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Abstract—Human action recognition has many applications in 

different scenarios. With the advancement of wireless sensing 

and the widespread deployment of Wi-Fi devices, the perception 

technology of Wi-Fi channel state information (CSI) has shown 

great potential. Related studies identified actions by capturing 

specific attenuation and distortion features caused by human 

posture on CSI. These methods are less susceptible to the effects 

of lighting and object occlusion. However, they have yet to 

adequately extract information within CSI. The challenge of 

enhancing model performance through the comprehensive 

utilization of information features within different dimensions 

remains an imperative area. To address this, a spatio-temporal 

hybrid neural network model named WiTS is proposed. It 

integrates the advantages of different neural networks, using 

CNN to extract spatial features, combining TCN and Bi-LSTM 

for dual temporal dimension modeling, and incorporating 

Transformer's global attention mechanism to achieve 

comprehensive extraction and multi-level fusion of spatio-

temporal features. Additionally, this study further optimizes the 

original WiTS model from three aspects. The Experiment on 

WiAR and CSIAR datasets show that the model achieves average 

accuracy rates of 95.75% and 96.71%, respectively, with F1-

scores exceeding 96%. The model has only 2.19 million 

parameters and less than 560 million FLOPs, offering significant 

advantages in terms of lightweight design, making it suitable for 

deployment on limited-computing edge terminals while meeting 

real-time requirements. 
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I. INTRODUCTION 

The advent of wireless sensing technology has led to 
significant advancements in perception technology based on 
Wi-Fi CSI, which has demonstrated considerable potential. It 
can be applied to many fields, with the most notable being 
human action recognition [1-2]. For instance, in the field of 
smart homes, wireless sensing could recognize users' hand 
gestures to control electronic devices. In the gaming field, 
action capture can be used to manipulate characters in real 
time to enhance the gaming experience. In the field of 
security, CSI changes in monitored areas can be captured to 
detect anomalies. In the medical and elderly care fields, 
wireless sensing technology can be applied for respiratory 
monitoring, fall detection, etc. [3]. A Wi-Fi-based human 
action recognition method has been developed that can detect 
human movements in a signal coverage environment. It 
utilizes sensors to collect data such as CSI and received signal 
strength (RSS). This method is distinct from both visual 
perception methods and those that employ wearable devices 

for perception, and it possesses three primary advantages. 
Firstly, the Wi-Fi-based perception is unaffected by lighting 
conditions and can be used in any lighting environment. 
Secondly, Wi-Fi signals are less susceptible to obstruction by 
objects and can penetrate obstacles such as walls, furniture, 
and appliances, enabling accurate recognition of human 
movements behind obstructions. Thirdly, unlike visual data 
collection methods, this approach abstracts human movements 
by identifying the specific disturbances they cause to signals, 
offering inherent advantages in terms of privacy protection 
and making it suitable for deployment in private spaces such 
as bedrooms and bathrooms [4]. At present, methods for 
human action recognition using Wi-Fi sensing could be 
broadly classified into two categories: machine learning 
methods and deep learning methods. The content below will 
introduce pertinent research on action recognition based on 
these two methods. 

In the field of machine learning-based methods, numerous 
researchers have explored this domain. As posited by He et al. 
[5], the WiG system was the inaugural system to utilize CSI 
for this task. The Birge-Massart filter was utilized to denoise 
the signal, thereby preserving significant information. The 
Local Outlier Factor and Support Vector Machine (SVM) 
were employed to extract feature data and perform action 
recognition. In a related study, Zhang et al. [6] extracted 
domain-independent gesture features at lower signal levels. 
They proposed a general method applicable to different 
environments that effectively achieves cross-domain 
recognition. Xian et al. [7] modified the K-means algorithm to 
facilitate the recognition of fine-grained actions. Dang et al. 
[8] combined the Dynamic Time Warping (DTW) algorithm 
and SVM to match and recognize different actions, effectively 
improving recognition accuracy. The amplitude and phase 
difference of subcarrier levels in wireless signals was found to 
be correlated with human actions by Hao et al. [9]. They 
combined K-means and Bagging algorithms to optimize SVM, 
achieving the recognition task at a low computational cost. 
Huang et al. [10] discovered that Nonlinear Phase Error 
Variation (NLPEV) data in CSI exhibits good stability and 
sensitivity to actions, and utilized it to achieve effective HAR 
in Co-channel Interference (CCI) scenarios. Chelli et al. [11] 
developed a machine learning framework for action 
recognition based on average Doppler shift, using KNN for 
action classification, achieving good action recognition 
performance. Cheng et al. [12] utilized CSI phase differences 
to construct an extended matrix for action feature extraction 
and employed a Gaussian mixture-hidden Markov model to 
identify CSI feature data. This approach has been shown to 
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reduce system computation time and improve the fault 
tolerance rate of segmentation. 

