
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

92 | P a g e
www.ijacsa.thesai.org

Reliability Risk Assessment Approaches in Software

Engineering: A Review Structured by Software

Development LifeCycle (SDLC) Phases and

Reliable Sub-Characteristics

Lehka Subramanium, Saadah Hassan, Mohd. Hafeez Osman, Hazura Zulzalil

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia

Abstract—Reliability risk is a critical concern in software

development, as failures can result in system downtime, degraded

performance, data integrity issues, financial losses and loss of user

trust. The increasing complexity of modern systems, driven by

dynamic workloads, distributed architecture, and unpredictable

interactions, amplifies these risks. In regulated industries like

healthcare, finance, and transportation, software reliability

directly affects safety, compliance and operational continuity,

making robust risk assessment essential. Despite recent

development and improvement on numerous reliability risk

assessment techniques, system failures continue to be potent,

creating concerns on scope, applicability and limitations. This

paper will dive deep into evaluating recent methods, the

advantages and disadvantages of the application itself, while

critically assessing the research gaps. Here, the techniques are

categorized across the software development lifecycle (SDLC), to

bridge methods to phase-specific reliability needs. Consequently,

the paper addresses methodological synthesis of recent practices,

identifies segments where existing techniques fail to live up to

expectations, and summarize future research directions for

achieving more robust and adaptive reliability risk assessment.

Keywords—Reliability; risk assessment; SDLC

I. INTRODUCTION

Reliability is a mandatory quality trait in the software
industry, ensuring that systems perform persistently and
consistently under specific set of conditions without failure [1].
In the modern age where the world has set foot on AI, achieving
the utmost level of reliability is increasingly competitive.
Though modern software systems are continuously growing,
with each development, the complexity of each system is
growing. Besides that, integrating distributed architectures,
cloud computing, and the Internet of Things (IoT) further
prompt dilemma on reliability concerns. Generally, these
systems commonly encounter unprecedent workloads, evolving
user demands, hardware failures, and security vulnerabilities,
all of which create chaos for operation reliability [2]. Key
reliability expectations include handling system failures
robustly, ensuring fault tolerance, eliminating data corruption,
and mitigating downtime [3]. As software systems grow and
expand, the complexity of managing reliability risks becomes a
more significant burden. Therefore, identifying leading
indicators and mitigating them are crucial. Consequently, risk
assessment techniques have become a ground-breaking tool for

analyzing and mitigating potential reliability issues throughout
the software development lifecycle.

A series of risk assessment techniques [4] have been
developed to identify and manage reliability risk. In the past.
tools such as Failure Mode and Effects Analysis (FMEA), Fault
Tree Analysis (FTA), and Reliability Block Diagrams (RBD)
have been significant to identify potential points of failure. In
recent years, numerous advanced techniques, including
probabilistic risk assessments, machine learning models, and
simulation-based techniques, have undoubtedly improved the
accuracy of predicting, quantifying reliability risks and
efficiency of risk management. These approaches have enabled
software engineers to detect weaknesses proactively and
develop mitigation strategies before risks manifest into system
failures.

Despite these advancements, several challenges remain
unsolved. No single technique can comprehensively address all
dimensions of reliability risk. Many techniques have limited
applicability across diverse system architectures, operational
environments, or specific failure modes [5]. Some methods are
resource-intensive or not scaled for large, distributed systems,
while others lack adaptability for the dynamic nature of modern
system. Our previous systematic literature review in
Subramanium et al. [6], identified key reliability characteristics,
associated risks and evaluation metrics, but did not examine
how existing risk assessment techniques map to these
characteristics across different phases of the software
development lifecycle. This gap highlights the need for a
structured synthesis of current techniques to identify the
coverage limitations and research opportunities.

Unlike prior reviews that often discuss reliability risk
assessment techniques in isolation or without considering their
relevance across development phases, this study provides a
structured synthesis by mapping techniques to both the software
development lifecycle (SDLC) phases and reliability sub-
characteristics. This dual-perspective approach clarifies where
each technique fits best, what risks it addresses, and where
methodological gaps persist despite decades of research [7].
Systematically comparing the advantages, limitations, and
domain-specific applications of existing methods, this paper
goes beyond descriptive reviews to offer a decision-support
view for practitioners selecting suitable techniques at different
stages of development. For researchers, the findings highlight

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

93 | P a g e
www.ijacsa.thesai.org

underexplored intersections between risk assessment methods,
evolving software architectures, and emerging paradigms like
cloud computing, IoT, and AI-driven systems [8] providing a
foundation for innovative, adaptive reliability assessment
frameworks in future work.

The remainder of this paper is organized as follows:
Section II provides the background on reliability key concepts.
Section III reviews the related work, including existing
literature and applications across different system types.
Section IV outlines the methodology used to analyze and
compare the identified techniques. Section V presents the
results, including the classification of techniques, their
advantages, limitations and domain specific applications. Next,
Section VI discusses the findings, highlighting research gaps
and implications for practice and future research. Finally,
Section VII concludes the paper by summarizing the key
insights and proposing directions for advancing reliability risk
assessment practices

II. BACKGROUND

A. Software Reliability and its Sub-Attributes

A fundamental quality attribute of a product is the reliability
of the product itself. Reliability is defined as its capability to
perform functions consistently and persistently under specified
conditions for a predetermined period [6],[9]. Reliability has
been universally recognized in major software quality models
such as McCall, Boehm, FURPS, ISO 9126, and the more
recent ISO 25010 [10], [11] all of which singled out reliability
as a prominent quality attribute and further classify it into
several sub-characteristics. In our most recent work, A
Systematic Literature Review on Characteristics Influencing
Software Reliability (2024), we critically summarized a
comprehensive analysis of these sub-characteristics and their
function on overall software reliability [6]. Here, software
reliability is commonly examined through dimensions such as
fault tolerance, recoverability, maturity, and availability.
Specifically, fault tolerance emphasize the system’s ability to
continue operating correctly even in the presence of faults [12],
whereas recoverability focuses the capacity to restore optimal
operations after a failure with minimum damage [13].
Furthermore, maturity affects the system’s stability and defect
density over time, indicating the effectiveness of its
development and testing processes [13],[14],[15]. Next, the
availability dimension focuses on making sure the system
remains operational and accessible persistently whenever
required. This is a crucial factor in safety-critical domains such
as finance and healthcare [13]. Digesting these sub-
characteristics provides the fundamental basis for evaluating
how recent risk assessment techniques address different factors
of software reliability across the software development
lifecycle.

B. Risk Assessment in Software Engineering

The flow of risk assessment in software engineering
commonly involves identifying potential threats, analyzing
their probability, prioritizing them, and executing mitigation
steps and monitoring strategies [16]. On the scope of software
reliability, risks generally sprout out from factors such as
complexity in system, unprecedented workloads, distributed

architecture, and operational uncertainties that jeopardizes
performance and stability [17]. Lately, various techniques have
been deployed to analyze and mitigate such risks, ranging from
conventional approaches like Failure Mode and Effects
Analysis (FMEA), Fault Tree Analysis (FTA), and Reliability
Block Diagrams (RBD) to advanced and dynamic methods such
as probabilistic risk assessments, Bayesian networks, and
simulation-based techniques [18],[19],[20]. Machine learning
[21], [22] and AI-driven models [8],[23] have also been
explored to improve predictive accuracy and support real-time
decision-making in reliability risk assessment. Despite all these
efforts, the gaps exist in understanding their applicability,
limitations, and compatibility with different stages of software
development lifecycle.

