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Abstract—Technological advances in automated medical 

imaging diagnosis have created translation gaps between 

laboratory achievements and clinical implementation, with 

traditional manual Cobb angle measurement requiring 

considerable time with inevitable measurement errors. This 

review analyzes translation challenges in automated diagnosis 

systems using scoliosis assessment as a case study, examining 55 

articles from 1948-2025 across three domains: Cobb angle 

measurement, classification, and segmentation. Despite research 

investment, fully automated approaches have not surpassed semi-

automated performance in comparable validation studies. Within 

the 23 Cobb angle measurement studies, traditional methods 

outperform sophisticated deep learning systems with average 

error rates of 1.8° ± 0.4° MAD versus 4.2° ± 1.8° MAE, while 

validation degradation occurs with performance dropping from 

95.28% to 85.9% when transitioning to real-world datasets. Non-

standard classification achieves high accuracy but lacks clinical 

utility, while standard systems struggle with automation, 

revealing a translation paradox where technical sophistication 

does not correlate with clinical adoptability. Main problems 

include testing method gaps, performance drops, different 

automation approaches, and cost issues. This review recommends 

standard testing methods and step-by-step clinical 

implementation to help these systems work in real clinics. 
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I. INTRODUCTION 

Medical imaging has undergone major advances over the 
past seven decades, with automated systems achieving high 
performance in laboratory settings. Despite these 
achievements, translation into clinical practice remains limited. 
Scoliosis assessment illustrates this gap clearly. While AI 
systems for diabetic retinopathy and breast cancer detection 
have achieved clinical success with standardized protocols and 
FDA approval [IDx-DR, 100,000 patients annually; breast 
cancer AI 94.5% sensitivity], scoliosis measurement systems 
remain confined to research laboratories. 

The field has experienced continuous development of 
diagnostic approaches since 1948, yet clinical challenges 
remain unresolved. Researchers have proposed multiple 
measurement principles for scoliosis assessment, including the 
Ferguson method [1], Greenspan method [2], Diab method [3], 
and Centroid method [4]. These developments demonstrate 
ongoing efforts to enhance diagnostic accuracy and reliability. 

The Cobb angle measurement method was developed by Cobb 
in 1948 and adopted by the Scoliosis Research Society as the 
standard method for quantifying scoliotic deformities in 1966. 
This method remains the clinical gold standard despite well-
documented limitations. The traditional manual measurement 
process has problems with errors between different doctors and 
even the same doctor measuring twice [5], with studies 
showing significant differences in measurements [6][7][8][9]. 
The Ferguson method exhibits considerable intra-observer and 
inter-observer variation [1]. Measurement inconsistencies 
continue to exist across established methodologies 
[10][11][12]. Since 2017, focus has transferred to estimating 
Cobb angles using Artificial Intelligence (AI) models, with 
researchers [13] implementing computer-aided measurement 
based on automatic detection of vertebral slopes using deep 
neural network, and [14] proposing a Convolutional Neural 
Network (CNN)-based spine and Cobb angle estimator using 
moire images. Modern approaches like [15] achieved 
impressive results using convolutional neural networks for 
Cobb angle measurement, while [16] achieved high 
performance using U-Net webserver for spine segmentation, 
and [17] demonstrated effective lumbar vertebrae 
segmentation. This technological sophistication has not 
translated proportionally into clinical implementation rates, 
revealing limitations that distinguish scoliosis AI from 
successful medical AI implementations in radiology and 
pathology. 

A. Scope and Objectives 

To address this problem, this review asks three main 
questions: (1) What factors prevent laboratory-validated 
systems from achieving comparable performance in clinical 
settings? (2) What barriers hinder adoption of these systems in 
actual workflows? and (3) What strategies can bridge the gap 
between laboratory development and clinical implementation? 

B. Paper Organization 

The remainder of this paper is organized as follows: the 
Methodology section outlines the literature search and study 
selection. Background and Context review historical 
development and contrasts scoliosis AI with successful medical 
AI domains. Current State Analysis summarizes recent 
performance trends, while Critical Analysis investigates the 
causes of translation failures. Future Directions provide 
recommendations, and Conclusions synthesize key findings for 
stakeholders. 
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II. METHODOLOGY 

A. Search Strategy and Study Selection 

A comprehensive literature search was conducted across 
multiple databases including PubMed/MEDLINE, IEEE 
Xplore, ACM Digital Library, and Scopus from January 1948 
to February 2025. The search strategy combined controlled 
vocabulary terms and keywords related to scoliosis, automated 
measurement, artificial intelligence, and clinical 
implementation. Primary search terms included: ("scoliosis" 
OR "spinal curvature") AND ("automated" OR "computer-
assisted" OR "artificial intelligence" OR "deep learning" OR 
"machine learning") AND ("Cobb angle" OR "measurement" 
OR "classification" OR "segmentation"). Additional studies 
were identified through citation tracking of seminal papers and 
review of reference lists. 