In contrast to machine learning, which necessitates the 
laborious process of manual feature extraction, methods based 
on deep learning have undergone rapid development in recent 
years. Zou et al. [13] employed CNNs to extract the most 
significant features from signals for the purpose of action 
recognition. Muaaz et al. [14] proposed a system named Wi-
Sense, which employs CSI ratio methods to mitigate noise and 
phase shift effects. This is followed by the generation of 
spectral maps from preprocessed data and the training of a 
CNN model using spectral images. Huan et al. [15] proposed a 
novel activity segmentation method utilizing signal variance 
differences between action and non-action segments to 
achieve a balance between robustness and property. Duan et 
al. [16] proposed a sorting algorithm based on subcarrier 
correlation and inversion to extract different user signals. The 
authors combined a bidirectional GRU with an attention 
mechanism and a convolutional neural network to achieve 
multi-user action recognition. Meng et al. [17] employed a 
sparse recovery approach for identifying the primary paths 
affected by human activities, and constructed a matrix based 
on the phase differences between adjacent antennas. 
Thereafter, they proposed a bidirectional GRU structure with 
an attention mechanism for automatic learning and feature 
extraction from the matrix. Gao et al. [18] developed a 
geometric representation of different human hand gestures and 
used a backtracking search algorithm to recognize them. Cui 
et al. [19] employed CNN to extract features between different 
subcarriers and proposed an integrated architecture comprising 
multiple layers of perception, random forests, and SVM to 
improve recognition accuracy. 

In summary, there are several challenges associated with 
using machine learning methods for action recognition. 
Manual feature extraction requires significant labor costs and 
is subject to the loss of implicit yet crucial information, which 
complicates the effective differentiation of similar actions. 
Furthermore, the efficacy of this method is contingent upon 
the availability of high-quality data; in the absence of such 
data, the recognition accuracy cannot attain a high level. 
While deep learning methods have demonstrated efficacy in 
the extraction of CSI, existing approaches generally utilize 
spatial features in signals, failing to effectively extract features 
from the temporal domain. Therefore, developing a model 
which could parse the rich radio signal strength and phase 
variation information contained in CSI signals to extract 
features from both the temporal and spatial dimensions 
remains an urgent problem to be solved. To address this issue, 
this study proposes a Wi-Fi-based human action recognition 
model using a spatio-temporal hybrid neural network. The 
primary contributions of this paper are as follows: 

1) A hybrid architecture model, designated as WiTS, was 

developed, incorporating TCN, CNN, Bi-LSTM, and 

Transformer networks, which can effectively extract and fuse 

the temporal and spatial feature information in Wi-Fi CSI to 

achieve high-precision human action recognition. 

2) The structure of the CNN module was optimized by 

using a spatial attention block to enhance important spatial 

locations and replacing traditional convolutions with partial 

convolutions [20] to reduce parameters. 

3) An attention mechanism was employed into the Bi-

LSTM to enhance the sensitivity and expressive capability to 

key information segments. 

4) The Sparrow Search Algorithm (SSA) [21] was 

employed for hyperparameter optimization, further enhancing 

the performance of model. 

The rest part is divided into five sections: Section II 
introduces related research. Section III provides a 
comprehensive illustration of the improved methodology. 
Section IV chiefly presents the experimental configuration and 
dataset. Section V shows the results of ablation experiments 
and comparative experiments. Section VI summarizes the 
entire work. 

II. RELATED WORKS 

To address the issues previously mentioned regarding Wi-
Fi CSI in human action recognition and achieve more 
comprehensive extraction of features, this paper utilizes four 
deep learning models, CNN, TCN, Bi-LSTM, and 
Transformer, to construct a hybrid architecture. The 
subsequent content will offer a concise overview of these 
seminal networks. 

Convolutional Neural Network (CNN) is a type of deep 
learning model that has been specifically developed for 
processing grid-like information, which includes convolution, 
pooling, and fully connected layers. Convolution layers obtain 
features through local receptive fields and weight sharing. 
Pooling layers like max pooling and average pooling reduce 
data dimensions and enhance translation invariance. Fully 
connected layers are employed for final classification or 
regression tasks [22]. The advantage of CNNs lies in their 
hierarchical feature learning capability, where shallow 
convolutions capture low-level features, while deep networks 
extract high-level semantic features [23]. In recent years, 
CNNs have achieved significant progress in image 
recognition, object detection and other domains, thus 
becoming an integral component of deep learning research. 

Temporal Convolutional Network (TCN) is a network to 
process time series data. The main structure of TCN 
principally comprises causal convolution, dilated convolution, 
and residual connection structure. It ensures temporal 
dependency through causal convolution; combines dilated 
convolution to expand the receptive field, thereby effectively 
capturing long-term dependencies; and introduces residual 
connections to moderate the training difficulties of deep 
networks [24]. Compared to traditional recurrent neural 
networks (RNNs), TCN has faster training speeds and more 
stable gradients, and they perform exceptionally well in 
various temporal tasks [25]. 