C. Need for SDLC-Based Categorization

The Software Development Lifecycle (SDLC) provides a
structured and comprehensive framework for planning,
designing, developing, testing, and maintaining software
systems [7]. Each segment addresses unique reliability risks
and acts as a leading indicator to address and tackle risk that
may cost catastrophic failures at latter stage of product
development. For instance, poor requirements analysis may
blind reliability constraints, while deficient testing could allow
risk to bypass undetected until late in deployment. Studies
indicate that both the choice of development methodology and
the factors stressed at each stage significantly amplify
reliability outcomes [7]. In particular, [7] highlights fifteen
major factors influencing reliability, with decision made in
requirement and design during early stages of development
having the most significant impact on the final product’s
quality. This further reiterates the mandatory need to implement
reliability risk assessment techniques across all SDLC, instead
of applying them only at later stages of development. By
narrowing existing techniques to specific SDLC stages, this
paper aims to identify coverage gaps and provide perception
into how reliability risk assessment practices can be made more
structured, comprehensive, effective, context-aware and
aligned with phase specific reliability needs.

III. RELATED WORK

The sky is the limit for reliability risk assessment in
software engineering. The field continues to evolve over time
to cater to increasing complexity of modern systems and the
persistent challenge of mitigating software failures. In the most
recent times, studies have revealed a wide range of approaches,
ranging from foundational qualitative and quantitative methods
to advanced machine learning and artificial intelligence-driven
techniques. These developments objectives are to enhance the
accuracy, comprehensiveness, and real-time applicability of
risk assessment across the Software Development Life Cycle
(SDLC).

A recent study in 2023 by Jing et al [24] has investigated on
the conventional reliability risk assessment techniques, such as
Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA), which have served as primary tools for risk
analysis, especially during the initial design phases. For
instance, FTA to employ a top-down deductive approach to
identify sequences of events leading to a failure, while FMEA
uses a bottom-up inductive method to systematically analyse

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

94 | P a g e
www.ijacsa.thesai.org

potential failure modes and their consequences. Event Tree
Analysis (ETA) is often applied alongside these methods to
explore the range of possible outcomes following an initiating
event. Despite the widespread use for equipment failure
diagnosis, root cause analysis, and preliminary safety
assessments, these methods face several challenges. A paper in
2022 by Shayan et al [25] evaluated the conventional FMEA,
though comprehensive and computationally efficient, struggles
with data fragmentation, inconsistent formats, and limitations
in the Risk Priority Number (RPN) calculation, which often
gives equal weight to severity, occurrence, and detection,
sometimes leading to mis prioritized risks. Similarly, FTA
encounters difficulties in handling dynamic system
characteristics and large-scale data, and all three methods
remain largely manual and prone to subjectivity, especially
when systems undergo frequent updates.

To further mitigate uncertainty and data incompleteness in
traditional methods, researchers have incorporated Fuzzy Logic
into risk assessment frameworks, giving rise to Fuzzy Fault
Trees (FFT), Fuzzy Event Trees (FET), and Fuzzy FMEA (F-
FMEA) [18]. Although conventional techniques focus on
precise probabilities, fuzzy methods which enables the use of
linguistic variables to shortlist likelihoods and outcomes,
making these methods suitable for data-scarce environments.
For example, F-FMEA improves conventional RPN
calculations by singularly analysing significance, tendency of
occurrence, and detection, reducing human impact and
enhancing sensitivity to minute parameter alteration.
Consequently, integration of fuzzy reasoning has paved ways
to a more suitable and adaptive risk prioritization in complex
and uncertain environments. A similar approach using the fuzzy
FMEA has been applied in the field of cyber security [26] and
IT-governance [27] to evaluate risk maturity levels. Building
on these successful enhancement, significant research effort
continues to improve integration of conventional methods with
advanced modelling, automation and analytics techniques for
more comprehensive reliability risk assessment [4],[28],[29].

Extending this effort, recent research has focused on
addressing randomness and dynamic behavior in systems. For
instance, probabilistic techniques such as Markov Chain
Models (MCM) and Monte Carlo Simulation (MCS) have been
introduced [30],[31],[32],[33]. As for MCM, [30] and [31] have
provided a framework for modeling stochastic transitions
between system states, while [33] and [34] enables probabilistic
exploration of risk scenarios under uncertainty in MCS.
However, a specific study on embedded system by [32]
discussed that MCS becomes computationally expensive if
system complexity and the number of variables increase,
limiting its applicability to large-scale systems.

Recently, one other significant advancement of Artificial
Intelligence (AI) has opened new opportunities for reliability
risk assessment. AI leverage machine learning, deep learning
and knowledge representation methods to automate fault
detection, predicting failure probabilities and analyse large
scale data in real time. With this, new risk assessment
techniques were explored by a recent study in 2024 [8],

Knowledge Graphs (KGs), in particular, the Fault Knowledge
Graphs (FKGs), vector machines and neural network [23].
These AI powered techniques enable adaptive and self-learning
reliability risk assessment frameworks. The author has focused
on using FKGs to assess key parameters like reliability of the
returned information. Similarly, in 2025 [23], Zhao et all has
evaluated the use of FKGs to design a multi-level modular
structure on an electric power system using neural network and
support vector machines by comparing against conventional
methods. With all the efforts, a paper in 2023 [35] has critically
provided analysis of FKGs that it faces insufficient
standardized modelling practices and complexity in extracting
information from unstructured data sources. Nevertheless, by
further enhancing studies and research on automated techniques
and ontology construction, the true potential of KGs in
reliability engineering can be realised and it will be
groundbreaking.

In a nutshell, the evolution of reliability risk assessment in
software engineering shows a shift in pathway from a static
framework, toward more dynamic, automated, intelligent, and
data-driven techniques. Conventional methods like FTA and
FMEA do bring a valuable foundation but tend to get
ineffective with dynamic system behaviour and bulk datasets
[24]. Increasingly, probabilistic approaches, fuzzy logic, and
knowledge graphs address a small sample limitation by
introducing probabilistic reasoning, uncertainty modeling, and
structured data integration.

Future research should address challenges such as
knowledge graph standardization, hybridizing AI and
probabilistic methods for improved explainability, and
developing computationally efficient techniques for large-
scale, real-time applications. Such advancements will be
critical for ensuring the reliability and resilience of next-
generation software systems

IV. METHODOLOGY

This study adopts a structured review approach to analyze
software reliability risk assessment techniques across the
software development lifecycle (SDLC). The primary objective
is to explore how various techniques have been applied, their
strengths and limitations, and their suitability for addressing
reliability risks in modern software environments.

As illustrated in Fig 1, the review process follows five
interconnected stages:

• Step 1: Literature Review and Data Collection

• Step 2: Selection of Relevant Techniques

• Step 3: Mapping Techniques to SDLC Phases

• Step 4: Comparative Analysis of Techniques

• Step 5: Data Synthesis and Research Gaps

Each stage is explained in the following subsections,
ensuring a clear and logical flow from gathering information to
drawing insights and identifying research gaps.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

95 | P a g e
www.ijacsa.thesai.org

Fig. 1. Design procedure.

