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Abstract—Reliability risk is a critical concern in software 

development, as failures can result in system downtime, degraded 

performance, data integrity issues, financial losses and loss of user 

trust. The increasing complexity of modern systems, driven by 

dynamic workloads, distributed architecture, and unpredictable 

interactions, amplifies these risks. In regulated industries like 

healthcare, finance, and transportation, software reliability 

directly affects safety, compliance and operational continuity, 

making robust risk assessment essential. Despite recent 

development and improvement on numerous reliability risk 

assessment techniques, system failures continue to be potent, 

creating concerns on scope, applicability and limitations. This 

paper will dive deep into evaluating recent methods, the 

advantages and disadvantages of the application itself, while 

critically assessing the research gaps. Here, the techniques are 

categorized across the software development lifecycle (SDLC), to 

bridge methods to phase-specific reliability needs. Consequently, 

the paper addresses methodological synthesis of recent practices, 

identifies segments where existing techniques fail to live up to 

expectations, and summarize future research directions for 

achieving more robust and adaptive reliability risk assessment. 
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I. INTRODUCTION 

Reliability is a mandatory quality trait in the software 
industry, ensuring that systems perform persistently and 
consistently under specific set of conditions without failure [1]. 
In the modern age where the world has set foot on AI, achieving 
the utmost level of reliability is increasingly competitive. 
Though modern software systems are continuously growing, 
with each development, the complexity of each system is 
growing. Besides that, integrating distributed architectures, 
cloud computing, and the Internet of Things (IoT) further 
prompt dilemma on reliability concerns. Generally, these 
systems commonly encounter unprecedent workloads, evolving 
user demands, hardware failures, and security vulnerabilities, 
all of which create chaos for operation reliability  [2]. Key 
reliability expectations include handling system failures 
robustly, ensuring fault tolerance, eliminating data corruption, 
and mitigating downtime [3]. As software systems grow and 
expand, the complexity of managing reliability risks becomes a 
more significant burden. Therefore, identifying leading 
indicators and mitigating them are crucial. Consequently, risk 
assessment techniques have become a ground-breaking tool for 

analyzing and mitigating potential reliability issues throughout 
the software development lifecycle. 

A series of risk assessment techniques [4] have been 
developed to identify and manage reliability risk. In the past. 
tools such as Failure Mode and Effects Analysis (FMEA), Fault 
Tree Analysis (FTA), and Reliability Block Diagrams (RBD) 
have been significant to identify potential points of failure. In 
recent years, numerous advanced techniques, including 
probabilistic risk assessments, machine learning models, and 
simulation-based techniques, have undoubtedly improved the 
accuracy of predicting, quantifying reliability risks and 
efficiency of risk management. These approaches have enabled 
software engineers to detect weaknesses proactively and 
develop mitigation strategies before risks manifest into system 
failures. 

Despite these advancements, several challenges remain 
unsolved. No single technique can comprehensively address all 
dimensions of reliability risk. Many techniques have limited 
applicability across diverse system architectures, operational 
environments, or specific failure modes [5]. Some methods are 
resource-intensive or not scaled for large, distributed systems, 
while others lack adaptability for the dynamic nature of modern 
system. Our previous systematic literature review in 
Subramanium et al. [6], identified key reliability characteristics, 
associated risks and evaluation metrics, but did not examine 
how existing risk assessment techniques map to these 
characteristics across different phases of the software 
development lifecycle. This gap highlights the need for a 
structured synthesis of current techniques to identify the 
coverage limitations and research opportunities. 

Unlike prior reviews that often discuss reliability risk 
assessment techniques in isolation or without considering their 
relevance across development phases, this study provides a 
structured synthesis by mapping techniques to both the software 
development lifecycle (SDLC) phases and reliability sub-
characteristics. This dual-perspective approach clarifies where 
each technique fits best, what risks it addresses, and where 
methodological gaps persist despite decades of research [7]. 
Systematically comparing the advantages, limitations, and 
domain-specific applications of existing methods, this paper 
goes beyond descriptive reviews to offer a decision-support 
view for practitioners selecting suitable techniques at different 
stages of development. For researchers, the findings highlight 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

93 | P a g e  
www.ijacsa.thesai.org 

underexplored intersections between risk assessment methods, 
evolving software architectures, and emerging paradigms like 
cloud computing, IoT, and AI-driven systems [8] providing a 
foundation for innovative, adaptive reliability assessment 
frameworks in future work. 