Long Short-Term Memory (LSTM) is a type of RNN to 
address the long-term dependency issue inherent in general 
RNNs [26]. LSTM introduces three gating mechanisms and 
the concept of a cell state, in which information can be added, 
deleted, or modified. The forget gate decides which 
information will be removed from the cell state. The input 
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gate decides which new information will be added to it. The 
function of the output gate is to decide which information will 
be output from it. During the update process, the cell state is 
primarily updated through element-wise multiplication and 
addition, and gradients are linearly propagated along the time 
axis during backpropagation. This enables LSTM to reliably 
learn long-term dependencies in sequences and effectively 
mitigate the gradient vanishing or exploding issues that plague 
traditional RNNs. Bidirectional Long Short-Term Memory 
(Bi-LSTM) was proposed by Mike Schuster and Kuldip K. 
Paliwal [27]. This network consists of a forward LSTM and a 
backward LSTM connected in parallel. The forward layer 
reads the sequence in time order to obtain the preceding 
information, while the backward layer reads the sequence in 
reverse time order to obtain the subsequent information. This 
allows the network to use both past and future context, 
furthering the accuracy of tasks such as classification and 
prediction. 

The Transformer model was first proposed by Vaswani et 
al. [28] in 2017 and completely varied the paradigm of natural 
language processing. In contrast to conventional RNN and 
CNN, the Transformer utilizes attention mechanisms as its 
primary approach to capture global dependencies in input 
sequences. This enables parallel computing and facilitates 
more efficient modeling of long-range dependencies. The core 
structure includes multi-head attention and position-wise feed-
forward networks, and it also incorporates residual 
connections and layer normalization to optimize the training 
process. In contemporary applications, the Transformer has 
been employed not only in natural language processing but 
also in a variety of downstream tasks, including computer 
vision, speech processing, and multimodal learning through 
hybrid architectures that integrate the Transformer with other 
models [29]. 

III. IMPROVED METHODOLOGY 

This paper develops a hybrid architecture network named 
WiTS based on CNN, TCN, Bi-LSTM, and Transformer to 
fuse temporal and spatial feature information. The network 
structure is shown in Fig. 1. 

For spatial feature extraction, a CNN branch is utilized to 
construct a feature encoder that captures spatial local 
correlations of the input data through local connections and 
weight sharing. For temporal feature extraction, the temporal 
encoder is constructed using dilated causal convolutions from 
TCN to leverage its exponentially increasing receptive field 
and capture temporal sequence features. Simultaneously, a Bi-

LSTM branch utilizes its gated memory mechanism to 
explicitly model short-term to long-term dependencies in the 
temporal dimension. This complements TCN’s feature 
extraction and forms a dual-temporal dimension modeling 
approach that combines parallel capture with recursive 
memory. To fully examine the deep correlations between 
different features, the spatio-temporal features extracted by the 
three branches are integrated and import to the Transformer 
that uses its self-attention mechanism to establish global 
dependencies. This architecture complements the spatial 
feature extraction capabilities of CNN, the temporal feature 
extraction capabilities of TCN and Bi-LSTM, and the global 
context modeling capabilities of Transformer, thereby 
achieving a more comprehensive and deeper feature 
representation of complex spatio-temporal patterns. 

This paper also introduces three improvements based on 
this model, namely improvements to the LSTM module, 
improvements to the CNN module, and hyperparameter 
optimization. The subsequent subsections will provide a 
detailed introduction to the optimization content. 

A. LSTM Module Improvement 

In comparison with the conventional Bi-LSTM module, 
this model incorporates an attention mechanism, assigning 
distinct weights to the output of each time step of the LSTM, 
enabling the model to concentrate on the most critical 
segments in the sequence rather than simply relying on the last 
hidden state. Fig. 2 shows the optimized LSTM module. The 
calculation process of the attention mechanism is as follows. 

Assume that the output of Bi-LSTM is: 

𝑋 = [ℎ1,ℎ2 ,⋯ , ℎ𝑇]  (1) 

Where ℎ𝑡 ∈ 𝑅256，𝑋 ∈ 𝑅𝐵×𝑇×256, and 256 is the feature 

dimension of each time step output of Bi-LSTM. 
Subsequently, the output ℎ𝑡 of each time step undergoes linear 
transformation and Tanh activation: 

𝑒𝑡 = tanh(𝑤𝑇ℎ𝑡 + 𝑏)  (2) 

Where 𝑤 ∈ 𝑅256 and 𝑏 ∈ 𝑅. 