A. Literature Review and Data Collection

The first stage involved peer-reviewed studies from
academic databases, including IEEE Xplore, Scopus, ACM
Digital Library, and Google Scholar. Keywords such as
“software reliability,” “risk assessment techniques,” “reliability
sub-characteristics,” and “reliability risk analysis” were
combined using Boolean operators to ensure comprehensive
coverage. Also, terms such as “reliability AND risk matrix”,
“reliability AND Probabilistic Risk Assessment” and with other
risk assessment techniques uniquely were employed to retrieve
studies emphasizing reliability-related risk modelling methods.
This approach minimized irrelevant results and ensured that
only techniques applicable to software reliability evaluation
were captured.

To maintain relevance, only studies published in English
between 2015 and 2025 were included. Non-peer-reviewed
sources, duplicate studies, and research lacking methodological
detail were excluded.

B. Selection of Relevant Techniques

The next step was to select the techniques that were most
frequently discussed and demonstrated clear relevance to
software reliability risk assessment. A simple rating approach
was used to give a more objective selection basis.

Each technique was rated on aspects such as:

• Frequency of application in studies

• Coverage of reliability sub-characteristics (referring to
the standard quality model, ISO 25010)

• Clarity and completeness of methodological description

• Reported advantages and limitations

This allowed the review to prioritize techniques with strong
academic support while still discussing fewer common methods
for completeness.

C. Mapping Techniques to SDLC Phases

Furthermore, techniques were classified according to the
phases of the Software Development Life Cycle (SDLC) to
provide practitioners with a clear reference on which techniques
are most suitable for specific stages of software development,
bridging the gap between research insights and real-world
application.

D. Comparative Analysis of Techniques

Once the techniques were aligned to SDLC phases, a
comparative analysis was undertaken to present the information
in a structured and transparent manner. Specifically, each
technique was analyzed across the following dimensions:

• Risk assessment techniques: Name of the technique

• Overview: Brief description of its approach or
methodology

• Domain application: Software domains or system types
where it has been applied (example: IoT, cloud
computing, real-time systems, AI)

• Coverage of reliability sub-characteristics: Mapping to
reliability characteristics based on software quality
model ISO 25010.

• Advantages: Reported strengths such as accuracy,
scalability, cost-effectiveness.

• Limitations- Key challenges like implementation
complexity or lack of empirical validation.

• References: Key studies supporting the analysis

This classification ensures a comprehensive, phase-oriented
perspective for evaluating the suitability of risk assessment
techniques in modern software environments, enabling both
researchers and practitioners to select methods best aligned
with their system requirements.

E. Data Synthesis and Research Gaps

After the comparative analysis, findings were synthesized
to identify patterns, trends, and gaps. This stage helped
highlight gaps in the literature, such as the lack of empirical
validation for certain techniques or limited application in
specific software domains, providing directions for future
studies.

Despite its structured approach, this review is limited by
potential publication bias due to reliance on peer-reviewed
studies in English and selected academic databases.
Furthermore, the analysis depends on secondary data without
empirical testing, which may restrict the generalizability of
conclusions. Acknowledging these limitations provides
transparency and highlights opportunities for empirical
validation in future studies.

V. RESULTS

Table I presents a phase-wise summary of software
reliability risk assessment techniques across the analysis,
development, and testing stages of the software development,
and testing stages of the software development lifecycle
(SDLC). Categorizing techniques by SDLC phase ensures that
the distinct risk management requirements of each stage are
adequately addressed, enabling practitioners to apply the most
suitable methods at the right time. Building on this table, the
subsequent discussion evaluates each technique in terms of
overview, domain application, coverage of reliability sub
characteristics, providing a comprehensive understanding of
their strengths, weaknesses for modern software environments.

Step 5: Data Synthesis and Research Gaps

Step 4: Comparative Analysis of Techniques

Step 3: Mapping Techniques to SDLC Phases

Step 2: Selection of Relevant Techniques

Step 1: Literature Review and Data Collection

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

96 | P a g e
www.ijacsa.thesai.org

TABLE I SUMMARY OF SOFTWARE RELIABILITY RISK ASSESSMENT TECHNIQUES ACROSS SDLC PHASES

Risk

Assessment

Techniques

Overview Domain Application

Coverage of

reliability sub-

attributes

Advantages Limitations References

REQUIREMENTS

Risk Matrix

A qualitative or semi-

quantitative tool that

categorizes risks by

severity and likelihood

to prioritize them.

- Safety-Critical

Systems

- Industrial

Automation &

Manufacturing

- Cloud Computing

- Real-time and

Embedded systems

- Software

Engineering

Availability,

Maturity,

Recoverability

- A transparent

representation of

risk levels using

likelihood and

consequence scales

- Low

implementation

cost

- Support quick

decision making

- Customizable

(project size,

different domains,

risk categories)

- Communication

friendly

- Less efficient in

modeling complex

reliability

behaviors.

- Subjectivity in

risk scoring

- Lack of

probabilistic

measures

- Limited

predictive

capability for

dynamic or real-

time environments

where risk levels

evolve quickly

[36], [37],

[38]

Risk-Driven

Requirement

Engineering

A systematic approach

to derive and prioritize

requirements based on

identified risks.

 - Safety-Critical

(aerospace,

healthcare)

- Large-scale

enterprise software

telecommunication

system)

-Agile and

Incremental

Development

Maturity,

Fault Tolerance:

- Early risk

identification

- Improve

requirement quality

- Support

requirement

prioritization

- Reduce rework

costs.

- Dependent on

expert judgement

- Time-consuming

for large projects

- Limited tool

integration

- Subjective risk

estimation

[20], [39]

Failure-Oriented

Requirements

Engineering

(FORE)

Focus on identifying

failure modes and their

impact on requirements

to mitigate risks early.

- Safety-critical

- Large scale

industrial systems

- Real-time systems

- IoT applications

Maturity

Fault Tolerance

- Failure

identification at the

requirement phase

- Support early

fault analysis

- Integrates with

safety standards

- Support

systematic

traceability from

failures to

requirements

- Require detailed

system knowledge

early in the system

development

- Time intensive for

complex systems

with many failures

modes

- Subjectivity on

expert driven

failure modelling

[40]

Goal-Oriented

Risk Assessment

(GORA)

Identifies risks through

the lens of system goals,

ensuring alignment

between objectives and

risk mitigation.

- Complex socio-

technical system

- Business critical

software

- Safety systems

- Requirement

engineering

- Decision support

systems

- Policy driven IT

systems

Maturity

- Improve

traceability from

risks to system

objectives

- Useful in multi-

stakeholder

environments

- Support what-if

analysis

- Provides

structured

modeling linking

risks to goals,

obstacles and

mitigations.

- Limited reliability

quantitative

evaluation

- High effort for

large systems with

many goals

- Require tools for

efficient goal

modeling.

[41], [42]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

97 | P a g e
www.ijacsa.thesai.org

Risk-Based

Requirement

Prioritization

Prioritize requirements

based on their

associated risks to

ensure critical risks are

addressed first.

- Agile projects,

incremental

development, time

constrained software

releases

-Cloud software, e-

commerce platforms,

enterprise applications

Maturity

Fault Tolerance

- Ensure critical,

high-risk

requirements are

developed first

- Cost-effective

- Fits well with

Agile and iterative

methodologies like

Scrum

- Support risk-

driven release

planning

- May ignore low-

risk requirements

that could be

important for

reliability

- Subjective

prioritization

- Limited support

for quantitative risk

modelling

[43], [33]

Probabilistic

Risk Assessment

(PRA) in

Requirements

Quantifies the

likelihood of risks in

meeting requirements

by analyzing statistical

probabilities

- Nuclear system

- Defense system

- Autonomous

vehicles

- Mission critical

software

- Model-based

systems engineering

for safety and

reliability

certifications

Maturity

Availability

Fault Tolerance

- Provide

quantitative,

probabilistic

measures of risk.