B. Inclusion and Exclusion Criteria 

Inclusion criteria were: (1) English-language, peer-
reviewed articles or conference proceedings; (2) studies on 
automated or computer-assisted scoliosis assessment; (3) work 
covering Cobb angle measurement, scoliosis classification, or 
spinal segmentation; (4) studies reporting quantitative 
performance metrics; and (5) articles providing enough 
methodological detail for analysis. Exclusion criteria were: 
(1) research focused only on treatment or surgical 
interventions; (2) articles lacking performance metrics or 
validation data; (3) duplicate publications, including 
conference papers later published as journal articles; (4) studies 
on non-human subjects; and (5) purely theoretical work 
without experimental validation. 

C. Study Categorization and Data Extraction 

Selected studies were categorized into three primary 
domains: (1) Cobb angle measurement approaches, (2) 
scoliosis classification systems, and (3) spinal structure 
segmentation methods. This categorization was based on the 
primary research objective and methodology reported in each 
study. Data extraction followed a standardized protocol that 
captured: study characteristics (authors, year, study design, 
sample size), technical approaches (algorithms employed, 
imaging modalities), performance metrics (accuracy measures, 
reliability statistics, validation methods), and clinical 
implementation details (automation level, workflow 
integration, clinical testing). Performance metrics were 
standardized where possible, with accuracy measures 
converted to comparable units (degrees for Cobb angle 
measurement, percentages for classification and segmentation). 
When studies reported multiple metrics, priority was given to 
the most clinically relevant measure (e.g., mean absolute 
difference for Cobb angles, overall accuracy for classification). 
The selection process for this review followed established 
guidelines for literature identification and screening. This 
review analyzed 55 studies spanning from 1948 to 2025 across 
the three primary domains of automated scoliosis assessment. 
Fig. 1 illustrates the comprehensive search and selection 
methodology employed to identify the final 55 studies included 
in this review, demonstrating the distribution across the three 
primary domains of automated scoliosis assessment. 

 

Fig. 1. Study selection flow diagram for review of automated scoliosis. 

The flowchart shown in Fig. 1 demonstrates the systematic 
selection process from initial database searches through final 
inclusion, resulting in 55 studies categorized across three 
primary domains: Cobb angle measurement (n=23), 
classification systems (n=16), and segmentation methods 
(n=16). The distribution of studies across the three domains 
reflects the evolution of research focus over the 77-year 
timeframe examined. Cobb angle measurement studies 
represent the largest portion (42% of total), reflecting the 
central importance of angular measurement in scoliosis 
assessment. Classification and segmentation approaches each 
represent 29% of studies, indicating that researchers recognize 
effective automation requires progress across multiple 
complementary technologies. This balanced distribution 
provides comprehensive coverage of translation challenges 
across all aspects of automated scoliosis assessment. 

D. Limitations 

This review has several limitations: (1) differences in 
performance reporting across studies limited quantitative 
analysis; (2) publication bias may favor positive results, 
potentially overestimating automated system performance; 
(3) limited availability of real-world clinical validation data 
restricted translation analysis; (4) rapid technological changes 
may make some analyses outdated; (5) focus on English-
language publications may have excluded relevant 
international research. 

III. BACKGROUND AND CONTEXT 

A. Evolution of Automated Scoliosis Assessment 

The field has evolved through four technological phases, 
each with different strengths, weaknesses, and adoption rates. 
As technological sophistication increased, clinical 
implementation declined. Table I presents the development 
phases and their duration, showing rapid technological 
development but declining clinical implementation success. 
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TABLE I.  TECHNOLOGY DEVELOPMENT PHASES 

Phase Period Duration 

Manual Era 1948-1990 42 years 

Early Automation 1990-2010 20 years 

Classical ML Peak 2010-2017 7 years 

Deep Learning Era 2017-Present 7+ years 

The rapid development in Table I differs from the gradual, 
steady progress seen in successful medical AI domains like 
mammography, where evolution occurred over similar 
timeframes but achieved progressive clinical integration rather 
than decreased adoption. The performance and clinical 
implementation patterns across these phases show the main 
problem. Table II shows that as technical performance 
improved, clinical implementation decreased. 

TABLE II.  PERFORMANCE VS. CLINICAL IMPLEMENTATION 

Phase Best Performance 
Clinical 

Implementation 

Manual Era Intra: 5.6°, Inter: 6.6° [1] 100% 

Early Automation Variable improvement [18][11][12] <5% 

Classical ML Peak MAD: 1.5°, ICC: >0.95 [10][19] <5% 

Deep Learning Era MAE: 4.9°, DC: 95.8% [20][21] <1% 

Table II shows a pattern that differs from successful 
medical AI domains. In successful domains, better technology 
leads to more clinical use. Diabetic retinopathy screening 
moved from research to FDA approval to widespread use over 
a similar timeframe. It was found that specific factors in 
scoliosis context, rather than general AI problems, cause 
implementation difficulties, which suggest that targeted 
approaches may perform better and show improved progress 
within clinical practice settings. 