After the transformation and activation of the output of 
each time step, the attention scores of all time steps are to be 
concatenated: 

𝑒 = [𝑒1 ,𝑒2 ,⋯ , 𝑒𝑇] ∈ 𝑅𝐵×𝑇     (3) 

For each sample, all time step scores are normalized using 
Softmax to obtain attention weights: 

 

Fig. 1. The structure of WiTS. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

106 | P a g e  
www.ijacsa.thesai.org 

𝛼𝑡 =
exp(𝑒𝑡)

∑ exp(𝑒𝑘)𝑇
𝑘=1

   (4) 

where, 𝛼 = [𝛼1,𝛼2 ,⋯ , 𝛼𝑇] ∈ 𝑅𝐵×𝑇. 

Weight the total outputs of all time steps of the Bi-LSTM 
using attention weights to get the global feature vector of the 
whole sequence after attention weighting: 

𝑠 = ∑ 𝛼𝑡ℎ𝑡
𝑇
𝑡=1    (5) 

where, 𝑠 ∈ 𝑅𝐵×256, ℎ𝑡 is the output of Bi-LSTM at time 
step t, and 𝛼𝑡 is the attention weight at that time step. 

 

Fig. 2. The structure of optimized Bi-LSTM module. 

The calculation process reveals that, in contrast to the 
conventional Bi-LSTM module, which utilizes the final 
moment as the output, the enhanced Bi-LSTM prioritizes time 
steps that are designated as crucial by the attention mechanism 
within the sequence. It also integrates information from all-
time steps within the sequence, thereby offering a more 
comprehensive approach. This design effectively improves the 
ability to model long sequences and complex dependencies, 
and it also increases the richness and discriminative power of 
feature expression. 

B. CNN Module Improvement 

To reduce the inference time, partial convolution is 
utilized in CNN instead of the traditional convolution structure 
in CNN networks. Partial convolution was proposed by Jierun 
Chen et al [20]. They believe that although the information in 
the feature maps to be detected is gradually extracted and 
aggregated by the model as the depth of the convolutional 
neural network increases, the feature maps of different layers 
often contain a lot of redundant information. Consequently, 
they enhanced the convolution block to reduce the processing 
of such repetitive information. The structure of Partial 
Convolution is shown in Fig. 3. The primary implementation 
method involves the combination of a 𝑘 ×𝑘  convolution 
with  𝑐𝑝  channels and a 1 × 1  convolution with 𝑐 − 𝑐𝑝 

channels to form a hammer-shaped convolution structure, 
which replaces the traditional 𝑘 × 𝑘  convolution structure 
with 𝑐 channels. In this convolution form, only a portion of 
the channels utilize 𝑘 × 𝑘  convolution, while the remaining 
portions are processed using 1 × 1 convolution kernels. This 
approach has been demonstrated to markedly reduce 
parameters necessary for convolution operations, thereby 
enabling more efficient feature extraction. Additionally, it 
allows for the adjustment of the proportion of two types of 
convolutions to minimize potential loss of useful feature 
information. 

 

Fig. 3. (a) Convolutional variants; (b) A convolutional framework consisted 

of one PConv, and one 1*1 Conv; (c) One regular convolutional structure. 

To enhance the weights of important spatial locations in 
the input feature map while suppressing unimportant regions, 
a spatial attention mechanism module was added to the CNN 
module, whose structure is shown on the left part of Fig. 4. 
The primary working principle is as follows: First, the average 
and maximum values are calculated for the input feature map 
along the channel dimension, yielding two single-channel 
feature maps. Second, these two maps are concatenated to 
form a two-channel feature map. Third, a convolutional layer 
is utilized to reduce the two-channel feature map to a one-
channel feature map, thereby obtaining a spatial attention 
weight map. The weights are then normalized to the range of 0 
to 1 using a Sigmoid activation function. This weight map is 
then multiplied by the original feature map to enhance 
important spatial locations. 

This improved CNN module is called the PCNN module, 
and its structure is shown on the right part of Fig. 4. 

 

Fig. 4. The structure of PCNN module. 

C. Hyperparameter Optimization 

The SSA was utilized for the purpose of hyperparameter 
optimization, with the objective of further enhancing the 
model's detection capabilities. SSA is a swarm intelligence 
optimization method inspired by sparrows' foraging and anti-
predation behaviors. The algorithm simulates the collaboration 
and division of labor among sparrows during the process of 
searching for food and evading predators to solve complex 
optimization problems. The algorithm first randomly 
generates a set of sparrow individuals, with each individual 
representing a solution. The classification of sparrows is 
typically divided into three distinct categories: The roles of 
producer, scrounger, and scout are delineated. Producers are 
responsible for global search and guiding the population's 
movement. Scroungers follow Producers and perform local 
search. Scouts are tasked with escaping local optima. After 
each iteration, the fitness of each sparrow (i.e. the quality of 
the solution) is evaluated, and roles and positions are adjusted 
accordingly. This process is repeated iteratively until the 
maximum number of iterations is reached or convergence 
conditions are met. The derivation process of the sparrow 
search algorithm is illustrated below. 
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Initialization of the population is the first step. Assuming a 
population size of N, the position of each sparrow is 
represented as 𝑋𝑖 = (𝑋𝑖1 , 𝑋𝑖2 ,⋯𝑋𝑖𝑑) , where d is the 
dimension of the problem. The initialization formula is as 
follows: 

𝑋𝑖
0 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑() × (𝑈𝐵− 𝐿𝐵) (6) 

In this formula, 𝐿𝐵 and 𝑈𝐵 represent the lower and upper 
bounds of the variable, respectively, and 𝑟𝑎𝑛𝑑()  denotes a 
random number within the interval [0,1]. 