The remainder of this paper is organized as follows: 
Section II provides the background on reliability key concepts. 
Section III reviews the related work, including existing 
literature and applications across different system types. 
Section IV outlines the methodology used to analyze and 
compare the identified techniques. Section V presents the 
results, including the classification of techniques, their 
advantages, limitations and domain specific applications. Next, 
Section VI discusses the findings, highlighting research gaps 
and implications for practice and future research. Finally, 
Section VII concludes the paper by summarizing the key 
insights and proposing directions for advancing reliability risk 
assessment practices 

II. BACKGROUND 

A. Software Reliability and its Sub-Attributes 

A fundamental quality attribute of a product is the reliability 
of the product itself. Reliability is defined as its capability to 
perform functions consistently and persistently under specified 
conditions for a predetermined period [6],[9]. Reliability has 
been universally recognized in major software quality models 
such as McCall, Boehm, FURPS, ISO 9126, and the more 
recent ISO 25010 [10], [11] all of which singled out reliability 
as a prominent quality attribute and further classify it into 
several sub-characteristics. In our most recent work, A 
Systematic Literature Review on Characteristics Influencing 
Software Reliability (2024), we critically summarized a 
comprehensive analysis of these sub-characteristics and their 
function on overall software reliability [6]. Here, software 
reliability is commonly examined through dimensions such as 
fault tolerance, recoverability, maturity, and availability.  
Specifically, fault tolerance emphasize the system’s ability to 
continue operating correctly even in the presence of faults [12], 
whereas recoverability focuses the capacity to restore optimal 
operations after a failure with minimum damage [13]. 
Furthermore, maturity affects the system’s stability and defect 
density over time, indicating the effectiveness of its 
development and testing processes [13],[14],[15]. Next, the 
availability dimension focuses on making sure the system 
remains operational and accessible persistently whenever 
required. This is a crucial factor in safety-critical domains such 
as finance and healthcare [13]. Digesting these sub-
characteristics provides the fundamental basis for evaluating 
how recent risk assessment techniques address different factors 
of software reliability across the software development 
lifecycle. 

B. Risk Assessment in Software Engineering 

The flow of risk assessment in software engineering 
commonly  involves identifying potential threats, analyzing 
their probability, prioritizing them, and executing mitigation 
steps and monitoring strategies [16]. On the scope of software 
reliability, risks generally sprout out from factors such as 
complexity in system, unprecedented workloads, distributed 

architecture, and operational uncertainties that jeopardizes 
performance and stability [17]. Lately, various techniques have 
been deployed to analyze and mitigate such risks, ranging from 
conventional approaches like Failure Mode and Effects 
Analysis (FMEA), Fault Tree Analysis (FTA), and Reliability 
Block Diagrams (RBD) to advanced and dynamic methods such 
as probabilistic risk assessments, Bayesian networks, and 
simulation-based techniques [18],[19],[20]. Machine learning 
[21], [22] and AI-driven models [8],[23] have also been 
explored to improve predictive accuracy and support real-time 
decision-making in reliability risk assessment. Despite all these 
efforts, the gaps exist in understanding their applicability, 
limitations, and compatibility with different stages of software 
development lifecycle. 

C. Need for SDLC-Based Categorization 

The Software Development Lifecycle (SDLC) provides a 
structured and comprehensive framework for planning, 
designing, developing, testing, and maintaining software 
systems [7]. Each segment addresses unique reliability risks 
and acts as a leading indicator to address and tackle risk that 
may cost catastrophic failures at latter stage of product 
development. For instance, poor requirements analysis may 
blind reliability constraints, while deficient testing could allow 
risk to bypass undetected until late in deployment. Studies 
indicate that both the choice of development methodology and 
the factors stressed at each stage significantly amplify 
reliability outcomes [7]. In particular, [7] highlights fifteen 
major factors influencing reliability, with decision made in 
requirement and design during early stages of development 
having the most significant impact on the final product’s 
quality. This further reiterates the mandatory need to implement 
reliability risk assessment techniques across all SDLC, instead 
of applying them only at later stages of development. By 
narrowing existing techniques to specific SDLC stages, this 
paper aims to identify coverage gaps and provide perception 
into how reliability risk assessment practices can be made more 
structured, comprehensive, effective, context-aware and 
aligned with phase specific reliability needs. 

III. RELATED WORK 

The sky is the limit for reliability risk assessment in 
software engineering. The field continues to evolve over time 
to cater to increasing complexity of modern systems and the 
persistent challenge of mitigating software failures. In the most 
recent times, studies have revealed a wide range of approaches, 
ranging from foundational qualitative and quantitative methods 
to advanced machine learning and artificial intelligence-driven 
techniques. These developments objectives are to enhance the 
accuracy, comprehensiveness, and real-time applicability of 
risk assessment across the Software Development Life Cycle 
(SDLC). 

A recent study in 2023 by Jing et al [24] has investigated on 
the conventional reliability risk assessment techniques, such as 
Fault Tree Analysis (FTA) and Failure Mode and Effects 
Analysis (FMEA), which have served as primary tools for risk 
analysis, especially during the initial design phases. For 
instance, FTA to employ a top-down deductive approach to 
identify sequences of events leading to a failure, while FMEA 
uses a bottom-up inductive method to systematically analyse 
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potential failure modes and their consequences. Event Tree 
Analysis (ETA) is often applied alongside these methods to 
explore the range of possible outcomes following an initiating 
event. Despite the widespread use for equipment failure 
diagnosis, root cause analysis, and preliminary safety 
assessments, these methods face several challenges. A paper in 
2022 by Shayan et al [25] evaluated the conventional FMEA, 
though comprehensive and computationally efficient, struggles 
with data fragmentation, inconsistent formats, and limitations 
in the Risk Priority Number (RPN) calculation, which often 
gives equal weight to severity, occurrence, and detection, 
sometimes leading to mis prioritized risks. Similarly, FTA 
encounters difficulties in handling dynamic system 
characteristics and large-scale data, and all three methods 
remain largely manual and prone to subjectivity, especially 
when systems undergo frequent updates. 