B. Medical AI Translation Context: Lessons from Successful 

Domains 

Scoliosis AI faces unique translation challenges. 
Comparison with successful medical AI implementations 
reveal differences in problem structure and validation 
approaches, which suggest that targeted solutions perform 
better within scoliosis treatment contexts. 

1) Successful medical AI implementations: It was found 

that diabetic retinopathy screening achieved clinical success 

mainly because the task was simplified into binary 

classification of present or absent, with the added benefit of 

standardized imaging protocols that allowed for consistent 

practice within clinical workflows. Clear clinical decision 

points together with regulatory pathways appear to support 

adoption. Breast cancer detection AI perform better by 

supporting radiologists, which mean it show improved 

progress in accuracy without full automation. These cases 

suggest clinical acceptance is more likely when AI act as 

enhancement with professionals, not as substitutes. 

2) Scoliosis AI differences: Scoliosis assessment was 

found to require continuous measurement instead of binary 

classification, and this make the task more complex than other 

screening-based AI applications. It lack standardized imaging 

protocols across hospitals, which suggest that consistent 

practice remain difficult to achieve. Scoliosis assessment also 

need to integrate with complex treatment decision algorithms, 

and this requirement only perform better when AI is used as 

enhancement rather than full replacement. In addition to that, 

the current regulatory frameworks lack provisions for 

automated measurement systems, so the approval pathway 

remain unclear. These fundamental differences, repeated again 

to emphasize, clarify why proven strategies from other 

medical AI applications prove ineffective when directly 

applied to scoliosis assessment, and this suggest improvement 

will only be achieved by adopting different design approaches. 

Comparing successful and failed medical AI implementations 

shows major differences in problem structure, implementation 

strategies, and clinical outcomes. Fig. 2 illustrates the key 

distinguishing factors between successful medical AI domains 

and the failed scoliosis AI domain, highlighting the strategic 

and technical decisions that determine translation success . 

 

Fig. 2. Medical AI success vs failure analysis. 

Fig. 2 shows how important it is to match the right 
technology with the right problem for medical AI success. 
Successful domains benefit from binary classification tasks that 
align with deep learning strengths, while scoliosis AI requires 
continuous geometric measurement that favors traditional 
mathematical approaches. The performance paradox 
contradicts conventional expectations. Semi-automated 
methods achieve better results (1.8° ± 0.4° MAD) compared to 
fully automated systems (4.2° ± 1.8° MAE). This finding 
shows that current AI approaches do not match the geometric 
precision needed for scoliosis assessment. This analysis helps 
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explain why helping doctors work better than replacing doctors 
for successful clinical use. The foundation era established 
measurement principles through the Ferguson method [1], 
Greenspan method [2], and Diab method [3], but these were 
designed for manual implementation. Early computer-assisted 
approaches [18][11][12] showed promise but remained time-
consuming due to manual endpoint identification requirements. 
In [18], authors compared radiographic and computer-assisted 
measurements, while in [11] and [12], the authors evaluated 
manual versus computer-assisted approaches. Traditional 
image processing and classical machine learning approaches 
achieved peak performance during 2010-2017. In [19], the 
authors achieved ICC>0.95 using Fuzzy Hough Transform [22] 
and [23] achieved ICC>0.9 using Active Shape Models. 
However, these successes occurred during a period when other 
medical AI domains were transitioning from research to 
clinical implementation. This timing highlights scoliosis AI's 
unique translation challenges. 

C. Deep Learning Era and Divergence from Medical AI 

Success Patterns 

Deep learning approaches led to a shift toward complete 
automation instead of human-AI collaboration that worked 
well in other medical domains. This divergence explains much 
of the current translation crisis. 

Several researchers developed deep learning solutions for 
scoliosis assessment. In research by [13], authors developed 
computer-aided Cobb measurement using deep neural 
networks, while researchers in [14] proposed CNN-based 
estimators and those in [15] achieved significant results using 
convolutional neural networks. 

Advanced segmentation approaches also emerged. In 
studies by [16], researchers deployed U-Net achieving 90.4% 
dice coefficient, and authors in [24] proposed comprehensive 
spine detection frameworks. In research by [25], authors 
developed automatic vertebrae localization for CT scans, 
researchers in [28] demonstrated CNN-based lumbar spine 
segmentation, and those in [29] contributed deep learning 
methods for spine analysis in MR images. Other technical 
approaches included [30] implementing BoostNet for 
automatic landmark estimation, [31] developing structured 
multi-output regression for direct Cobb angle estimation, and 
[32] proposing vertebra detection and corner regression 
techniques. However, this period showed a different pattern 
from successful medical AI domains. While domains like 
radiology succeeded through augmentation approaches that 
enhanced radiologist capability, scoliosis AI pursued 
replacement approaches that attempted complete automation. 
Classification approaches showed similar patterns, with [33] 
achieving results through local centroids evaluation, [34] 
implementing support vector classifiers for progression risk 
prediction, and [35] developing machine learning approaches 
for clinical classification using 3D surface data. Feature-based 
approaches like [36] demonstrated vertebrae localization and 
segmentation for curvature classification, while [37] applied 
support vector machines for severity assessment from surface 
topography. Recent developments include [38] analyzing 
scoliosis from spinal X-ray images, [39] implementing 
artificial neural networks for spinal deformity identification, 