The number of producers is calculated as 𝑃𝐷 × 𝑁, where 
𝑃𝐷 is typically set within the range of 0.2 to 0.3. The position 
update formula is as follows: 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ∙ exp (

−𝑖

𝛼∙𝑇
), 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄 ∙ 𝐿,  𝑅2 ≥ 𝑆𝑇

  (7) 

In this formula, 𝑋𝑖,𝑗
𝑡  denotes the position of the ith sparrow 

in the jth dimension at generation 𝑡 . The constant 𝛼  is 
typically equal to 1, 𝑇 signifies the maximum iterations, 𝑅2 is 
a number in the range [0, 1], 𝑆𝑇 is the safety threshold, which 
is typically equal to 0.8, 𝑄 is a number following a standard 
distribution, and 𝐿 is a vector of all ones. In scenarios where 
𝑅2 < 𝑆𝑇, the sparrow is in a safe state and engages in a global 
search employing exponential decay. In scenarios where, 
 𝑅2 ≥ 𝑆𝑇 , the sparrow perceives a threat and employs 
Gaussian perturbation to augment its capacity to evade local 
optima. 

The number of scroungers is (1 − 𝑃𝐷)× 𝑁 , and the 
position update is based on Formula 8. 

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 ∙ exp (
𝑋𝑤𝑜𝑟𝑠𝑡,𝑗

𝑡 −𝑋𝑖,𝑗
𝑡

𝑖2
) ,              𝑓𝑖 > 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 | ∙

𝐴+

𝐴𝑇∙𝐴
,   𝑓𝑖 = 𝑓𝑔

(8) 

𝑋𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡  represents the position of the worst sparrow in the 

jth dimension in the tth generation, 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡  represents the 

position of the best sparrow in the jth dimension in the tth 
generation, 𝑓𝑖  is the fitness of the ith sparrow, and 𝑓𝑔  is the 

global optimal fitness. 𝑄  is a random number following a 
normal distribution, 𝐴 is a random vector following a normal 
distribution, and 𝐴+ is the Moore-Penrose generalized inverse 
of 𝐴 . When the follower's fitness is worse than the global 
optimum, it moves away from the worst individual to avoid 
getting stuck in a local optimum. When the fitness equals the 
global optimum, it moves closer to the best individual to 
enhance development capabilities. 

The scouts randomly select a portion of the scroungers, 
with the number being 𝑆𝐷 × 𝑁. The value of 𝑆𝐷 is typically 
between 0.1 and 0.2. The following formula is for position 
updating: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝛽 ∙ |𝑋𝑖,𝑗
𝑡 − 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 |  (9) 

Among these, 𝑋𝑖,𝑗
𝑡+1  represents the position of the ith 

sentinel in the jth dimension in the 𝑡 + 1 generation, 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡  

represents the position of the globally optimal individual in 

the jth dimension in the tth generation, 𝑋𝑖,𝑗
𝑡  represents the 

position of the ith sentinel in the jth dimension in the tth 
generation, and 𝛽  is a random number following a normal 
distribution. When the population becomes stuck in a local 
optimum, the scouts randomly jump to new positions near the 
optimal individual, thereby increasing the chance of 
discovering new optimal solutions and enhancing the diversity 
of the global search. After each iteration, the fitness of each 
sparrow is calculated, and the roles of producers, scroungers, 
and scouts are dynamically adjusted based on fitness rankings 
to enhance the algorithm's global optimization capability and 
convergence speed. The application of SSA to the task of 
optimizing deep learning model hyperparameters involves the 
mapping of these parameters to the SSA search space and the 
definition of a fitness function, thereby enabling an automatic 
search for the optimal combination. 

Subsequent experiment results demonstrate that these three 
optimizations based on the original model have all had 
positive effects, and that this hybrid architecture significantly 
improves performance in human action recognition tasks 
compared to a single network structure. 

IV. SENSING PRINCIPLE AND ENVIRONMENT 

CONFIGURATION 

A. Wi-Fi Sensing Principle 

In an indoor environment, a Wi-Fi sensing system is 
composed of two primary components: a Wi-Fi signal 
transmitter (Tx) and a Wi-Fi signal receiver (Rx). When Wi-Fi 
signals propagate through stationary objects within a room, 
such as floors, ceilings, and furniture, the angles and paths of 
reflection remain relatively stable. Consequently, in the 
absence of external interference, the CSI signals received at 
each time stamp remain largely unchanged. However, in 
environments characterized by dynamic targets, such as 
individuals walking or performing specific actions indoors, the 
position and posture of the human body undergo fluctuations 
at distinct temporal intervals. This causes channel interference 
such as amplitude attenuation and phase distortion when the 
Wi-Fi signal propagates to the human body, resulting in 
changes to the CSI received at the receiver. Channel 
interference caused by the same action is generally similar, 
while channel interference caused by different actions varies 
significantly [30]. 