To further mitigate uncertainty and data incompleteness in 
traditional methods, researchers have incorporated Fuzzy Logic 
into risk assessment frameworks, giving rise to Fuzzy Fault 
Trees (FFT), Fuzzy Event Trees (FET), and Fuzzy FMEA (F-
FMEA) [18]. Although conventional techniques focus on 
precise probabilities, fuzzy methods which enables the use of 
linguistic variables to shortlist likelihoods and outcomes, 
making these methods suitable for data-scarce environments. 
For example, F-FMEA improves conventional RPN 
calculations by singularly analysing significance, tendency of 
occurrence, and detection, reducing human impact and 
enhancing sensitivity to minute parameter alteration. 
Consequently, integration of fuzzy reasoning has paved ways 
to a more suitable and adaptive risk prioritization in complex 
and uncertain environments. A similar approach using the fuzzy 
FMEA has been applied in the field of cyber security [26] and 
IT-governance [27] to evaluate risk maturity levels. Building 
on these successful enhancement, significant research effort 
continues to improve integration of conventional methods with 
advanced modelling, automation and analytics techniques for 
more comprehensive reliability risk assessment [4],[28],[29]. 

Extending this effort, recent research has focused on 
addressing randomness and dynamic behavior in systems. For 
instance, probabilistic techniques such as Markov Chain 
Models (MCM) and Monte Carlo Simulation (MCS) have been 
introduced [30],[31],[32],[33]. As for MCM, [30] and [31] have 
provided a framework for modeling stochastic transitions 
between system states, while [33] and [34] enables probabilistic 
exploration of risk scenarios under uncertainty in MCS. 
However, a specific study on embedded system by [32] 
discussed that MCS becomes computationally expensive if 
system complexity and the number of variables increase, 
limiting its applicability to large-scale systems. 

Recently, one other significant advancement of Artificial 
Intelligence (AI) has opened new opportunities for reliability 
risk assessment. AI leverage machine learning, deep learning 
and knowledge representation methods to automate fault 
detection, predicting failure probabilities and analyse large 
scale data in real time. With this, new risk assessment 
techniques were explored by a recent study in 2024 [8], 

Knowledge Graphs (KGs), in particular, the Fault Knowledge 
Graphs (FKGs), vector machines and neural network [23].  
These AI powered techniques enable adaptive and self-learning 
reliability risk assessment frameworks. The author has focused 
on using FKGs to assess key parameters like reliability of the 
returned information. Similarly, in 2025 [23], Zhao et all has 
evaluated the use of FKGs to design a multi-level modular 
structure on an electric power system using neural network and 
support vector machines by comparing against conventional 
methods.  With all the efforts, a paper in 2023 [35] has critically 
provided analysis of FKGs that it faces insufficient 
standardized modelling practices and complexity in extracting 
information from unstructured data sources. Nevertheless, by 
further enhancing studies and research on automated techniques 
and ontology construction, the true potential of KGs in 
reliability engineering can be realised and it will be 
groundbreaking. 

In a nutshell, the evolution of reliability risk assessment in 
software engineering shows a shift in pathway from a static 
framework, toward more dynamic, automated, intelligent, and 
data-driven techniques. Conventional methods like FTA and 
FMEA do bring a valuable foundation but tend to get 
ineffective with dynamic system behaviour and bulk datasets 
[24]. Increasingly, probabilistic approaches, fuzzy logic, and 
knowledge graphs address a small sample limitation by 
introducing probabilistic reasoning, uncertainty modeling, and 
structured data integration. 

Future research should address challenges such as 
knowledge graph standardization, hybridizing AI and 
probabilistic methods for improved explainability, and 
developing computationally efficient techniques for large-
scale, real-time applications. Such advancements will be 
critical for ensuring the reliability and resilience of next-
generation software systems 

IV. METHODOLOGY 

This study adopts a structured review approach to analyze 
software reliability risk assessment techniques across the 
software development lifecycle (SDLC). The primary objective 
is to explore how various techniques have been applied, their 
strengths and limitations, and their suitability for addressing 
reliability risks in modern software environments. 

As illustrated in Fig 1, the review process follows five 
interconnected stages: 

• Step 1: Literature Review and Data Collection 

• Step 2: Selection of Relevant Techniques 

• Step 3: Mapping Techniques to SDLC Phases  

• Step 4: Comparative Analysis of Techniques 

• Step 5: Data Synthesis and Research Gaps 

Each stage is explained in the following subsections, 
ensuring a clear and logical flow from gathering information to 
drawing insights and identifying research gaps. 
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Fig. 1. Design procedure. 

