. 1, fully
ripened tomatoes exhibit >90% red, half-ripened 30-89% red,
and green 0-30% red coloration, crucial for accurate ripeness
classification.
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B. Data Pre-processing and Preparation

Raw images underwent rigorous preprocessing: auto-
orientation, uniform resizing to 640×640 pixels, class modifi-
cation (see Table I), and null annotation filtering. The dataset
was split into training (92%, 2001 images), validation (4%,
86 images), and test (4%, 87 images) sets. Extensive data
augmentation via Roboflow (see Fig. 2) was applied, including
random flips, rotations, shears, blur, and noise, to simulate
diverse agricultural conditions and enhance generalization.

TABLE I. REMAPPING OF ORIGINAL CLASSES TO SIMPLIFIED CLASSES
IN THE DATASET

Original Class Override Included

b fully ripened fully ripened Yes

b green green Yes

b half ripened half ripened Yes

l fully ripened fully ripened Yes

l green green Yes

l half ripened half ripened Yes

Fig. 1. Dataset class.

Fig. 2. Data augmentation techniques applied to tomato images; (a) Original
image, (b) Vertical Flip, (c) Shearing of X: -9°, (d) Rotated 7° Right, (e)

Added Blur (1.5px), (f) Added Noise.

C. Proposed Method: YOLOv8s-Swin Architecture

YOLOv8s-Swin is an advanced object detection architec-
ture building on YOLOv8s, integrating a Swin Transformer
module and other components. This enhances focus and con-
textual information capture, improving accuracy for small and
occluded objects. The architecture follows a typical Backbone,
Neck, and Head structure, with modifications to feature pro-
cessing (see Fig. 3).

1) Swin Transformer Module (C3STR): The core inno-
vation is the C3STR module (see Fig. 4), a Swin Trans-
former integration that mitigates feature loss in deep networks
by establishing global dependencies via self-attention [9].
Integrated into the YOLOv8s backbone and neck, C3STR
enhances semantic information and representation for small
objects. It comprises Window/Shifted Window Multi-Headed
Self-Attention (W-MSA/SW-MSA) and Multi-Layer Percep-
tron (MLP) with internal residual connections. Its self-attention
mechanism is:

Attention(Q,K, V ) = SoftMax
(
QKT

√
d

+B

)
V (1)

C3STR controls computations within local windows, en-
abling cross-window information interaction while reducing
complexity, allowing adaptive feature interaction and capturing
crucial contextual information.

2) Additional Modules: Focus, DWconv, SPPCSPC, and
C2: To optimize YOLOv8s-Swin, efficient modules are in-
corporated:

• Focus Module: Placed at the input, it increases channel
dimensions while reducing spatial ones, preserving
fine details for small objects.

• Depthwise Convolution (DWconv): Performs indepen-
dent channel convolutions, reducing parameters and
computation while maintaining high performance.

• Spatial Pyramid Pooling with Contextual Spatial Pyra-
mid Convolution (SPPCSPC): Captures multi-scale
feature information efficiently via pooling and con-
volution.

• C2 Module: A refined C3 version for enhanced high-
level semantic feature extraction with improved mem-
ory and inference speed.

These modules, integrated into the YOLOv8s backbone and
neck, enable accurate tomato ripeness detection in complex
agricultural conditions.

3) Loss Function (WIoU): To address YOLOv8’s conver-
gence issues and enhance localization, the Wise Intersection
over Union (WIoU) loss function is adopted. Unlike traditional
IoU, WIoU considers positional relationships and geometric
factors, mitigating the negative impact of low-quality examples
and reducing centroid distance emphasis for well-overlapping
frames. The WIoUv1 model’s calculation is:

LWIOU ·wl = RWIoULIOU (2)

RWIoU = exp

(
(x− xgl)

2 + (y − ygl)
2

(W 2
g +H2

g )
∗

)
(3)

LIOU = 1− IOU = 1− WiHi

Su
(4)

Here, RWIoU ∈ [1, e) amplifies LIoU for normal anchor
frames but reduces it for high-quality ones, focusing learning
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Fig. 3. The architecture of YOLOv8s-Swin for tomato ripeness detection.

on better examples for improved generalization and stability.
Su is the union area.

D. Experimental Setup

Experiments were conducted on an NVIDIA GeForce RTX
3060 GPU (16 GB VRAM) with an AMD Ryzen 5 processor,
running Ubuntu 24.04 LTS and PyTorch 2.3.0. Training used
640×640 pixel images with a batch size of 8. Key hyper-
parameters included: 150 epochs, initial learning rate of 0.01,
momentum 0.937, weight decay 0.0005, and data augmentation
parameters (mixup 0.15, copy paste 0.3).