Wi-Fi technology adheres to the IEEE 802.11 standard, 
employing OFDM to modulate signals. OFDM divides the 
spectrum into multiple mutually orthogonal subcarriers, which 
do not interfere with each other. This frequency division 
method enables the modulated signal to resist multipath 
propagation and interference, thereby improving signal 
robustness. Therefore, this method is widely used in the field 
of wireless communication. The used dataset is comprised of 
data collected from wireless network cards that are following 
this standard. Through Wi-Fi CSI signals, detailed amplitude 
and phase data can be obtained. This data can be used for 
channel state analysis to understand the multipath effects and 
interference conditions during signal propagation. 

The process of Wi-Fi signal transmission is shown in 
Formula 10: 
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𝑌⃗ = 𝐻𝑋 + 𝑛   (10) 

𝑌⃗ means the received signal vector, 𝑋  means the 
transmitted signal vector, 𝐻 denotes CSI, which describes the 
channel frequency response of the subcarriers between the 
transmitter and receiver, and 𝑛 denotes the noise vector. 

The CSI can be expressed by the following formula: 

𝐻 = [

𝐻1,1 ⋯ 𝐻1,𝑀

⋮ ⋱ ⋮
𝐻𝑁,1 ⋯ 𝐻𝑁,𝑀

]  (11) 

𝑀 represents the number of subcarriers. Typically, a larger 
bandwidth corresponds to a greater number of subcarriers. 
𝐻𝑁,𝑀  is the CSI signal transmitted by the Mth subcarrier at 

time N. 

The CSI measurement value for the Mth subcarrier at time 
t can be expressed by Formula 12: 

𝐻𝑡 = |𝐻𝑡|𝑒
𝑗∠𝐻𝑡   (12) 

|𝐻𝑡| represents the amplitude of the Mth subcarrier at that 
moment, and ∠𝐻𝑡 represents its phase data. 

CSI can be further decomposed into static and dynamic 
components. The former is caused by stationary objects in the 
environment, while the latter is caused by human movements. 
Therefore, CSI can also be expressed in the formula below: 

𝐻 = ∑ 𝛼𝑠(𝑓𝑘)𝑒
−𝑗2𝜋𝑓𝑘𝜏𝑠 + ∑ 𝛼𝑑(𝑓𝑘, 𝑡)𝑒

−𝑗2𝜋𝑓𝑘𝜏𝑑(𝑡)𝐷
𝑑=1

𝑆
𝑠=1 (13) 

The first part represents the static component, where 𝑆 
denotes the number of static paths, 𝛼𝑠(𝑓𝑘) denotes the static 
attenuation coefficient, and 𝜏𝑠 denotes the time delay of the 
static path. The second part represents the dynamic 
component, where 𝐷 denotes the number of dynamic paths, 
𝛼𝑑(𝑓𝑘, 𝑡)  denotes the dynamic attenuation coefficient, and 
𝜏𝑑(𝑡) denotes the time delay of the dynamic path. Unlike the 
static component, the dynamic component varies with time, 
meaning that changes in the dynamic component occur during 
the period from the start of an action to its completion. 
Therefore, Wi-Fi-based action recognition primarily achieves 
action classification by identifying the characteristic changes 
in the dynamic components of different actions. 

B. Experimental Environment and Dataset 

All experiments in this research were conducted under 
identical conditions to eliminate the effect of environmental 
factors on the results. The operating environment and main 
parameter configurations are shown in Table I and Table II. 

In this study, two public datasets, CSIAR [30] and WiAR 
[31], were selected to train the model and verify its 
recognition performance. The categories of human actions 
included in the datasets are shown in Table III. 

The WiAR dataset was collected in a meeting room 
measuring 6m × 8m, with 4m between the transmitter and 
receiver, and a distance of 1m between the volunteer 
performing the actions and the transmitter. The data collection 
was carried out by three volunteers, each performing 16 types 
of coarse-grained actions, with each action repeated 30 times, 
resulting in a total of 1,440 samples. This study selected 10 of 

these actions for experimentation, including 7 upper-limb 
actions, 2 lower-limb actions, and 1 full-body action. The 
CSIAR dataset was collected in an office environment, with 
3m between the transmitter and receiver. Six volunteers 
participated in the experiment, with each volunteer performing 
one activity within 20 seconds, repeated 20 times. The 6 
actions in this dataset are all coarse-grained actions and are all 
full-body actions. Overall, the WiAR dataset primarily focuses 
on upper-body actions and lacks full-body actions, while the 6 
actions covered by CSIAR are all full-body actions, 
effectively supplementing the missing types in the former and 
better reflecting the model's ability to recognize various 
human movements. 