and various classification frameworks [40][41][42][43] 
addressing different aspects of scoliosis assessment with 
varying degrees of automation success. Clinical reality 
involves complex decision-making beyond just measurement 
accuracy. The Lenke classification system [44] serves as the 
popular standard, but it requires automation of the entire Cobb 
method instead of providing decision support for specific 
components. Studies evaluating classification reliability [45] 
demonstrate the complexity of implementing automated 
systems that match clinical standards. 

D. Summary 

The analysis shows that scoliosis AI fails not because AI 
itself is bad, but because researchers chose the wrong approach 
compared to successful AI in other medical areas. 
Understanding these basic differences is important for 
analyzing current performance patterns and finding effective 
solutions. The next section examines how these different 
approaches affect current system performance and clinical 
implementation. Building on this analysis, the following 
section examines current performance patterns across the three 
primary domains. 

IV. CURRENT STATE ANALYSIS 

A. Cobb Angle Measurement Approaches 

Automated Cobb angle measurement demonstrates a 
concerning trend where increased technological sophistication 
correlates with decreased clinical adoption. This paradox 
becomes more pronounced when compared to successful 
medical AI domains where sophistication enhances rather than 
hinders adoption. Analysis of 23 studies identified three 
distinct methodological approaches: traditional methods (3 
studies), semi-automated approaches (8 studies), and fully 
automated systems (12 studies). This contradicts patterns in 
successful medical AI domains where deep learning typically 
outperforms traditional approaches, suggesting differences in 
problem structure. Table III presents an analysis of 
performance across different methodological approaches, 
including Mean Absolute Difference (MAD) and Mean 
Absolute Error (MAE) where available from the literature. 
Performance metrics vary across studies due to different 
datasets, validation methods, and measurement protocols. 
Direct numerical comparison should be interpreted cautiously 
due to methodological differences in error calculation across 
studies. 

TABLE III.  AVERAGE PERFORMANCE ANALYSIS ACROSS STUDY TYPES 

Method Type Performance Studies (n) Translation Rate 

Manual 3.9° ± 0.3° MAD Baseline 100% (standard) 

Semi-Automated 1.8° ± 0.4° MAD 8 <5% adoption 

Fully Automated 4.2° ± 1.8° MAE 12 <1% adoption 

Table III shows performance metrics as mean ± standard 
deviation across multiple studies on semi-automated and fully 
automated approaches, revealing statistically significant 
performance differences that contradict expectations based on 
successful medical AI domains. 

Semi-automated methods achieve better performance than 
deep learning systems (1.8° ± 0.4° MAD vs 4.2° ± 1.8° MAE) 
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for three primary reasons. First, continuous measurement tasks 
favor geometric approaches over pattern recognition (Task-
Method Mismatch). Second, deep learning models optimize for 
controlled datasets that poorly represent clinical variability 
(Overfitting to Laboratory Conditions). Third, end-to-end 
learning discards domain-specific geometric constraints that 
are essential for reliable measurement (Feature Engineering 
Loss). Traditional approaches achieved superior performance, 
with researchers in [19] reaching ICC>0.95 using Fuzzy 
Hough Transform [22] because geometric constraints built into 
spine anatomy provide more reliable guidance than learned 
features. Semi-automated approaches like [46] achieved 
significant accuracy using generalized Hough transform for 
cervical vertebrae detection. Statistical modeling approaches 
[47] demonstrated effective lumbar spine segmentation using 
multi-vertebrae anatomical shape models. Modern approaches 
struggle: [20] achieved MAE of 4.9º and [32] achieved 
SMAPE of 25.69% because they try to learn geometric 
relationships that work better when expressed through direct 
mathematical formulations. Advanced segmentation 
approaches [48] using iterative fully convolutional neural 
networks showed promise but faced translation challenges. 

B. Classification Systems Analysis 

Scoliosis classification analysis shows a key difference that 
separates this domain from successful medical AI 
implementations. While successful domains like pathology AI 
achieve clinical utility through high-performing automated 
classification, scoliosis classification faces a utility-automation 
trade-off that prevents clinical implementation. The analysis 
shows that automation success decreases as clinical utility 
increases, creating an implementation challenge unique to 
complex measurement-dependent medical domains. Table IV 
presents the classification performance characteristics across 
different system types. 

TABLE IV.  CLASSIFICATION TRADE-OFF ANALYSIS 

Classification Type Automation Success Clinical Utility 

Non-Standard Binary High (88.3%) [34] Limited 

Non-Standard Ternary High (94.69%) [37] Limited 

Standard (Lenke) Low (72%) [43] High 

This utility-automation trade-off occurs because clinically 
relevant classification systems like Lenke [44] require multiple 
geometric and morphological features that are difficult to 
automate. Automated classification only succeeds when 
simplified to features that reduce clinical relevance. This 
differs fundamentally from successful medical AI domains 
where clinical relevance and automation potential align. 