A. Literature Review and Data Collection 

The first stage involved peer-reviewed studies from 
academic databases, including IEEE Xplore, Scopus, ACM 
Digital Library, and Google Scholar. Keywords such as 
“software reliability,” “risk assessment techniques,” “reliability 
sub-characteristics,” and “reliability risk analysis” were 
combined using Boolean operators to ensure comprehensive 
coverage. Also, terms such as “reliability AND risk matrix”, 
“reliability AND Probabilistic Risk Assessment” and with other 
risk assessment techniques uniquely were employed to retrieve 
studies emphasizing reliability-related risk modelling methods. 
This approach minimized irrelevant results and ensured that 
only techniques applicable to software reliability evaluation 
were captured. 

To maintain relevance, only studies published in English 
between 2015 and 2025 were included. Non-peer-reviewed 
sources, duplicate studies, and research lacking methodological 
detail were excluded. 

B. Selection of Relevant Techniques 

The next step was to select the techniques that were most 
frequently discussed and demonstrated clear relevance to 
software reliability risk assessment. A simple rating approach 
was used to give a more objective selection basis. 

Each technique was rated on aspects such as: 

• Frequency of application in studies 

• Coverage of reliability sub-characteristics (referring to 
the standard quality model, ISO 25010) 

• Clarity and completeness of methodological description 

• Reported advantages and limitations 

This allowed the review to prioritize techniques with strong 
academic support while still discussing fewer common methods 
for completeness. 

C. Mapping Techniques to SDLC Phases 

Furthermore, techniques were classified according to the 
phases of the Software Development Life Cycle (SDLC) to 
provide practitioners with a clear reference on which techniques 
are most suitable for specific stages of software development, 
bridging the gap between research insights and real-world 
application. 

D. Comparative Analysis of Techniques 

Once the techniques were aligned to SDLC phases, a 
comparative analysis was undertaken to present the information 
in a structured and transparent manner. Specifically, each 
technique was analyzed across the following dimensions: 

• Risk assessment techniques: Name of the technique 

• Overview: Brief description of its approach or 
methodology 

• Domain application: Software domains or system types 
where it has been applied (example: IoT, cloud 
computing, real-time systems, AI) 

• Coverage of reliability sub-characteristics: Mapping to 
reliability characteristics based on software quality 
model ISO 25010. 

• Advantages: Reported strengths such as accuracy, 
scalability, cost-effectiveness. 

• Limitations- Key challenges like implementation 
complexity or lack of empirical validation. 

• References: Key studies supporting the analysis 

This classification ensures a comprehensive, phase-oriented 
perspective for evaluating the suitability of risk assessment 
techniques in modern software environments, enabling both 
researchers and practitioners to select methods best aligned 
with their system requirements. 

E. Data Synthesis and Research Gaps 

After the comparative analysis, findings were synthesized 
to identify patterns, trends, and gaps. This stage helped 
highlight gaps in the literature, such as the lack of empirical 
validation for certain techniques or limited application in 
specific software domains, providing directions for future 
studies. 

Despite its structured approach, this review is limited by 
potential publication bias due to reliance on peer-reviewed 
studies in English and selected academic databases. 
Furthermore, the analysis depends on secondary data without 
empirical testing, which may restrict the generalizability of 
conclusions. Acknowledging these limitations provides 
transparency and highlights opportunities for empirical 
validation in future studies. 

V. RESULTS 

Table I presents a phase-wise summary of software 
reliability risk assessment techniques across the analysis, 
development, and testing stages of the software development, 
and testing stages of the software development lifecycle 
(SDLC). Categorizing techniques by SDLC phase ensures that 
the distinct risk management requirements of each stage are 
adequately addressed, enabling practitioners to apply the most 
suitable methods at the right time. Building on this table, the 
subsequent discussion evaluates each technique in terms of 
overview, domain application, coverage of reliability sub 
characteristics, providing a comprehensive understanding of 
their strengths, weaknesses for modern software environments. 

Step 5: Data Synthesis and Research Gaps

Step 4: Comparative Analysis of Techniques

Step 3: Mapping Techniques to SDLC Phases

Step 2: Selection of Relevant Techniques

Step 1: Literature Review  and Data Collection
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TABLE I  SUMMARY OF SOFTWARE RELIABILITY RISK ASSESSMENT TECHNIQUES ACROSS SDLC PHASES 

Risk 

Assessment 

Techniques 

Overview Domain Application 

Coverage of 

reliability sub-

attributes 

Advantages Limitations References 

REQUIREMENTS 

Risk Matrix  

A qualitative or semi-

quantitative tool that 

categorizes risks by 

severity and likelihood 

to prioritize them. 

- Safety-Critical 

Systems 

- Industrial 

Automation & 

Manufacturing 

- Cloud Computing 

- Real-time and 

Embedded systems 

- Software 

Engineering 

Availability, 

Maturity, 

Recoverability 

- A transparent 

representation of 

risk levels using 

likelihood and 

consequence scales 

- Low 

implementation 

cost 

- Support quick 

decision making 

- Customizable 

(project size, 

different domains, 

risk categories) 

- Communication 

friendly 

- Less efficient in 

modeling complex 

reliability 

behaviors. 