Since each action in the dataset is executed multiple times, 
the CSI signals obtained via the Wi-Fi transceiver contain 
multiple actions. To separate each action so that each sample 
contains only one action process, this study employs a sliding 
window algorithm to partition the data. 

In this study, the size of the sliding window and the step 
size 𝐿0 for each slide are both set to 120. Thus, each time the 
window moves forward by one step, a sample of length 𝐿0 is 
obtained. By performing multiple consecutive slides, a series 
of samples of length 𝐿0 can be obtained. The dataset used was 
collected using a transmitter with one antenna and a receiver 
with three antennas, along with a modified Intel 5300 network 
card. The number of subcarriers was 30. After dividing each 
subcarrier using the sliding window algorithm and then 
integrating the results, the input data for the model was 
obtained. The input data has a dimension of 120×30, where 

120 represents the step size and 30 represents the number of 
subcarriers. 

TABLE I.  OPERATION ENVIRONMENT CONFIGURATION 

Equipment category Equipment name 

CPU 16 cores Intel(R) Xeon(R) Gold 6430 

GPU RTX 4090 (24GB) 

Memory 120G 

Python version 3.10.8 

Pytorch version 2.1.2 

CUDA version 12.1 

TABLE II.  MAIN PARAMETER SETTINGS 

Parameter name Parameter value 

Epochs 50 

Batchsize 128 

Learning rate 1e-4 

Optimizer Adam 

TABLE III.  THE INFORMATION OF DATASET 

Dataset 
No. of 

actions 
Type of actions 

WiAR 10 

High arm wave, Horizontal arm wave, Two hands 

wave, Draw x, Draw tick, High throw, Toss paper, 

Bend, Forward kick, Side kick 

CSIAR 6 Stand up, Sit down, Lie down, Walk, Run, Fall, 
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V. RESULTS AND ANALYSIS 

The experiments in this section consist of two parts. The 
first part introduces PCNN, attention mechanism, and SSA 
parameter optimization based on the original WiTS model to 
conduct ablation experiments and analyze the results. The 
second part selects three commonly used models and 
compares them with the improved WiTS model to conduct 
comparative experiments and analyze the results. 

A. Ablation Experiment 

This research sequentially adds the corresponding 
improvement measures and conducts ablation experiments 
under the same experimental conditions to verify that each 
improvement introduced in this study enhances the 
performance of the original model in human action 
recognition. The results of these experiments are shown in 
Table IV. 

Model A in the table represents the original WiTS model. 
Model B represents a model in which the convolutional 
structure of the CNN module is replaced with a partial 
convolutional structure and a spatial attention block is 
incorporated. Model C represents a model in which an 
attention mechanism is added to the LSTM module based on 

Model B. The last row represents the final model with SSA 
parameter optimization based on Model C, i.e., the model with 
all three improvements. The results show that all three 
improvement strategies have a positive effect on model 
performance, with varying degrees of improvement in 
accuracy across the WiAR and CSIAR datasets. Compared to 
the original model without any improvements, the accuracy is 
93.84% and 94.57%, with parameters and Flops of 2.25M and 
561.33M, respectively. For Model B, which replaced some 
convolutions, the accuracy improved slightly in both datasets 
despite a decrease of 0.06M in the number of parameters and 
1.91M in Flops compared to the original model. Comparing 
Models B and C, the attention mechanism added in Model C 
does not significantly increase computational complexity, yet 
its accuracy improved by 0.62% and 1.26%, respectively, 
demonstrating the effectiveness of this improvement method. 
The final model achieved the best performance in ablation 
experiments, with accuracy reaching 95.75% and 96.71% on 
the two datasets, respectively, representing improvements of 
1.91% and 2.14% over the unmodified model, and also 
showing a significant improvement over Model C. This 
further demonstrates that SSA can iteratively identify optimal 
hyperparameter configurations to enhance model performance. 

TABLE IV.  RESULTS OF ABLATION EXPERIMENTS 

Model PCNN 
Attention 

mechanism 
SSA WiAR Acc./% CSIAR Acc./% Param. /M Flops/M 

A × × × 93.84 94.57 2.25 561.33 

B √ × × 93.86 94.60 2.19 559.42 

C √ √ × 94.48 95.86 2.19 559.42 

Final √ √ √ 95.75 96.71 2.19 559.42 

TABLE V.  RESULTS OF COMPARATIVE EXPERIMENTS 

Dataset Model Precision/% Recall/% F1-score/% Accuracy/% 

WiAR 

CNN 87.15 87.04 86.89 86.84 

TCN 86.82 85.60 85.89 85.14 

Bi-LSTM 80.88 78.37 78.49 78.13 

WiTS 96.34 96.13 96.06 95.75 

CSIAR 

CNN 87.26 86.11 86.10 86.57 

TCN 81.65 80.20 80.32 80.54 

Bi-LSTM 79.42 79.36 79.20 79.71 

WiTS 97.13 96.52 96.39 96.71 

B. Comparative Experiment 

To further validate the advancement of the proposed WiTS 
in human action recognition methods, this study selected three 
different deep learning models for comparison experiments. 
The experimental results are shown in Table V. 