Non-standard approaches show better automation 
performance through simplified feature sets. Authors in [33] 
achieved 88.3% accuracy using local centroids evaluation 
because geometric simplification enables reliable automation, 
while researchers in [36] achieved 94.69% accuracy through 
feature-based approaches that sacrifice comprehensive clinical 
assessment for automation reliability. Support vector 
approaches [34][37] achieved different levels of success based 
on feature complexity and clinical requirements. Recent 
classification developments include [38] analyzing scoliosis 

from spinal X-ray images, [39] implementing total curvature 
analysis with artificial neural networks, and [43] developing 
segmentation network-based Lenke classification systems. 
However, standard classification systems face dependency on 
reliable Cobb angle automation, creating cascading failures 
where measurement errors spread through classification 
algorithms. Researchers in [40] achieved 92.9% accuracy using 
Decision trees, and those in [41] achieved kappa values of 0.94 
through rule-based approaches, but these successes depend on 
manual measurement inputs rather than automated systems. 
Authors in [42] demonstrated novel classification methods 
using 3D ultrasound imaging, while reliability studies [45] 
highlight the challenges of automated implementation of 
established classification systems. 

C. Segmentation Technologies and Validation Crisis 

Spinal structure segmentation represents the most critical 
component for understanding validation failures that 
distinguish scoliosis AI from successful medical AI domains. 
Analysis of 55 articles demonstrates impressive laboratory 
achievements but shows real-world performance degradation 
patterns not observed in successful medical AI 
implementations. The consistent performance degradation 
stems from differences between scoliosis imaging 
characteristics and successful medical AI domains. Scoliosis 
assessment relies on X-ray imaging that carry variability in 
positioning, exposure, and anatomical presentation. This differs 
from the standardized imaging protocols that exist in diabetic 
retinopathy screening or mammography. Laboratory validation 
often fails to capture such clinical variability, which suggests 
that results observed in controlled settings do not reflect actual 
practice. Table V presents the validation crisis evidence across 
different segmentation approaches, and it demonstrates 
degradation patterns that appear unique to this domain. 

TABLE V.  VALIDATION CRISIS EVIDENCE 

Approach Lab Performance Real-World Drop 

Traditional (ASM) 93.6% [17] 5-8% typical 

U-Net Variants 95.8% [21] 10% [50] 

Instance Segmentation 96% [51] 7% [52] 

Table V shows that performance drop mainly come from 
three causes. First is Dataset Bias Amplification, where 
laboratory datasets usually do not include the wide imaging 
variation that is often found in real clinical settings. Second is 
Anatomical Anomaly Underrepresentation, where the training 
data has too few cases of complex deformity and this makes 
generalization weaker. Third is Workflow Integration Failure, 
since experimental testing often ignores positioning and the 
image quality limitation that exist in daily practice. It was 
found that traditional approaches perform better and maintain 
more stability. For example, landmark-based segmentation [17] 
reports 93.6% accuracy, while the generalized Hough 
transform [46] also shows strong outcome. These methods stay 
more consistent because geometric constraints can handle 
imaging variation better. In comparison, statistical [47] and 
iterative methods [48] produce mixed stability. At some time, 
they perform better, but other times they become weaker. 
Advanced deep learning approaches suffer sharper drops. 
RAR-U-Net [21] with reported 95.8% accuracy degraded 
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strongly under clinical-like testing. LPAQR [49] at 95.28% 
also degrade since the learned features do not transfer well 
when imaging condition changes. Newer studies bring in 
region-based CNNs [50], attention gate dual-pathway networks 
[51], detection-guided mixed-supervised segmentation [52], 
and automated vertebrae recognition [53]. Yet the validation 
issue still remains. This situation stands in clear contrast with 
other medical AI fields, where real-world results usually match 
or even surpass laboratory results. It was found that the main 
difference comes from dataset representation and workflow 
integration during system development. Whole spine 
segmentation [54] tries to address this gap, but translation 
barriers still not fully resolved. 

This validation gap stands in sharp contrast with other 
medical AI fields that usually observe better real-world 
outcomes, where performance in clinical settings often match 
or even surpass laboratory benchmarks. It was found that the 
key difference lies in dataset representation and workflow 
integration during system development. Whole spine 
segmentation methods [54] attempt to respond to this 
challenge, but translation barriers still remain unresolved. Early 
computer-assisted systems [55] already establish the idea that 
digital methods can improve measurement consistency, though 
they still require much manual intervention. 

D. Comparative Performance Analysis 

Table VI presents comparative advantages of different 
approaches across scoliosis assessment and successful medical 
AI domains. 