- Support early

decision making

under uncertainty

using likelihood

and consequences

modelling

- integrates with

Fault Tree Analysis

(FTA) and Event

Tree Analysis

(ETA)

- Enables

reliability-based

requirement

verification early

- Require extensive

data for accurate

probability

estimation

- High modelling

complexity and

computational costs

for large systems

- Steep learning

curve

[44], [33],

[45], [46]

DESIGN

Hazard and

Operability

Study (HAZOP)

A structured and

systematic technique to

identify hazards and

operability issues in

processes or systems by

evaluating deviations

from design intent.

- Process control

system

- Chemical plants

- Industrial

automation

- Safety critical

software

Fault Tolerance,

Availability

- Structured

approach ensures

no risk scenario is

overlooked.

- Suitable for early

phases, enabling

proactive risk

mitigation.

- Adopted in safety

standards

- Require time-

consuming

workshops for

comprehensive

coverage.

- Largely

qualitative

- Subjective to

expert knowledge

accuracy.

[47], [48],

Fault Tree

Analysis (FTA)

A top-down, deductive

approach to identify

causes of system-level

failures by analyzing

fault logic.

- Aerospace, nuclear

power plants

- Automotive safety

systems.

Availability, Maturity

- Easy-to-

understand fault

visualization.

- Supports

probabilistic failure

estimation using

failure rate data.

- Standardized

technique.

- Assumes

independence of

failures, unrealistic

for complex

systems.

- Static analysis,

cannot handle

event sequences

well.

- Large systems

produce complex,

unwieldy trees.

[18], [35],

[29]

Event Tree

Analysis (ETA)

A forward-looking

technique that models

the possible outcomes of

an initiating event

through branching event

sequences.

- Nuclear safety

- Aviation risk

modeling

- Chemical plants.

Availability:

- Forward looking

approach

complements FTA

- Support

probability

mapping

- Event paths

multiply quickly in

complex systems

- Quality depends

on correct events

- Assumption on

event independence

[18], [24]

Reliability Block

Diagram (RBD)

Graphical representation

of system reliability

structure by connecting

components in series or

- Aerospace

- Manufacturing

- Power Systems

Availability, Fault

Tolerance

- Provide graphical

modeling

- Assumes static

configuration
[15]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

98 | P a g e
www.ijacsa.thesai.org

parallel to depict

dependency

- Suitable to

identify critical

components

- Limited for

dynamic or

stochastic systems

Monte Carlo

Simulation

Uses random sampling

and statistical modeling

to simulate the

probability of different

outcomes and assess

risk.

- Finance

- Cloud Systems

- Telecommunication

Fault Tolerance,

Availability, Maturity

- Captures

uncertainty and

probabilistic

behavior

- Handles complex,

interdependent

systems

- Requires high

computational cost

- Accuracy depends

on number of

simulations

[33], [34]

Markov Analysis

and Modelling

Analyzes system states

and transitions using

probabilistic modeling

for systems with random

state changes over time.

- Embedded Systems,

- Network Systems,

- Health Systems

Availability,

Recoverability, Fault

Tolerance

- Models stochastic

and time-dependent

failures

- Supports

repairable system

modeling

- Assumes

exponential failure

distributions

[44], [46]

[30], [32],

[31],

Petri Nets

A graphical and

mathematical modeling

tool to represent

concurrent, distributed,

and dynamic system

processes.

- Industrial Control

Systems

- Distributed Systems

Fault Tolerance,

Recoverability

- Models stochastic

and time-dependent

failures

-Supports

repairable system

modeling

- Modeling

complexity

increases with

system size

[4], [49]

Stochastic Petri

Nets (SPN)

Extends Petri Nets with

stochastic timing to

model system behaviors

and performance under

uncertainty.

- Real-time Systems

- IoT,

- Cyber-Physical

Systems

Fault Tolerance,

Availability,

Recoverability

- Captures

stochastic behavior

and timing aspects

- Supports dynamic

analysis

- Higher

computational cost;

requires specialized

expertise

[50]

Bayesian

Networks

A probabilistic

graphical model that

represents variables and

their dependencies using

directed acyclic graphs.

- Autonomous

Vehicles

- Smart Grids,

Healthcare

Fault Tolerance,

Availability,

Recoverability,

Maturity

- Probabilistic

reasoning under

uncertainty

-Supports learning

from data and

evidence updating

- Scalability issues

for large systems.

- Data dependency

specification

challenges

[4],[51]

Fuzzy Logic

Mathematical approach

for handling uncertainty

and imprecision in risk

assessment.

- IoT

- Edge Computing

- Decision-Support

Systems

Fault Tolerance,

Recoverability,

Maturity

- Handles

imprecise,

linguistic, or

uncertain data well

- Suitable for

expert-judgment-

based analysis

- Subjectivity in

membership

function design

- Lacks

standardization

across domains

-

[18]

DEVELOPMENT

Failure Modes

and Effects

Analysis

(FMEA)

A systematic approach

to identify potential

failure modes, their

causes, and effects to

prioritize corrective

actions.

Fault Tolerance,

Availability,

Recoverability

- Automotive

- Aerospace

- Industrial Systems

- Structured and

systematic

- Early defect

identification

- Time-consuming

- qualitative in

nature

- Subjective to

expert knowledge

[24], [29]

Code Review

and Static Code

Analysis

Evaluates code quality

by manually reviewing

or using automated tools

to detect bugs,

vulnerabilities, and

design flaws.

Maturity, Fault

Tolerance

- Software

Development

- Web Applications

like Banking Systems

- Early defect

detection before

runtime

- Automated tools

available

- Cost-effective for

initial phases

- Limited to static

properties

- Cannot detect

runtime or dynamic

behavior issues

[52]

Reliability

Growth Models

Models that predict

system reliability

improvement over time

as defects are identified

and corrected during

testing.

Maturity, Availability
- Telecommunication

Systems

- Focus reliability

improvement over

testing cycles

- Quantitative

assessment of

defect detection

- Assumes failure

patterns follow

statistical

distributions

[53], [54],

[55]

Dynamic

Analysis and

Examine system

behavior during

execution to identify

Fault Tolerance,

Availability,

Recoverability

- Cloud Systems

- IoT

- Provides real-

time insights

- Performance

overhead
[56]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

99 | P a g e
www.ijacsa.thesai.org

Runtime

Monitoring

potential runtime errors,

resource bottlenecks, or

reliability risks.

- Autonomous

Systems

- Detects runtime

anomalies and

adaptive risks

- May be complex

to implement at

scale

Test Case

Prioritization and

Reliability

Testing

Prioritizes test cases

based on their likelihood

of revealing faults and

evaluates reliability

through systematic

testing.

Fault Tolerance,

Availability, Maturity

- Embedded Systems,

Telecom

- Ensures critical

functionalities

tested first

- Improves fault

detection efficiency

- Effectiveness

depends on quality

of test cases

- May require

domain-specific

customization

[43], [57]

Model-Based

Reliability

Assessment

Uses formal models to

simulate and evaluate

system reliability based

on its design,

configuration, and usage

scenarios.