IV. RESULTS AND DISCUSSION

A. Evaluation Metrics

The performance of the YOLOv8s-Swin model for tomato
ripeness detection was quantitatively assessed using several
standard object detection metrics:

1) Precision (P): The proportion of correctly identified
positive samples among all detected positives. The precision
metric is calculated using the following formula:

Precision =
TP

TP + FP
(5)

In this context, TP refers to true positives, representing
instances that were correctly identified as positive. Conversely,
FP refers to false positives, which are instances incorrectly
classified as positive. Attaining a higher precision value sig-
nifies a reduction in false alarms within the detection process,
leading to a more reliable model.

2) Recall (R): The ratio of correctly identified positive
samples to the total number of actual positive samples. The
recall metric is defined mathematically as:

Recall =
TP

TP + FN
(6)
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Fig. 4. C3STR architecture diagram.

Here, TP corresponds to true positives, referring to cor-
rectly identified positive cases. FN , on the other hand, stands
for false negatives, which are genuine positive instances that
the model overlooked. Achieving a higher recall value indi-
cates a reduction in missed relevant instances, thereby ensuring
a more complete detection capability.

3) mAP (mean average precision): Calculated at an In-
tersection over Union (IoU) threshold of 0.5 (mAP@0.5)
and also across multiple IoU thresholds from 0.5 to 0.95
(mAP@0.5:0.95). It represents the average of the Average
Precision (AP) for all classes, derived from the area under
the precision-recall curve.

4) F1-Score: The harmonic mean of precision and recall,
providing a balanced measure of the model’s accuracy.

5) FPS (Frames Per Second): Measures the number of
images the model can process per second at a batch size of 1,
indicating the model’s detection speed.

B. Performance of YOLOv8s-Swin

The proposed YOLOv8s-Swin model was rigorously eval-
uated on the Laboro Tomato dataset, encompassing fully ripe,
partially ripe, and unripe tomatoes in diverse agricultural
environments. The model demonstrated strong performance
across all evaluation metrics, showcasing its effectiveness in
accurately detecting and classifying tomato ripeness stages.

Our YOLOv8s-Swin model achieved an impressive
mAP@0.5 of 88.3%, a precision of 84.4%, and a recall of
79.9%. The F1-Score for the model was 0.821. For indi-
vidual classes, the precision-recall curve (see Fig. 5) high-
lights mAP@0.5 values of 0.893 for ‘fully ripened’, 0.882 for
‘green’, and 0.873 for ‘half ripened’ tomatoes, indicating con-
sistent performance across ripeness stages. The F1-Confidence
Curve (see Fig. 6) shows an optimal F1-Score of 0.84 for all
classes at a confidence threshold of 0.456.

Fig. 5. Precision-recall curve of proposed YOLOv8s-Swin.

Fig. 6. F1-Confidence curve of proposed YOLOv8s-Swin.

The confusion matrix (see Fig. 7) further confirms the
model’s strong classification ability. It shows high true pos-
itive counts for ‘fully ripened’ (144), ‘green’ (476), and
‘half ripened’ (134) predictions, indicating a low rate of
misclassification. Furthermore, the training and validation loss
curves for bounding box regression, classification, and the
overall loss (see Fig. 8) exhibit a consistent and steady decline
over training epochs, demonstrating effective learning and
robust generalization to unseen data.

C. Comparative Performance Analysis

To thoroughly assess the efficacy and advantages of our
proposed YOLOv8s-Swin algorithm, a comprehensive compar-
ative analysis was conducted against several prominent object
detection models. These models include traditional two-stage
detectors like Faster R-CNN, one-stage detectors such as SSD,
and various iterations of the YOLO series, namely YOLOv4,
YOLOv5s, YOLOv7, and the base YOLOv8s model. Crucially,
all comparative experiments were performed under strictly
controlled and identical conditions, utilizing the same hardware
setup (NVIDIA GeForce RTX 3060 GPU), the Laboro Tomato
dataset, consistent data augmentation methodologies, and a
consistent training regimen of 150 epochs, with the optimal
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Fig. 7. Confusion matrix of proposed YOLOv8s-Swin.

Fig. 8. Visualization of different loss curves of proposed YOLOv8s-Swin model over epochs.

results selected for evaluation.

As presented in Table II, the proposed YOLOv8s-Swin
model demonstrates significant improvements across key per-
formance metrics, particularly when directly compared to
its base counterpart, YOLOv8s. YOLOv8s-Swin achieved a
notably higher mAP@0.5 of 88.3% compared to the base
YOLOv8s’s 84.7%, representing a substantial improvement
in overall detection accuracy under identical experimental
settings. Furthermore, YOLOv8s-Swin’s precision is 84.4%,
an increase from YOLOv8s’s 78.3%, indicating its superior
accuracy in identifying true positive instances. The recall for
YOLOv8s-Swin also saw an improvement, reaching 79.9%

compared to YOLOv8s’s 78.2%, meaning it is more effective
at capturing a higher proportion of actual positive cases.
The F1-Score, a crucial balanced measure of precision and
recall, also significantly improved from 0.795 for YOLOv8s
to 0.821 for YOLOv8s-Swin. These advancements in detection
accuracy, precision, recall, and F1-Score are a direct result of
the integrated architectural enhancements.