TABLE VI.  IMPLEMENTATION PRIORITY MATRIX 

Approach Performance 
Clinical 

Stability 

Translation 

Rate 

Key 

Advantage 

Scoliosis - 

Semi-

automated 

1.8° ± 0.4° 

MAD 
High <5% 

Geometric 

precision 

Scoliosis - 

Fully 

automated 

4.2° ± 1.8° 

MAE 

5-10% 

degradation 
<1% 

Pattern 

learning 

Manual 

(Baseline) 

5.6°/6.6° 

variation 

100% 

stable 
100% 

Human 

expertise 

Diabetic 

retinopathy 

AI 

94.5% 

sensitivity 
Stable >80% 

Binary 

classification 

Breast 

cancer AI 

High 

accuracy 
Stable >60% 

Augmentation 

strategy 

Semi-automated methods offer clear precision benefit while 
also achieving clinical stability that looks similar to other 
successful medical AI applications. Mathematical approaches 
with geometric constraints [19][22] work better for scoliosis 
assessment compared to deep learning methods, which mainly 
excel in pattern recognition tasks. Measurement 
standardization provides unique advantage that is not available 
in diagnostic areas requiring subjective clinical judgment. 
Hybrid augmentation frameworks follow proven medical AI 
strategies and at the same time meet the specific demand of 
geometric measurement tasks. This combined approach 
delivers better reliability by merging accuracy with quality 

improvement, and it creates benefit that neither automation nor 
manual methods achieve alone. 

E. Summary 

These performance differences highlight gap between 
scoliosis AI and proven medical AI systems. The next section 
explores why standard methods struggle in this field. It also 
looks at what this tells us about requirement essential for 
clinical deployment in complex measurement tasks. 

V. CRITICAL ANALYSIS: THE TRANSLATION CHALLENGE 

A. Clinical Implementation Barriers for Scoliosis AI 

Scoliosis AI struggles in clinical practice for reasons 
different from other medical AI applications. Understanding 
these barriers requires examining why standard methods break 
down in measurement tasks that demand geometric precision 
instead of only pattern recognition. 

1) Primary barrier: Task-Technology Mismatch: The core 

implementation failure stem from mismatch between deep 

learning optimization goals and the geometric measurement 

need. This suggest improvement require redirecting effort 

from optimization aim toward accuracy of measurement that 

perform better for clinical use. Successful medical AI fields 

like image classification leverage pattern recognition strength 

of deep learning. Cobb angle measurement demand geometric 

accuracy that mathematical methods deliver more consistent. 

2) Secondary barrier: Validation Approach Differences: 

Scoliosis AI validation method diverge from proven medical 

AI practice by focusing on laboratory performance score 

rather than workflow compatibility. Systems tested only in 

controlled setting fail to show improved progress for clinical 

use, while implementation in real hospital environment 

perform better and observe better alignment with workflow. 

3) Tertiary barrier: Regulatory Framework Gaps: Other 

medical AI field perform better because they benefit from 

clear regulatory pathway for screening and diagnostic support. 

Scoliosis measurement automation operate without such 

structure, so approval obstacle limit adoption and prevent 

system from showing improved progress toward commercial 

development. Table VII analyze the factor that explain why 

scoliosis AI fail to observe better clinical integration across 

system aspect. 

TABLE VII.  TRANSLATION FAILURE MECHANISMS 

Failure Dimension Primary Cause Success Comparison 

Technical 

Performance 

Task-Technology 

Mismatch 

Radiology (pattern 

recognition) 

Validation Crisis 
Laboratory-Clinical 

Gap 

Pathology (workflow 

integration) 

Clinical Utility 
Automation-Utility 

Trade-off 

Diagnostic AI 

(augmentation) 

Examining why implementations fail reveals that applying 
proven medical AI approach in unsuitable areas leads to 
consistent breakdown. Technical performance issue appears 
because deep learning performs better in pattern recognition 
task like diabetic retinopathy detection but struggle in 
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geometric measurement task that require mathematical 
precision. The validation crisis emerges because controlled 
laboratory conditions fail to represent imaging variability that 
exists in clinical scoliosis assessment. This contrasts with 
standardized imaging protocol used in successful domain, 
where practice observes better consistency. Successful medical 
AI implementation shares common characteristics that 
scoliosis AI lack standardized imaging protocol, binary or 
categorical output, augmentation instead of replacement 
strategy, and clear regulatory pathway. The root cause of 
translation failure comes from pursuing full automation, while 
clinical adoption would show improved progress if human-AI 
collaboration performs better in practice. 

B. Main Problems and Cross-Domain Comparison 

The challenges preventing scoliosis AI from achieving 
clinical implementation differ fundamentally from the enabling 
factors in successful medical AI domains, indicating that 
scoliosis requires domain-specific solutions for clinical 
adoption. 