Fault Tolerance,

Availability,

Recoverability,

Maturity

- Safety-Critical

Systems (Aerospace,

Healthcare)

- Formal and

structured

modeling

- Supports early-

stage risk

evaluation

- Allows

simulation of

different scenarios

- High modeling

effort

- Requires

specialized skills

and accurate

system

specifications

[33], [50],

[58]

TESTING

Reliability

Growth Testing

using the

Software

Reliability

Growth Model

(SRGM)

technique

Evaluates the

improvement in system

reliability by statistical

models that estimate the

reliability of software

systems by analyzing

failure data over time to

predict future reliability.

Maturity, Fault

Tolerance

- Software

Development

- Telecommunications

- Defense

- Quantitative

evaluation of

reliability

improvement over

time

- Requires

historical failure

data

- Ineffective to

dynamic changing

environments

[53], [59]

Fault Injection

Testing

Deliberately introduces

faults into a system to

evaluate their fault

tolerance and recovery

mechanisms.

Fault Tolerance,

Recoverability

- Cloud Systems

- Automotive

- Safety-Critical

Software

- Evaluates system

robustness under

failure conditions

- Reveals hidden

vulnerabilities

- May be costly or

risky in production-

like environments

[60]

Model-Based

Reliability

Testing (MBT)

Uses formal models of

system behavior to

derive test cases and

evaluate reliability.

Fault Tolerance,

Availability, Maturity

- Aerospace,

- Healthcare

- Embedded Systems

- Systematic test

generation from

formal models

- Improves

coverage and

defect detection

- High modeling

effort

- Requires formal

specifications

[61], [62]

Reliability

prediction

models

Uses mathematical

models to estimate

system reliability based

on design parameters

and historical data.

Fault Tolerance,

Availability, Maturity

- Defense

- Aerospace

- Software

Engineering

- Supports early

estimation of

reliability before

deployment

- Quantitative risk

assessment

- Accuracy depends

heavily on data

quality and

assumptions

[22]

Scenario-based

testing for

reliability

Focuses on testing

specific scenarios to

evaluate reliability

under predefined

conditions.

Availability, Fault

Tolerance,

Recoverability

- Automotive

- IoT

- Real-Time Systems

- Captures real-

world operational

conditions

- Effective for

stress and edge-

case testing

- Scenario design

complexity

- May not cover

unexpected runtime

behaviors

[63]

Fault Knowledge

Graphs

Knowledge-driven

approach where

information about

system faults, failure

modes, causes, and their

interrelationships is

represented as a graph

structure

Availability, Fault

Tolerance,

Recoverability

- AI Systems

- Cloud Computing

- Complex Software

Architectures

- Enables fault

pattern analysis

using structured

knowledge

representation

- Supports root

cause analysis

- Still emerging

- Limited

standardization;

requires high-

quality knowledge

bases

[35]

VI. DISCUSSION

The categorization of reliability risk assessment techniques
across software development lifecycle (SDLC) phases, as
summarized in Table I, provides a structured perspective on

when and how these methods are applied by linking techniques
to specific phases, analysis, design, development, and testing.
It also enables practitioners to select methods that align with the
unique risk management needs of each stage, avoiding the
common pitfall of relying on a one-size-fits-all approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

100 | P a g e
www.ijacsa.thesai.org

In the requirement phase, techniques such as Risk Matrix,
Risk-Driven Requirement Engineering, Failure-Oriented
Requirements Engineering (FORE), Goal-Oriented Risk
Assessment (GORA), Risk-Based Requirement Prioritization,
and Probabilistic Risk Assessment (PRA) enable early-stage
identification and prioritization of risks.

Next, in the design phase, techniques such as Hazard and
Operability Study (HAZOP), Fault Tree Analysis (FTA) , Event
Tree Analysis (ETA), Reliability Block Diagrams (RBD) [15],
Monte Carlo Simulation, Markov Models, Petri Nets [35],
Stochastic Petri Nets (SPN), Bayesian Networks [64], and
Fuzzy Logic provide deeper insights into system behavior and
potential failure paths.

Further, the development phase introduces Failure Mode
and Effects Analysis (FMEA), Code Review and Static Code
Analysis, Reliability Growth Models [54], Dynamic Analysis
and Runtime Monitoring, Test Case Prioritization and
Reliability Testing, and Model-Based Assessment to ensure
software reliability as code implementation progresses [4].

Lastly, in the testing phase, as systems transition into
validation, techniques like Software Reliability Growth Models
(SRGM) [59], Fault Injection, Model-Based Reliability
Testing, Reliability Prediction Models, Scenario-Based Testing
for Reliability, and Fault Knowledge Gaps Analysis ensure
comprehensive risk evaluation under realistic operational
conditions.

Despite the availability of diverse risk assessment
techniques across the SDLC, one major research gap [65] lies
in the fragmented treatment of reliability sub-characteristics
[64]. Many techniques either focus on overall system reliability
without distinguishing between sub-characteristics such as fault
tolerance, availability, recoverability, and maturity, or they
emphasize only one aspect while neglecting others [4]. For
example, Fault Tree Analysis (FTA) and Reliability Block
Diagrams (RBD) primarily evaluate system failure
probabilities and availability but provide little insight into
recoverability or fault tolerance mechanisms. Conversely,
Bayesian Networks and Stochastic Petri Nets (SPN) are strong
in modeling fault tolerance and dynamic behavior but are rarely
extended to evaluate maturity or maintainability, leading to
incomplete risk profiles. This fragmented coverage hinders
practitioners from understanding how different reliability sub-
attributes interact, for instance, a system might have high fault
tolerance yet fail to recover quickly from unexpected outages,
compromising operational continuity [66].

Another critical gap concerns the domain-specific nature of
reliability requirements. Many existing techniques were
designed for general-purpose reliability analysis and do not
adequately address domain-driven reliability priorities [67]. For
example, recoverability is crucial in financial systems where
transaction consistency and disaster recovery are essential,
whereas fault tolerance and real-time failure detection dominate
autonomous vehicle and industrial automation domains.
Similarly, availability and service continuity are top priorities
in telecommunication networks and cloud platforms, where
downtime directly impacts service quality and revenue.
However, most current methods fail to provide customized

reliability assessment frameworks that align with the unique
risk profiles, operational constraints, and regulatory
requirements of these domains [68].

Moreover, as emerging domains such as AI-driven
applications, IoT ecosystems, and cyber-physical systems
introduce dynamic operational behaviors, data uncertainty, and
real-time decision-making, conventional methods like
Reliability Growth Models struggle to capture the evolving risk
landscape. This highlights [12] the need for adaptive, domain-
aware risk assessment approaches that integrate multiple sub-
characteristics, model interdependencies, and align reliability
priorities with the specific operational and safety requirements
of diverse application areas.

VII. CONCLUSION AND FUTURE WORK

The study highlighted the evolution of reliability risk
assessment techniques across software lifecycle phases,
revealing significant progress in modeling, analysis, and
prediction. However, findings indicate that despite
methodological diversity, many approaches remain phase-
specific, static, or computationally demanding, limiting their
adaptability to dynamic, data-rich software environments.
Moreover, the absence of standardized evaluation benchmarks,
limited domain-specific tailoring, and poor alignment with
modern development practices such as agile and DevOps hinder
practical adoption.