- Subjectivity in 

risk scoring 

- Lack of 

probabilistic 

measures 

- Limited 

predictive 

capability for 

dynamic or real-

time environments 

where risk levels 

evolve quickly 

[36], [37], 

[38] 

Risk-Driven 

Requirement 

Engineering  

A systematic approach 

to derive and prioritize 

requirements based on 

identified risks. 

 - Safety-Critical 

(aerospace, 

healthcare) 

- Large-scale 

enterprise software 

telecommunication 

system) 

-Agile and 

Incremental 

Development 

Maturity, 

Fault Tolerance:  

- Early risk 

identification 

- Improve 

requirement quality 

- Support 

requirement 

prioritization 

- Reduce rework 

costs. 

- Dependent on 

expert judgement 

- Time-consuming 

for large projects 

- Limited tool 

integration 

- Subjective risk 

estimation 

[20], [39] 

Failure-Oriented 

Requirements 

Engineering 

(FORE)  

 

Focus on identifying 

failure modes and their 

impact on requirements 

to mitigate risks early. 

- Safety-critical  

- Large scale 

industrial systems 

- Real-time systems 

- IoT applications 

Maturity 

Fault Tolerance 

 

- Failure 

identification at the 

requirement phase 

- Support early 

fault analysis 

- Integrates with 

safety standards 

- Support 

systematic 

traceability from 

failures to 

requirements 

- Require detailed 

system knowledge 

early in the system 

development 

- Time intensive for 

complex systems 

with many failures 

modes 

- Subjectivity on 

expert driven 

failure modelling 

[40] 

Goal-Oriented 

Risk Assessment 

(GORA) 

 

Identifies risks through 

the lens of system goals, 

ensuring alignment 

between objectives and 

risk mitigation. 

- Complex socio-

technical system 

- Business critical 

software 

- Safety systems 

- Requirement 

engineering 

- Decision support 

systems 

- Policy driven IT 

systems 

Maturity 

- Improve 

traceability from 

risks to system 

objectives 

- Useful in multi-

stakeholder 

environments 

- Support what-if 

analysis 

- Provides 

structured 

modeling linking 

risks to goals, 

obstacles and 

mitigations. 

- Limited reliability 

quantitative 

evaluation 

- High effort for 

large systems with 

many goals 

- Require tools for 

efficient goal 

modeling.  

 

 

[41], [42] 
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Risk-Based 

Requirement 

Prioritization 

 

Prioritize requirements 

based on their 

associated risks to 

ensure critical risks are 

addressed first. 

- Agile projects, 

incremental 

development, time 

constrained software 

releases 

-Cloud software, e-

commerce platforms, 

enterprise applications 

Maturity 

Fault Tolerance 

 

- Ensure critical, 

high-risk 

requirements are 

developed first 

- Cost-effective 

- Fits well with 

Agile and iterative 

methodologies like 

Scrum 

- Support risk-

driven release 

planning 

-  May ignore low-

risk requirements 

that could be 

important for 

reliability 

- Subjective 

prioritization 

- Limited support 

for quantitative risk 

modelling 

[43], [33] 

Probabilistic 

Risk Assessment 

(PRA) in 

Requirements 

 

Quantifies the 

likelihood of risks in 

meeting requirements 

by analyzing statistical 

probabilities 

- Nuclear system 

- Defense system 

- Autonomous 

vehicles 

- Mission critical 

software 

- Model-based 

systems engineering 

for safety and 

reliability 

certifications 

 

Maturity 

Availability 

Fault Tolerance 

 

- Provide 

quantitative, 

probabilistic 

measures of risk. 

- Support early 

decision making 

under uncertainty 

using likelihood 

and consequences 

modelling 

- integrates with 

Fault Tree Analysis 

(FTA) and Event 

Tree Analysis 

(ETA) 

- Enables 

reliability-based 

requirement 

verification early 

- Require extensive 

data for accurate 

probability 

estimation 

- High modelling 

complexity and 

computational costs 

for large systems 

- Steep learning 

curve 

[44], [33], 

[45], [46] 

DESIGN 

Hazard and 

Operability 

Study (HAZOP) 

 

A structured and 

systematic technique to 

identify hazards and 

operability issues in 

processes or systems by 

evaluating deviations 

from design intent. 

- Process control 

system 

- Chemical plants 

- Industrial 

automation 

- Safety critical 

software 

Fault Tolerance, 

Availability 

- Structured 

approach ensures 

no risk scenario is 

overlooked. 

- Suitable for early 

phases, enabling 

proactive risk 

mitigation. 

- Adopted in safety 

standards 

 

- Require time-

consuming 

workshops for 

comprehensive 

coverage. 

 

- Largely 

qualitative 

 

- Subjective to 

expert knowledge 

accuracy. 

[47], [48],  

Fault Tree 

Analysis (FTA) 

 

A top-down, deductive 

approach to identify 

causes of system-level 

failures by analyzing 

fault logic. 

- Aerospace, nuclear 

power plants 

- Automotive safety 

systems. 

Availability, Maturity 

 

- Easy-to-

understand fault 

visualization. 

 

- Supports 

probabilistic failure 

estimation using 

failure rate data. 