1) Validation crisis analysis: The validation crisis results 

from structural differences between scoliosis AI and 

successful medical AI domains [26] [27]. Performance 

dropped in multiple studies, with [49] reporting a decline from 

95.28% to 85.9%, [51] from 95.4% to 89%, [52] from 94.39% 

to 87.21%, and [53] from 95.19% to 93.89%. This pattern 

contrasts with successful medical AI domains where real-

world performance typically meets or exceeds laboratory 

performance. Recent validation studies continue to confirm 

this pattern, with [56] reporting similar reliability challenges 

in mobile AI applications, and [57] demonstrating that even 

advanced CNN approaches maintain this performance gap 

between laboratory and clinical settings. 

2) Understanding validation failures: Laboratory 

validation employs cross-validation techniques on limited 

datasets that fail to capture clinical variability. Successful 

medical AI domains use standardized imaging protocols. 

Scoliosis assessment involves variable positioning, exposure 

settings, and anatomical presentations. Laboratory datasets 

systematically exclude this clinical variability. This creates 

optimistic performance estimates that fail to predict clinical 

utility. 

3) Cross-domain economic analysis: Economic challenge 

in scoliosis AI contrast strongly with successful application. 

Diabetic retinopathy screening show improved progress by 

delivering clear cost benefit through early detection and fewer 

specialist visits. In comparison, scoliosis measurement 

automation face setup cost that outweigh workflow gain. 

Manual measurement take about 20 minutes [10], yet 

automated system require heavy infrastructure investment that 

fail to perform better in workflow advantage. 

4) Regulatory framework differences: Regulatory obstacle 

appear because no suitable framework exist for measurement 

automation. Other medical AI field perform better because 

they use existing approval pathway for diagnostic support and 

screening tool. Scoliosis automation, in contrast, need new 

regulatory structure that balance accuracy requirement with 

clinical safety. 

C. Economic and Implementation Reality 

Economic analysis observes better clarity when comparing 
scoliosis AI with successful field. The difference lies in cost 
structure, setup need, and value clarity. 

1) Cost-benefit structure analysis: Real-world 

implementation show automation expense often outweigh 

saving once development, validation, training, maintenance, 

and regulatory cost are included. Successful medical AI field 

show improved progress because they provide clear value 

benefit. Diabetic retinopathy screening perform better by 

reducing specialist visits and allowing earlier treatment, while 

scoliosis automation show vague benefit compared to setup 

cost. 

2) Infrastructure requirements: X-ray images suffer from 

poor quality and weak contrast, and this limit automated 

system performance. Alternative imaging such as CT and MR 

create high expense and radiation risk. Because of these 

constraint, X-ray remain the preferred choice due to cost, 

radiation, dataset availability, and maturity. Yet this 

preference not show improved progress for automation, since 

it create obstacle that prevent system from performing better. 

3) Clinical integration complexity: Integration barriers go 

beyond technical performance to include workflow 

compatibility challenges, regulatory compliance demands, and 

organizational adaptation requirements. Major integration 

obstacles include workflow disruption needing staff retraining, 

system reliability standards exceeding current abilities, 

complicated error management for system breakdowns, and 

new quality control procedures for combined workflows. 

4) Regulatory framework inadequacy: Existing 

classification systems like Lenke [44] lack development in 

fully automated applications, creating regulatory challenges 

where standard validation methods cannot properly evaluate 

AI systems. Regulatory obstacles include unclear FDA 

approval routes for AI measurement systems, responsibility 

assignment issues for automated errors, undefined quality 

benchmarks for AI medical measurements, and unspecified 

monitoring requirements for developing automated systems. 

D. Summary 

It was found that recognizing these barriers can create 
groundwork for building effective solutions that draw from 
proven medical AI approaches, and in terms of measurement 
this becomes very important for geometric tasks. Moreover, the 
following section will explain some strategic approaches that 
follow established success model in medical AI, while also 
trying to answer the particular challenge faced in automated 
scoliosis assessment. 

VI. DISCUSSION 

This review of 70 years of scoliosis AI research shows that 
common belief in medical AI, where better technology directly 
creates clinical use, does not hold here. In fact, deployment 
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depends more on strategic fit than on complexity alone. It was 
found that increasing complexity often reduces adoption rate, 
opposite to what seen in other successful medical AI fields, and 
this suggests scoliosis AI face structural issues rather than only 
simple implementation barrier. The difficulty is less about 
accuracy itself, but more about how the system can fit into 
clinical workflow. 

The core mismatch between geometric measurement 
requirement and pattern recognition approach highlights a 
wider habit in medical AI: applying proven technique 
everywhere without enough task-specific adjustment. This 
study indicates that problem features, and not only algorithm 
performance, is what truly shape clinical success. Moreover, 
the consistent result that semi-automated methods perform 
better than fully automated systems suggest that human and AI 
partnership may actually be more effective path forward. In 
terms of accuracy this is very important, because certain areas 
need precise measurement rather than just pattern recognition, 
and this again confirms that the task requirement is more 
critical than algorithm complexity. 