Future research should focus on developing integrated,
adaptive, and benchmarked reliability frameworks that balance
accuracy, scalability, and usability while accommodating the
complexity and dynamism of modern software systems.
Emphasis on real-time analytics, AI-driven risk prediction,
automated scenario simulation, and cross-domain
customization will be essential. Furthermore, extending
research toward edge computing, cyber-physical systems, and
autonomous platforms offers opportunities to validate and
refine techniques under safety-critical and resource-constrained
conditions, ensuring reliability assurance remains robust in
next-generation software landscapes.

ACKNOWLEDGMENT

We would like to thank Universiti Putra Malaysia for all the
support given.

REFERENCES

[1] L. C. Hao, L. J. Wu, R. Yan, X. Y. Han, and L. L. Tang, “Research on

Software Reliability Index Allocation Method Based on Network

Architecture,” Proc. 2019 Int. Conf. Qual. Reliab. Risk, Maintenance, Saf.

Eng. QR2MSE 2019, no. Qr2mse, pp. 551–556, 2019, doi:

10.1109/QR2MSE46217.2019.9021200.

[2] Y. Zhao, P. Li, J. Deng, M. Gao, Z. Wang, and X. Fan, “Reliability

Evaluation Method of Distribution Network Considering Differential

Reliability Requirements of End Users,” Proc. 2021 IEEE 4th Int. Electr.

Energy Conf. CIEEC 2021, pp. 3–8, 2021, doi:

10.1109/CIEEC50170.2021.9510553.

[3] P. Rotella and S. Chulani, “SRC ratio method: Benchmarking software

reliability,” Proc. - 2017 IEEE 28th Int. Symp. Softw. Reliab. Eng. Work.

ISSREW 2017, pp. 61–64, 2017, doi: 10.1109/ISSREW.2017.75.

[4] S. Kabir and Y. Papadopoulos, “Applications of Bayesian networks and

Petri nets in safety, reliability, and risk assessments: A review,” Saf. Sci.,

vol. 115, no. November 2018, pp. 154–175, 2019, doi:

10.1016/j.ssci.2019.02.009.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

101 | P a g e
www.ijacsa.thesai.org

[5] J. Ai, W. Su, and F. Wang, “Software Reliability Evaluation Method

Based on a Software Network,” Proc. - 29th IEEE Int. Symp. Softw.

Reliab. Eng. Work. ISSREW 2018, pp. 136–137, 2018, doi:

10.1109/ISSREW.2018.00-15.

[6] L. Subramanium, S. Hassan, M. H. Osman, and H. Zulzalil, “A Systematic

Literature Review on Characteristics Influencing Software Reliability,”

Int. J. Informatics Vis., vol. 8, no. 4, pp. 2344–2353, 2024, doi:

10.62527/joiv.8.4.3665.

[7] V. Yakovyna, M. Seniv, and I. Symets, “The Relation between Software

Development Methodologies and Factors Affecting Software Reliability,”

Int. Sci. Tech. Conf. Comput. Sci. Inf. Technol., vol. 1, pp. 377–381,

2020, doi: 10.1109/CSIT49958.2020.9321937.

[8] G. Spasova and D. Dinev, “Exploring the Effectiveness and Reliability of

Artificial Intelligence,” CIEES 2024 - IEEE Int. Conf. Commun.

Information, Electron. Energy Syst., pp. 1–5, 2024, doi:

10.1109/CIEES62939.2024.10811341.

[9] S. Yin, Q. Shi, Y. Wang, and C. Chen, “Summary of software reliability

Research,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1043, no. 5, 2021, doi:

10.1088/1757-899X/1043/5/052039.

[10] T. Hovorushchenko, “The software emergent properties and them

reflection in the non-functional requirements and quality models,” Proc.

Int. Conf. Comput. Sci. Inf. Technol. CSIT 2015, no. September, pp. 146–

153, 2015, doi: 10.1109/STC-CSIT.2015.7325454.

[11] P. Nistala, K. V. Nori, and R. Reddy, “Software quality models: A

systematic mapping study,” Proc. - 2019 IEEE/ACM Int. Conf. Softw.

Syst. Process. ICSSP 2019, pp. 125–134, 2019, doi:

10.1109/ICSSP.2019.00025.

[12] K. E. De Souza and F. C. Ferrari, “A Systematic Review of Fault

Tolerance Techniques for Adaptive and Context-Aware Systems,” Proc.

- 2022 IEEE Int. Conf. Auton. Comput. Self -Organizing Syst. ACSOS

2022, pp. 21–30, 2022, doi: 10.1109/ACSOS55765.2022.00020.

[13] E. Ismail, N. Utelieva, A. Balmaganbetova, and S. Tursynbayeva, “The

choice of measures reliability of the software for space applications,” 2nd

Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, no. June, pp.

12–13, 2020, doi: 10.1109/ICECCE49384.2020.9179411.

[14] X. H. Wang, Y. X. Li, W. H. Fan, J. Q. Xuan, L. Z. Wang, and M. M. Mu,

“Evaluation of product maturity based on quality characteristic,” IEEE

Int. Conf. Ind. Eng. Eng. Manag., vol. 2016-January, pp. 742–746, 2016,

doi: 10.1109/IEEM.2015.7385746.

[15] J. Lucas, A. Thiraviam, A. Elshennawy, and A. M. Albar, “The

effectiveness of reliability programs and tools based on design maturity

and complexity,” Proc. - Annu. Reliab. Maintainab. Symp., pp. 1–5, 2017,

doi: 10.1109/RAM.2017.7889658.

[16] S. D. S. Lopes, I. G. Vargas, A. L. De Oliveira, and R. T. V. Braga, “Risk

Management for System of Systems: A Systematic Mapping Study,”

Proc. - 2020 IEEE Int. Conf. Softw. Archit. Companion, ICSA-C 2020,

pp. 258–265, 2020, doi: 10.1109/ICSA-C50368.2020.00050.

[17] J. Zhang, “Field Product Reliability Risk Assessment,” Proc. - Annu.

Reliab. Maintainab. Symp., vol. 2022-Janua, pp. 1–6, 2022, doi:

10.1109/RAMS51457.2022.9894003.

[18] C. Quan, L. Lingqiang, Y. Dongping, and Y. Gu, “A reliability risk

analysis method based on the fuzzy fault tree and fuzzy event tree,” Proc.

2016 11th Int. Conf. Reliab. Maintainab. Saf. Integr. Big Data, Improv.

Reliab. Serv. Pers. ICRMS 2016, 2017, doi:

10.1109/ICRMS.2016.8050082.

[19] X. Pan and M. Zhang, “Quality and Reliability Improvement Based on the

Quality Function Deployment Method,” Proc. - 12th Int. Conf. Reliab.

Maint. Safety, ICRMS 2018, pp. 38–42, 2018, doi:

10.1109/ICRMS.2018.00018.

[20] O. T. Arogundade, S. Misra, O. O. Abayomi-Alli, and L. Fernandez-Sanz,

“Enhancing Misuse Cases with Risk Assessment for Safety

Requirements,” IEEE Access, vol. 8, pp. 12001–12014, 2020, doi:

10.1109/ACCESS.2019.2963673.

[21] M. Banga, A. Bansal, and A. Singh, “Implementation of Machine

Learning Techniques in Software Reliability: A framework,” 2019 Int.

Conf. Autom. Comput. Technol. Manag. ICACTM 2019, pp. 241–245,

2019, doi: 10.1109/ICACTM.2019.8776830.

[22] C. Ji, “Reliability Evaluation and Prediction of Mechanical System Based

on Machine Learning Technology,” IEEE 1st Int. Conf. Ambient Intell.