 

- Standardized 

technique. 

- Assumes 

independence of 

failures, unrealistic 

for complex 

systems. 

 

- Static analysis, 

cannot handle 

event sequences 

well. 

 

- Large systems 

produce complex, 

unwieldy trees. 

[18], [35], 

[29] 

Event Tree 

Analysis (ETA) 

A forward-looking 

technique that models 

the possible outcomes of 

an initiating event 

through branching event 

sequences. 

- Nuclear safety 

- Aviation risk 

modeling 

- Chemical plants. 

Availability: 

- Forward looking 

approach 

complements FTA 

- Support 

probability 

mapping 

 

- Event paths 

multiply quickly in 

complex systems 

- Quality depends 

on correct events 

- Assumption on 

event independence  

[18], [24] 

Reliability Block 

Diagram (RBD) 

 

Graphical representation 

of system reliability 

structure by connecting 

components in series or 

- Aerospace 

- Manufacturing 

- Power Systems 

Availability, Fault 

Tolerance 

- Provide graphical 

modeling 

- Assumes static 

configuration 
[15] 
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parallel to depict 

dependency 

- Suitable to 

identify critical 

components 

- Limited for 

dynamic or 

stochastic systems 

Monte Carlo 

Simulation 

 

Uses random sampling 

and statistical modeling 

to simulate the 

probability of different 

outcomes and assess 

risk. 

- Finance 

- Cloud Systems 

- Telecommunication 

Fault Tolerance, 

Availability, Maturity 

- Captures 

uncertainty and 

probabilistic 

behavior 

- Handles complex, 

interdependent 

systems 

- Requires high 

computational cost  

- Accuracy depends 

on number of 

simulations 

[33], [34] 

Markov Analysis 

and Modelling 

 

Analyzes system states 

and transitions using 

probabilistic modeling 

for systems with random 

state changes over time. 

- Embedded Systems, 

- Network Systems,  

- Health Systems 

Availability, 

Recoverability, Fault 

Tolerance 

- Models stochastic 

and time-dependent 

failures 

- Supports 

repairable system 

modeling 

- Assumes 

exponential failure 

distributions 

[44], [46] 

[30], [32], 

[31], 

Petri Nets 

A graphical and 

mathematical modeling 

tool to represent 

concurrent, distributed, 

and dynamic system 

processes. 

- Industrial Control 

Systems 

- Distributed Systems 

Fault Tolerance, 

Recoverability 

- Models stochastic 

and time-dependent 

failures 

-Supports 

repairable system 

modeling 

- Modeling 

complexity 

increases with 

system size 

[4], [49] 

Stochastic Petri 

Nets (SPN) 

 

Extends Petri Nets with 

stochastic timing to 

model system behaviors 

and performance under 

uncertainty. 

- Real-time Systems  

- IoT,  

- Cyber-Physical 

Systems 

Fault Tolerance, 

Availability, 

Recoverability 

- Captures 

stochastic behavior 

and timing aspects 

- Supports dynamic 

analysis 

- Higher 

computational cost; 

requires specialized 

expertise 

[50] 

Bayesian 

Networks 

 

A probabilistic 

graphical model that 

represents variables and 

their dependencies using 

directed acyclic graphs. 

- Autonomous 

Vehicles 

- Smart Grids, 

Healthcare 

Fault Tolerance, 

Availability, 

Recoverability, 

Maturity 

- Probabilistic 

reasoning under 

uncertainty 

-Supports learning 

from data and 

evidence updating 

- Scalability issues 

for large systems.  

- Data dependency 

specification 

challenges 

[4],[51] 

Fuzzy Logic 

Mathematical approach 

for handling uncertainty 

and imprecision in risk 

assessment. 

- IoT 

- Edge Computing 

- Decision-Support 

Systems 

Fault Tolerance, 

Recoverability, 

Maturity 

- Handles 

imprecise, 

linguistic, or 

uncertain data well 

- Suitable for 

expert-judgment-

based analysis 

- Subjectivity in 

membership 

function design 

- Lacks 

standardization 

across domains 

-  

[18] 

DEVELOPMENT 

Failure Modes 

and Effects 

Analysis 

(FMEA) 

A systematic approach 

to identify potential 

failure modes, their 

causes, and effects to 

prioritize corrective 

actions. 

Fault Tolerance, 

Availability, 

Recoverability 

- Automotive 

- Aerospace 

- Industrial Systems 

- Structured and 

systematic 

- Early defect 

identification 

- Time-consuming 

- qualitative in 

nature 

- Subjective to 

expert knowledge 

[24], [29] 

Code Review 

and Static Code 

Analysis 

Evaluates code quality 

by manually reviewing 

or using automated tools 

to detect bugs, 

vulnerabilities, and 

design flaws. 

Maturity, Fault 

Tolerance 

- Software 

Development  

- Web Applications 

like Banking Systems 

- Early defect 

detection before 

runtime 

- Automated tools 

available 

- Cost-effective for 

initial phases 

- Limited to static 

properties 

- Cannot detect 

runtime or dynamic 

behavior issues 

[52] 

Reliability 

Growth Models 

 

Models that predict 

system reliability 

improvement over time 

as defects are identified 

and corrected during 

testing. 