The superior performance of YOLOv8s-Swin is primarily
due to the strategic integration of several advanced modules
into the YOLOv8 framework. Specifically, the Swin Trans-
former module significantly enhances the model’s ability to
capture global and local contextual information, which is
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TABLE II. COMPREHENSIVE MODEL COMPARISON FOR TOMATO RIPENESS DETECTION

Network P (%) R (%) mAP@0.5 (%) F1-Score FPS

Faster R-CNN 82.0 78.0 86.0 0.780 10

SSD 78.6 75.0 78.0 0.740 40

YOLOv4 74.0 70.0 76.0 0.719 55

YOLOv5s 78.0 73.5 82.0 0.762 110

YOLOv7 78.3 75.0 83.0 0.779 120

YOLOv8s 78.3 78.2 84.7 0.795 160

YOLOv8s-Swin (Proposed) 84.4 79.9 88.3 0.821 166.67

crucial for accurately detecting small and partially occluded
tomatoes in complex agricultural scenes. Additionally, the in-
clusion of the Focus module aids in preserving fine-grained de-
tails vital for small objects, Depthwise Convolution (DWconv)
reduces computational overhead while maintaining feature
richness, SPPCSPC enhances multi-scale feature fusion, and
the C2 module improves high-level semantic feature extraction.
These combined modules, along with the robust WIoU loss
function, ensure that critical information is effectively utilized
during the learning process, leading to more reliable and
robust feature representations, particularly beneficial for ac-
curately recognizing subtle differences between various stages
of tomato maturity.

Beyond the direct comparison with YOLOv8s, YOLOv8s-
Swin exhibits remarkable performance against all other models
tested under identical experimental settings. It achieves the
highest mAP@0.5 of 88.3%, significantly surpassing tradi-
tional two-stage detectors like Faster R-CNN (86.0%) and SSD
(78.0%), as well as earlier YOLO iterations such as YOLOv4
(76.0%), YOLOv5s (82.0%), and YOLOv7 (85.0%). The F1-
Score of 0.821 is also the highest among all compared models,
underscoring its superior balance between precision and recall
for robust real-world performance.

In terms of detection speed, YOLOv8s-Swin maintains a
highly competitive FPS rate of 166.67, which is marginally
higher than the base YOLOv8s model’s 160 FPS. This satisfies
the stringent requirements for real-time detection in agricul-
tural applications. In contrast, older models like Faster R-
CNN (10 FPS) and SSD (40 FPS) fall significantly short
of real-time capabilities. This critical balance between high
accuracy and efficient processing makes YOLOv8s-Swin a
highly universal and practical solution for smart agriculture,
particularly suitable for deployment on edge devices with
limited processing capabilities without substantial hardware
investments.

D. Qualitative Analysis

To visually demonstrate the effectiveness of the proposed
YOLOv8s-Swin model, Fig. 9 presents several detection ex-
amples across various agricultural conditions, including in-
stances with varying lighting, occlusions, and different ripeness
stages. The model consistently exhibits strong performance
in identifying and classifying tomatoes at their respective
ripeness levels. For instance, Fig. 9(a), Fig. 9(b), and Fig. 9(f)
clearly illustrate the model’s capability to accurately detect
and categorize green (unripe) tomatoes, even when they are
densely clustered or partially obscured by surrounding foliage.

This highlights the model’s resilience to common real-world
challenges in agricultural settings.

Furthermore, Fig. 9(c) and Fig. 9(e) showcase the precise
detection of fully-ripened tomatoes, with the bounding boxes
and associated confidence scores, indicating a high degree
of accuracy in classification. This performance is crucial for
timely harvesting and yield optimization. Fig. 9(d) specifically
demonstrates the model’s nuanced ability to differentiate be-
tween half-ripened and fully-ripened tomatoes, underscoring
its capacity to discern subtle visual cues that distinguish vari-
ous stages of maturity. Collectively, these qualitative results vi-
sually confirm the robustness and practical applicability of the
YOLOv8s-Swin model in diverse and challenging agricultural
environments, reinforcing its strong quantitative performance
metrics through accurate bounding box localization and precise
ripeness classification under real-world conditions.