Knowl. Informatics Ind. Electron. AIKIIE 2023, pp. 1–5, 2023, doi:

10.1109/AIKIIE60097.2023.10390487.

[23] Z. Zhang and X. Wang, “Design and Research of an Electric Power

System Reliability Evaluation Model Based on Artificial Intelligence

Algorithms,” 2025 5th Asia -Pacific Conf. Commun. Technol. Comput.

Sci., pp. 149–155, 2025, doi: 10.1109/ACCTCS66275.2025.00034.

[24] X. Hu, J. Liu, H. Dou, H. Chen, and Y. Zhang, “Automatic Generation of

Component Fault Trees from AADL Models for Design Failure Modes

and Effects Analysis,” IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS,

pp. 550–561, 2023, doi: 10.1109/QRS60937.2023.00060.

[25] S. Kumar Akula, H. Salehfar, and S. Behzadirafi, “Comparision of

Traditional and Fuzzy Failure Mode and Effects Analysis for Smart Grid

Electrical Distribution Systems,” 2022 North Am. Power Symp. NAPS

2022, pp. 1–6, 2022, doi: 10.1109/NAPS56150.2022.10012165.

[26] N. A. Chandra, A. A. Putri Ratna, and K. Ramli, “Development of a

cyber-situational awareness model of risk maturity using fuzzy fmea,”

2020 Int. Work. Big Data Inf. Secur. IWBIS 2020, pp. 127–136, 2020,

doi: 10.1109/IWBIS50925.2020.9255543.

[27] U. Yudatama and R. Sarno, “Evaluation maturity index and risk

management for it governance using Fuzzy AHP and Fuzzy TOPSIS (case

Study Bank XYZ),” 2015 Int. Semin. Intell. Technol. Its Appl. ISITIA

2015 - Proceeding, pp. 323–327, 2015, doi:

10.1109/ISITIA.2015.7220000.

[28] J. Cooper, “Implementation of the Product Reliability Program,” 2024

Pan Pacific Strateg. Electron. Symp. Pan Pacific 2024, pp. 1–6, 2024, doi:

10.23919/PanPacific60013.2024.10436446.

[29] P. Fithri, N. A. Riva, L. Susanti, and B. Yuliandra, “Safety analysis at

weaving department of PT. X Bogor using Failure Mode and Effect

Analysis (FMEA) and Fault Tree Analysis (FTA),” 2018 5th Int. Conf.

Ind. Eng. Appl. ICIEA 2018, pp. 382–385, 2018, doi:

10.1109/IEA.2018.8387129.

[30] Y. Jun, J. Chenyu, X. Zhihui, L. Mengkun, and Y. Ming,

“Markov/CCMT_ Towards an integrated platform for dynamic reliability

and risk analysis,” Process Saf. Environ. Prot., vol. 155, pp. 498–517,

2021, doi: 10.1016/j.psep.2021.09.043.

[31] M. F. Aly, I. H. Afefy, R. K. Abdel-Magied, and E. K. A. Elhalim, “A

comprehensive model of reliability, availability, and maintainability

(RAM) for industrial systems evaluations,” Jordan J. Mech. Ind. Eng., vol.

12, no. 1, pp. 59–67, 2018.

[32] S. Shu, Y. Wang, and Y. Wang, “An approach to architecture-based fault

tolerance evaluation with fault propagation,” Proc. 2015 1st Int. Conf.

Reliab. Syst. Eng. ICRSE 2015, vol. 56, pp. 3–9, 2015, doi:

10.1109/ICRSE.2015.7366478.

[33] Y. Jie, W. Wang, G. Wang, and M. Zhang, “Reliability assessment of high

microgravity science experiment system based on probabilistic risk

assessment,” Proc. 2016 Progn. Syst. Heal. Manag. Conf. PHM-Chengdu

2016, pp. 1–6, 2017, doi: 10.1109/PHM.2016.7819797.

[34] M. I. Lunesu, R. Tonelli, L. Marchesi, and M. Marchesi, “Assessing the

risk of software development in agile methodologies using simulation,”

IEEE Access, vol. 9, pp. 134240–134258, 2021, doi:

10.1109/ACCESS.2021.3115941.

[35] L. Shen, H. Tang, L. Wang, J. Cai, and X. Cui, “A Fault Knowledge Graph

Creation Method and Application based on Fault Tree Analysis and

Failure Mode, Effects and Criticality Analysis,” Proc. 2023 IEEE 3rd Int.

Conf. Inf. Technol. Big Data Artif. Intell. ICIBA 2023, vol. 3, no. Iciba,

pp. 35–39, 2023, doi: 10.1109/ICIBA56860.2023.10165591.

[36] M. Blumenschein, J. Spasic, J. Steckert, and J. Uythoven, “An Approach

to Reliability Assessment of Complex Systems at CERN,” Proc. - Annu.

Reliab. Maintainab. Symp., vol. 2019-Janua, pp. 1–6, 2019, doi:

10.1109/RAMS.2019.8769004.

[37] P. Souvannalath, S. Premrudeepreechacharn, and K. Ngamsanroaj,

“Determining Power Transformer Maintenance Plan Using Three-

Dimensional Risk Matrix: Note: Sub-titles are not captured in Xplore and

should not be used,” 2022 IEEE Int. Conf. Power Syst. Techno l. Embrac.

Adv. Technol. Power Energy Syst. Sustain. Dev. POWERCON 2022, pp.

1–6, 2022, doi: 10.1109/POWERCON53406.2022.9929632.

[38] Z. Danlin, J. Han, S. Jialiang, and Y. Lin, “A risk assessment approach

based on fuzzy 3D risk matrix for network device,” 2016 2nd IEEE Int.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

102 | P a g e
www.ijacsa.thesai.org

Conf. Comput. Commun. ICCC 2016 - Proc., pp. 1106–1110, 2017, doi:

10.1109/CompComm.2016.7924876.

[39] F. Wiesweg, A. Vogelsang, and D. Mendez, “Data -driven Risk

Management for Requirements Engineering: An Automated Approach

based on Bayesian Networks,” Proc. IEEE Int. Conf. Requir. Eng., vol.

2020-Augus, pp. 125–135, 2020, doi: 10.1109/RE48521.2020.00024.

[40] P. Garraghan et al., “Emergent Failures: Rethinking Cloud Reliability at

Scale,” IEEE Cloud Comput., vol. 5, no. 5, pp. 12–21, 2018, doi:

10.1109/MCC.2018.053711662.

[41] F. Başak Aydemir, P. Giorgini, and J. Mylopoulos, “Multi-objective risk

analysis with goal models,” Proc. - Int. Conf. Res. Challenges Inf. Sci.,

vol. 2016-Augus, 2016, doi: 10.1109/RCIS.2016.7549302.

[42] D. Alrajeh, A. Van Lamsweerde, J. Kramer, A. Russo, and S. Uchitel,

“Risk-driven revision of requirements models,” Proc. - Int. Conf. Softw.

Eng., vol. 14-22-May-, pp. 855–865, 2016, doi:

10.1145/2884781.2884838.

[43] C. Hettiarachchi and H. Do, “A Systematic Requirements and Risks-

Based Test Case Prioritization Using a Fuzzy Expert System,” Proc. - 19th

IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS 2019, pp. 374–385,

2019, doi: 10.1109/QRS.2019.00054.