Maturity, Availability 
- Telecommunication 

Systems 

- Focus reliability 

improvement over 

testing cycles 

- Quantitative 

assessment of 

defect detection 

- Assumes failure 

patterns follow 

statistical 

distributions 

 

[53], [54], 

[55] 

Dynamic 

Analysis and 

Examine system 

behavior during 

execution to identify 

Fault Tolerance, 

Availability, 

Recoverability 

- Cloud Systems 

- IoT 

- Provides real-

time insights 

- Performance 

overhead 
[56] 
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Runtime 

Monitoring 

 

potential runtime errors, 

resource bottlenecks, or 

reliability risks. 

- Autonomous 

Systems 

- Detects runtime 

anomalies and 

adaptive risks 

- May be complex 

to implement at 

scale 

Test Case 

Prioritization and 

Reliability 

Testing 

Prioritizes test cases 

based on their likelihood 

of revealing faults and 

evaluates reliability 

through systematic 

testing. 

Fault Tolerance, 

Availability, Maturity 

- Embedded Systems, 

Telecom 

- Ensures critical 

functionalities 

tested first 

- Improves fault 

detection efficiency 

- Effectiveness 

depends on quality 

of test cases 

- May require 

domain-specific 

customization 

[43], [57] 

Model-Based 

Reliability 

Assessment 

 

Uses formal models to 

simulate and evaluate 

system reliability based 

on its design, 

configuration, and usage 

scenarios. 

Fault Tolerance, 

Availability, 

Recoverability, 

Maturity 

- Safety-Critical 

Systems (Aerospace, 

Healthcare) 

- Formal and 

structured 

modeling 

- Supports early-

stage risk 

evaluation 

- Allows 

simulation of 

different scenarios 

- High modeling 

effort 

- Requires 

specialized skills 

and accurate 

system 

specifications 

[33], [50], 

[58] 

TESTING 

Reliability 

Growth Testing 

using the 

Software 

Reliability 

Growth Model 

(SRGM) 

technique 

Evaluates the 

improvement in system 

reliability by statistical 

models that estimate the 

reliability of software 

systems by analyzing 

failure data over time to 

predict future reliability. 

Maturity, Fault 

Tolerance 

- Software 

Development 

- Telecommunications 

- Defense 

- Quantitative 

evaluation of 

reliability 

improvement over 

time 

- Requires 

historical failure 

data  

- Ineffective to 

dynamic changing 

environments 

[53], [59] 

Fault Injection 

Testing 

 

Deliberately introduces 

faults into a system to 

evaluate their fault 

tolerance and recovery 

mechanisms. 

Fault Tolerance, 

Recoverability 

- Cloud Systems 

- Automotive 

- Safety-Critical 

Software 

- Evaluates system 

robustness under 

failure conditions 

- Reveals hidden 

vulnerabilities 

- May be costly or 

risky in production-

like environments 

[60] 

Model-Based 

Reliability 

Testing (MBT) 

 

Uses formal models of 

system behavior to 

derive test cases and 

evaluate reliability. 

Fault Tolerance, 

Availability, Maturity 

- Aerospace, 

- Healthcare 

- Embedded Systems 

- Systematic test 

generation from 

formal models 

- Improves 

coverage and 

defect detection 

- High modeling 

effort  

- Requires formal 

specifications 

[61], [62] 

Reliability 

prediction 

models 

 

Uses mathematical 

models to estimate 

system reliability based 

on design parameters 

and historical data. 

Fault Tolerance, 

Availability, Maturity 

- Defense 

- Aerospace 

- Software 

Engineering 

- Supports early 

estimation of 

reliability before 

deployment 

- Quantitative risk 

assessment 

- Accuracy depends 

heavily on data 

quality and 

assumptions 

[22] 

Scenario-based 

testing for 

reliability 

 

Focuses on testing 

specific scenarios to 

evaluate reliability 

under predefined 

conditions. 

Availability, Fault 

Tolerance, 

Recoverability 

- Automotive 

- IoT 

- Real-Time Systems 

- Captures real-

world operational 

conditions 

- Effective for 

stress and edge-

case testing 

- Scenario design 

complexity 

- May not cover 

unexpected runtime 

behaviors 

[63] 

Fault Knowledge 

Graphs   

Knowledge-driven 

approach where 

information about 

system faults, failure 

modes, causes, and their 

interrelationships is 

represented as a graph 

structure 

Availability, Fault 

Tolerance, 

Recoverability 

- AI Systems 

- Cloud Computing 

- Complex Software 

Architectures 

- Enables fault 

pattern analysis 

using structured 

knowledge 

representation 

- Supports root 

cause analysis 

- Still emerging 

- Limited 

standardization; 

requires high-

quality knowledge 

bases 

[35] 

VI. DISCUSSION 

The categorization of reliability risk assessment techniques 
across software development lifecycle (SDLC) phases, as 
summarized in Table I, provides a structured perspective on 

when and how these methods are applied by linking techniques 
to specific phases, analysis, design, development, and testing. 
It also enables practitioners to select methods that align with the 
unique risk management needs of each stage, avoiding the 
common pitfall of relying on a one-size-fits-all approach. 
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In the requirement phase, techniques such as Risk Matrix, 
Risk-Driven Requirement Engineering, Failure-Oriented 
Requirements Engineering (FORE), Goal-Oriented Risk 
Assessment (GORA), Risk-Based Requirement Prioritization, 
and Probabilistic Risk Assessment (PRA) enable early-stage 
identification and prioritization of risks. 