From the results, WiTS outperformed other models in all 
performance metrics in both experiments, while CNN ranked 
second in all results. Compared to CNN, in the WiAR dataset, 
the WiTS model improved Precision, Recall, F1-score, and 
Accuracy by 9.19%, 9.09%, 9.17%, and 8.91%, respectively; 
in the CSIAR dataset, these four metrics improved by 9.87%, 
10.41%, 10.29%, and 10.14%, respectively, all showing 

significant improvements. In the experiments using the WiAR 
dataset, TCN ranked third in all metrics, closely following 
CNN and significantly outperforming Bi-LSTM. In another 
set of experiments, while TCN still ranked third, its 
performance metrics lagged significantly behind CNN, only 
slightly outperforming Bi-LSTM. The results indicate that a 
single network structure performs inconsistently across 
different datasets, making it challenging to accurately 
recognize human actions in real-world scenarios. In contrast, 
the WiTS model, which achieves deep integration of spatial 
and temporal features, demonstrates significantly superior 
performance compared to other models, fully validating the 
model's effectiveness. 
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VI. CONCLUSION AND FUTURE WORK 

A. Summary of Contributions 

In the field of human action recognition using Wi-Fi CSI, 
the extraction of features from Wi-Fi signals using deep 
learning methods for the classification of actions has emerged 
as a prominent research direction in recent years. 
Nevertheless, these methods have yet to adequately extract 
information from the signal. The challenge of fully utilizing 
the information capabilities from both spatial and time 
dimensions to enhance model performance remains an urgent 
issue to be solved. To address this, this paper proposes a 
spatio-temporal hybrid neural network model named WiTS. 
This model integrates the advantages of CNN, TCN, Bi-
LSTM, and Transformer. It uses CNN to extract spatial 
features, combines TCN and Bi-LSTM to achieve dual 
temporal dimension modeling, and incorporates the global 
attention mechanism of Transformer to comprehensively 
extract and multi-levelly fuse spatio-temporal features. 
Furthermore, this study optimizes and innovates the original 
WiTS model. The incorporation of partial convolution and 
spatial attention structures within the CNN module has been 
demonstrated to effectuate a reduction in model parameters 
and FLOPs, while preserving the model's capacity for feature 
extraction. Additionally, the attention mechanism is 
incorporated into the Bi-LSTM module to dynamically assign 
weight to temporal features, thereby enabling the model to 
prioritize key action segments. Finally, the SSA is employed 
to optimize hyperparameters, further enhancing model 
performance. Experiments on two complementary datasets, 
WiAR (primarily half-body actions) and CSIAR (primarily 
full-body actions), demonstrate that the model exhibits strong 
generalization capabilities across different action granularities, 
achieving average recognition accuracies of 95.75% and 
96.71%, significantly outperforming single-network 
architectures. The F1-score exceeds 96% in both cases, 
addressing the issue of performance fluctuations in single-
network models across different scenarios. Moreover, the 
enhanced model possesses a mere 2.19 million parameters and 
fewer than 560 million FLOPs offering advantages in terms of 
lightweight design and making it suitable for deployment on 
limited-computing edge devices while meeting real-time 
requirements. 

B. Limitations and Future Work 

Despite the WiTS model's demonstrated efficacy in action 
recognition accuracy and lightweight design, certain 
limitations persist. On the one hand, the experiments were 
validated exclusively on the WiAR and CSIAR public datasets, 
which exhibit limited diversity in action categories and 
scenarios. The exclusion of more complex scenarios, such as 
signal interference and varying room layouts, may impact the 
model's generalization capabilities in real-world settings. 
Secondly, the present research focuses primarily on the 
optimization of algorithms without addressing the practical 
deployment challenges that have been identified, such as 
dynamic environmental changes and long-term stability on 
edge devices. 

To address these issues, the plan of future work 
encompasses three key areas. First, constructing larger, multi-

scenario datasets incorporating more diverse human actions to 
enhance the trained model's generalization and robustness. 
Second, further optimizing the model architecture by 
exploring more adaptive learning mechanisms, enabling the 
model to dynamically adjust to environmental changes and 
user variations. Finally, deploy the WiTS model on real-world 
edge device platforms, conduct practical scenario testing, 
optimize inference efficiency and energy consumption, and 
advance its practical application in fields such as smart homes 
and health monitoring. 
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