[44] R. G. Maidana, T. Parhizkar, A. Gomola, I. B. Utne, and A. Mosleh,

“Supervised dynamic probabilistic risk assessment : Review and

comparison of methods,” Reliab. Eng. Syst. Saf., vol. 230, no. May 2022,

p. 108889, 2023, doi: 10.1016/j.ress.2022.108889.

[45] F. M. Safie, R. G. Stutts, and Z. Huang, “Reliability and probabilistic risk

assessment - How they play together,” in Proceedings - Annual Reliability

and Maintainability Symposium, 2015, vol. 2015-May, pp. 1–5, doi:

10.1109/RAMS.2015.7105058.

[46] Q. Liu, L. Xing, and C. Wang, “Framework of Probabilistic Risk

Assessment for Security and Reliability,” Proc. - 2017 IEEE 2nd Int.

Conf. Data Sci. Cyberspace, DSC 2017, pp. 619–624, 2017, doi:

10.1109/DSC.2017.35.

[47] F. U. Muram, M. A. Javed, and S. Punnekkat, “System of Systems Hazard

Analysis Using HAZOP and FTA for Advanced Quarry Production,”

2019 4th Int. Conf. Syst. Reliab. Safety, ICSRS 2019, pp. 394–401, 2019,

doi: 10.1109/ICSRS48664.2019.8987613.

[48] R. A. Viegas, F. de A. da S. Mota, A. P. C. S. Costa, and F. F. P. dos

Santos, “A multi-criteria-based hazard and operability analysis for

process safety,” Process Saf. Environ. Prot., vol. 144, pp. 310–321, 2020,

doi: 10.1016/j.psep.2020.07.034.

[49] J. Hu and Y. Cao, “Fuzzy Petri net based dynamic risk analysis of

complex system considering protection layers,” 2015 12th Int. Conf.

Fuzzy Syst. Knowl. Discov. FSKD 2015, pp. 308–312, 2016, doi:

10.1109/FSKD.2015.7381959.

[50] P. Grimmeisen, A. Morozov, T. Fabarisov, A. Wortmann, and C. H. Koo,

“Automated Model-Based Reliability Assessment of Software-Defined

Manufacturing,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA,

vol. 2022-Septe, pp. 1–4, 2022, doi: 10.1109/ETFA52439.2022.9921704.

[51] D. Liu, X. Xu, K. Ma, L. Tao, and M. Suo, “Fault Diagnosis Based on

Fault Tree and Bayesian Network with Grey Optimization,” Proc. 34th

Chinese Control Decis. Conf. CCDC 2022, pp. 1787–1792, 2022, doi:

10.1109/CCDC55256.2022.10033578.

[52] A. M. Stanciu and H. Ciocârlie, “Analyzing Code Security: Approaches

and Tools for Effective Review and Analysis,” Int. Conf. Electr. Comput.

Energy Technol. ICECET 2023, no. November, pp. 1–6, 2023, doi:

10.1109/ICECET58911.2023.10389326.

[53] Q. Li and C. Mao, “Considering Testing-Coverage and Fault Removal

Efficiency Subject to the Random Field Environments with Imperfect

Debugging in Software Reliability Assessment,” Proc. - 2016 IEEE 27th

Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2016, pp. 257–263, 2016,

doi: 10.1109/ISSREW.2016.13.

[54] C. Jackson, “Reliability growth and demonstration: The Multi-Phase

Reliability Growth Model (MPRGM),” Proc. - Annu. Reliab. Maintainab.

Symp., vol. 2016-April, pp. 1–6, 2016, doi:

10.1109/RAMS.2016.7447983.

[55] Z. S. Li and D. Xu, “A bayesian approach for modeling reliability

growth,” Proc. - Annu. Reliab. Maintainab. Symp., vol. 2020-Janua, 2020,

doi: 10.1109/RAMS48030.2020.9153616.

[56] T. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, “Dynamic

Security Analysis on Android: A Systematic Literature Review,” IEEE

Access, vol. 12, no. April, pp. 57261–57287, 2024, doi:

10.1109/ACCESS.2024.3390612.

[57] P. Vats, A. Gossain, and M. Mandot, “SARLA - A 3-Tier Architectural

Framework Based on the ACO for the Probablistic Analysis of the

Regression Test Case Selection and their Prioritization,” ICRITO 2020 -

IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir.,

pp. 681–687, 2020, doi: 10.1109/ICRITO48877.2020.9198020.

[58] D. Ling, B. Liu, and S. Wang, “A component-based software reliability

assessment method considering component effective behavior,” 2017 2nd

Int. Conf. Reliab. Syst. Eng. ICRSE 2017, no. Icrse, 2017, doi:

10.1109/ICRSE.2017.8030748.

[59] K. Okumoto, A. Asthana, and R. Mijumbi, “BRACE: Cloud -based

software reliability assurance,” Proc. - 2017 IEEE 28th Int. Symp. Softw.

Reliab. Eng. Work. ISSREW 2017, pp. 57–60, 2017, doi:

10.1109/ISSREW.2017.48.

[60] Y. Xu and S. He, “Avionics Equipment Cable Fault Injection Design and

Simulation Testing Validation,” 2023 Glob. Reliab. Progn. Heal. Manag.

Conf. PHM-Hangzhou 2023, pp. 1–5, 2023, doi: 10.1109/PHM-

HANGZHOU58797.2023.10482733.

[61] R. Ramler and C. Klammer, “Enhancing Acceptance Test-Driven

Development with Model-Based Test Generation,” Proc. - Companion

19th IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS-C 2019, pp. 503–

504, 2019, doi: 10.1109/QRS-C.2019.00096.

[62] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,

“Systems of systems engineering: Basic concepts, model-based

techniques, and research directions,” ACM Comput. Surv., vol. 48, no. 2,

2015, doi: 10.1145/2794381.

[63] M. Jahan, Z. S. H. Abad, and B. Far, “Detecting Emergent Behavior in

Scenario-Based Specifications using a Probabilistic Model,” Proc. - 10th

Int. Model. Requir. Eng. Work. MoDRE 2020, pp. 31–38, 2020, doi:

10.1109/MoDRE51215.2020.00010.

[64] Y. Liu, M. Lu, and B. Xu, “Software reliability case development method

based on software reliability characteristic model and measures of defect

control,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 0, pp.

1–6, 2016, doi: 10.1109/ICSESS.2016.7883004.

[65] L. Fraccascia, I. Giannoccaro, and V. Albino, “Resilience of complex

systems: State of the art and directions for future research,” Complexity,

vol. 2018, 2018, doi: 10.1155/2018/3421529.

[66] J. Zhang, Y. He, Y. Xie, and A. Zhang, “Product Key Reliability

Characteristics Identification Approach Using GA in Manufacturing

Process,” 2021 Glob. Reliab. Progn. Heal. Manag. PHM-Nanjing 2021,

2021, doi: 10.1109/PHM-Nanjing52125.2021.9612881.

[67] B. Liao, Y. Ali, S. Nazir, L. He, and H. U. Khan, “Security Analysis of

IoT Devices by Using Mobile Computing: A Systematic Literature

Review,” IEEE Access, vol. 8, pp. 120331–120350, 2020, doi:

10.1109/ACCESS.2020.3006358.

[68] T. S. Sakriwala, V. Pandey, and R. K. S. Raveendran, “Reliability

Assessment Framework for Additive Manufactured Products,” 2020 Int.

Conf. Comput. Perform. Eval. ComPE 2020, pp. 350–354, 2020, doi:

10.1109/ComPE49325.2020.9200078.