Next, in the design phase, techniques such as Hazard and 
Operability Study (HAZOP), Fault Tree Analysis (FTA) , Event 
Tree Analysis (ETA), Reliability Block Diagrams (RBD) [15], 
Monte Carlo Simulation, Markov Models, Petri Nets [35], 
Stochastic Petri Nets (SPN), Bayesian Networks [64], and 
Fuzzy Logic provide deeper insights into system behavior and 
potential failure paths. 

Further, the development phase introduces Failure Mode 
and Effects Analysis (FMEA), Code Review and Static Code 
Analysis, Reliability Growth Models [54], Dynamic Analysis 
and Runtime Monitoring, Test Case Prioritization and 
Reliability Testing, and Model-Based Assessment to ensure 
software reliability as code implementation progresses [4]. 

Lastly, in the testing phase, as systems transition into 
validation, techniques like Software Reliability Growth Models 
(SRGM) [59], Fault Injection, Model-Based Reliability 
Testing, Reliability Prediction Models, Scenario-Based Testing 
for Reliability, and Fault Knowledge Gaps Analysis ensure 
comprehensive risk evaluation under realistic operational 
conditions. 

Despite the availability of diverse risk assessment 
techniques across the SDLC, one major research gap [65] lies 
in the fragmented treatment of reliability sub-characteristics 
[64]. Many techniques either focus on overall system reliability 
without distinguishing between sub-characteristics such as fault 
tolerance, availability, recoverability, and maturity, or they 
emphasize only one aspect while neglecting others [4]. For 
example, Fault Tree Analysis (FTA) and Reliability Block 
Diagrams (RBD) primarily evaluate system failure 
probabilities and availability but provide little insight into 
recoverability or fault tolerance mechanisms. Conversely, 
Bayesian Networks and Stochastic Petri Nets (SPN) are strong 
in modeling fault tolerance and dynamic behavior but are rarely 
extended to evaluate maturity or maintainability, leading to 
incomplete risk profiles. This fragmented coverage hinders 
practitioners from understanding how different reliability sub-
attributes interact, for instance, a system might have high fault 
tolerance yet fail to recover quickly from unexpected outages, 
compromising operational continuity [66]. 

Another critical gap concerns the domain-specific nature of 
reliability requirements. Many existing techniques were 
designed for general-purpose reliability analysis and do not 
adequately address domain-driven reliability priorities [67]. For 
example, recoverability is crucial in financial systems where 
transaction consistency and disaster recovery are essential, 
whereas fault tolerance and real-time failure detection dominate 
autonomous vehicle and industrial automation domains. 
Similarly, availability and service continuity are top priorities 
in telecommunication networks and cloud platforms, where 
downtime directly impacts service quality and revenue. 
However, most current methods fail to provide customized 

reliability assessment frameworks that align with the unique 
risk profiles, operational constraints, and regulatory 
requirements of these domains [68]. 

Moreover, as emerging domains such as AI-driven 
applications, IoT ecosystems, and cyber-physical systems 
introduce dynamic operational behaviors, data uncertainty, and 
real-time decision-making, conventional methods like 
Reliability Growth Models struggle to capture the evolving risk 
landscape. This highlights [12] the need for adaptive, domain-
aware risk assessment approaches that integrate multiple sub-
characteristics, model interdependencies, and align reliability 
priorities with the specific operational and safety requirements 
of diverse application areas. 

VII. CONCLUSION AND FUTURE WORK 

The study highlighted the evolution of reliability risk 
assessment techniques across software lifecycle phases, 
revealing significant progress in modeling, analysis, and 
prediction. However, findings indicate that despite 
methodological diversity, many approaches remain phase-
specific, static, or computationally demanding, limiting their 
adaptability to dynamic, data-rich software environments. 
Moreover, the absence of standardized evaluation benchmarks, 
limited domain-specific tailoring, and poor alignment with 
modern development practices such as agile and DevOps hinder 
practical adoption. 

Future research should focus on developing integrated, 
adaptive, and benchmarked reliability frameworks that balance 
accuracy, scalability, and usability while accommodating the 
complexity and dynamism of modern software systems. 
Emphasis on real-time analytics, AI-driven risk prediction, 
automated scenario simulation, and cross-domain 
customization will be essential. Furthermore, extending 
research toward edge computing, cyber-physical systems, and 
autonomous platforms offers opportunities to validate and 
refine techniques under safety-critical and resource-constrained 
conditions, ensuring reliability assurance remains robust in 
next-generation software landscapes. 
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