E. Discussion

Accurate detection and classification of crop ripeness
stages are indispensable for informed decision-making and
optimizing yield management in precision agriculture. Our
proposed YOLOv8s-Swin model significantly advances the
state-of-the-art for tomato ripeness detection, demonstrating
a new benchmark for object detection and classification in
agricultural applications, specifically for tomatoes.

The superior performance of YOLOv8s-Swin, particularly
its notably higher mAP@0.5, precision, recall, and F1-Score
compared to baseline models like YOLOv8s and other promi-
nent architectures, is primarily attributable to its innovative
architectural enhancements. The strategic integration of the
Swin Transformer module (C3STR) proved crucial, allowing
the model to better capture global and local contextual in-
formation. This enhanced contextual awareness is particularly
beneficial for accurately detecting small and partially occluded
tomatoes in complex agricultural scenes. Furthermore, the
inclusion of the Focus module aids in preserving fine-grained
details, while Depthwise Convolution (DWconv) reduces com-
putational overhead without sacrificing feature richness. The
SPPCSPC module enhances multi-scale feature fusion, and the
C2 module improves high-level semantic feature extraction by
being a refined version of C3. These combined architectural
modifications, coupled with the robust Wise Intersection over
Union (WIoU) loss function, which mitigates the negative
impact of low-quality examples and enhances localization,
ensure that critical information is effectively utilized during the
learning process. This leads to more reliable and robust feature
representations, particularly beneficial for accurately recog-
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Fig. 9. YOLOv8s-Swin’s robust detection capabilities across diverse smart agriculture conditions, including: (a) fruits occluded by other fruits, (b) fruits
occluded by foliage, (c) combined occlusion by foliage and fruits, (d) detection in high-density fruit environments, (e) accurate detection in densely packed

fruits, and (f) high-density fruit clustering detection.

nizing subtle differences between various stages of tomato
maturity.

Beyond its significant accuracy improvements, YOLOv8s-
Swin maintains a highly competitive inference speed of 166.67
FPS, which is practical for real-time applications in agri-
culture. This speed, combined with the model’s moderate
computational requirements, facilitates efficient deployment on
edge devices commonly found in agricultural settings, thereby
minimizing the need for substantial hardware investments. The
model’s adaptability also suggests potential for customization
across various platforms, enhancing scalability for diverse
agricultural operations.

Despite the high accuracy achieved, certain challenges
persist. The model may still struggle with severely occluded
tomatoes or distinguishing them from background foliage in
extremely dense clusters. Future research will focus on several
key areas to build upon these findings. Integrating multi-modal
data sources, such as infrared or depth images, could sig-
nificantly enhance the model’s robustness against challenging
occlusions and lighting variations. Furthermore, exploring ad-
vanced optimization techniques, including neural architecture
search, could lead to even more tailored and efficient designs
for this specific task. Deployment-specific optimizations, such
as quantization-aware training, will be pursued to further
reduce computational requirements, enabling broader and more
efficient use in resource-constrained environments.

V. CONCLUSION

This study successfully introduced YOLOv8s-Swin, an
enhanced object detection model for robust tomato ripeness de-
tection within smart agriculture. A primary contribution lies in
the innovative integration of the Swin Transformer module, Fo-
cus, Depthwise Convolution (DWconv), Spatial Pyramid Pool-
ing with Contextual Spatial Pyramid Convolution (SPPCSPC),
and C2 modules into the YOLOv8s framework. These ar-
chitectural enhancements proved highly effective, significantly
improving the model’s ability to detect small, occluded objects
and handle complex agricultural environments. The model
achieved a mean Average Precision (mAP@0.5) of 88.3%,
precision of 84.4%, recall of 79.9%, and an F1-Score of 0.821,
surpassing the base YOLOv8s (84.7% mAP@0.5, 78.3% pre-
cision, 78.2% recall, 0.795 F1-Score) and other models like
Faster R-CNN, SSD, YOLOv4, YOLOv5s, and YOLOv7, all
trained under identical conditions. These improvements are
attributed to the model’s ability to capture both local and global
context, addressing the limitations of previous YOLO versions,
which struggled with occlusions, lighting variations, and dense
clustering of objects. Additionally, YOLOv8s-Swin maintains
a competitive inference speed of 166.67 FPS, demonstrating
its applicability in real-time applications for AI-driven crop
management and sustainable food production. While the model
has demonstrated impressive performance, future work will
focus on optimizing it for deployment in more resource-
constrained environments, integrating multimodal data sources
like infrared and depth sensing to further enhance accuracy
under challenging conditions, and exploring the applicability
of the model to other crops. The advancements presented

www.ijacsa.thesai.org 1013 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 8, 2025

here significantly contribute to the field of smart agriculture
by providing an efficient and scalable solution for detecting
ripeness stages in tomatoes, paving the way for future research
and development in AI-driven agricultural automation.
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