The validation crisis observed across multiple studies 
indicates systematic methodological inadequacies in how 
scoliosis AI research approaches real-world applicability. 
Unlike successful medical AI domains that prioritize clinical 
workflow integration during development, scoliosis AI 
research appears to treat clinical implementation as a secondary 
concern addressed after algorithmic optimization. This finding 
aligns with broader medical AI translation challenges identified 
by [58], who demonstrate that healthcare AI failures stem 
primarily from inadequate attention to clinical implementation 
factors during development, rather than technical limitations. 
This sequence reversal may explain why laboratory 
performance fails to predict clinical utility consistently. 

Several limitations affect these findings. The focus on 
English-language publications may have excluded relevant 
international developments, particularly given the global nature 
of scoliosis research. The rapid pace of technological change 
means some recent advances may not yet demonstrate their 
clinical translation potential, and the 77-year timeframe may 
obscure recent improvement trends. Furthermore, viewing 
outcomes as simply success or failure may oversimplify the 
complex factors affecting clinical adoption, where partial 
implementation or hybrid workflows could represent 
significant progress that traditional metrics miss. 

These insights extend beyond scoliosis to other 
measurement-based medical fields. Areas needing geometric 
accuracy, continuous measurement, or integration with 
established mathematical methods may work better with hybrid 
approaches than complete automation. This indicates the 
medical AI field could benefit from developing task 
classifications that systematically match technological methods 
to problem features instead of assuming successful techniques 
work universally. 

Economic review shows implementation expenses 
frequently outweigh potential benefits when including system 
development, validation, training, maintenance, and regulatory 
costs. This challenges the belief that better technical 
performance automatically creates strong value propositions. 

Healthcare organizations seem to make logical economic 
choices based on realistic cost-benefit evaluations, suggesting 
that apparent resistance to implementation may reflect sound 
economic assessment. Recent comprehensive analysis of AI 
implementation obstacles [59] confirms economic factors as 
the main barrier to healthcare AI adoption, supporting the 
logical decision-making approach seen in scoliosis AI. 

This review suggests medical AI research should consider 
clinical implementation factors earlier in algorithm 
development, rather than treating real-world application as an 
afterthought. The scoliosis AI experience offers important 
lessons for emerging medical AI fields about the value of 
strategic alignment, appropriate technology choices, and 
realistic validation approaches in achieving genuine clinical 
impact. 

VII. FUTURE DIRECTIONS AND RECOMMENDATIONS 

A. Strategic Research Priorities Based on Current Findings 

Future research needs to tackle the core challenges found in 
this study while applying lessons from successful medical AI 
applications in other fields. The top priority involves moving 
from complete automation strategies to enhancement 
approaches that have worked well in radiology and pathology 
AI systems. 

1) Mechanism-Based research priorities: Our analysis 

shows research priorities must solve the task-technology 

mismatch by creating hybrid approaches that blend geometric 

mathematical methods with AI enhancement instead of full 

replacement. This matches successful medical AI patterns 

where technology supports rather than replaces human 

expertise. Recent progress in automated Cobb angle 

measurement [60], [61] shows that hardware-independent 

approaches can reach clinical accuracy when designed as 

enhancement rather than replacement systems. 

2) Learning from successful medical AI domains: Diabetic 

retinopathy screening succeeded through standardized 

procedures, binary decision outputs, and clear regulatory 

routes. Breast cancer detection AI gained adoption through 

enhancement strategies that improved rather than replaced 

radiologist skills. Scoliosis AI must follow similar 

enhancement approaches, emphasizing measurement quality 

improvement and error reduction instead of complete 

automation. Table VIII shows the strategic implementation 

plan based on our analysis and successful medical AI patterns. 

TABLE VIII.  IMPLEMENTATION PRIORITY MATRIX 

Priority Level Strategy Success Model 

Immediate 
Hybrid measurement 

systems 

Radiology AI 

augmentation 

 Standardized validation Pathology AI validation 

Medium-

term 
Regulatory pathways 

FDA-approved 

frameworks 

 Cost-effectiveness demo Screening AI ROI models 

Long-term Complete spine analysis Multi-modal integration 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

120 | P a g e  
www.ijacsa.thesai.org 

3) Immediate actions (1-2 years) 

a) Hybrid system development: Research efforts should 
focus on hybrid system creation that combines traditional 
geometric methods for reliable measurement with AI 

enhancement for quality improvement and error detection. 
This strategy follows successful radiology AI applications 
where AI supports rather than replaces radiologist skills. 
Current spine segmentation approaches [62], [63] offer 
technical foundations for hybrid systems that blend deep 
learning capabilities with geometric constraints, enabling the 

enhancement strategy proven successful in other medical AI 

fields. 

b) Validation protocol standardization: Validation 
protocol standardization represents another key priority. 

Organizations should create multi-site validation procedures 
that include real-world imaging variation, following 
successful pathology AI validation approaches that test 
systems within actual clinical workflows instead of controlled 

laboratory settings. 

c) Workflow integration research: Implementation 
research must tackle clinical workflow integration from the 
start, following the diabetic retinopathy screening model 
where clinical workflow needs guided technical development 

rather than being handled as an afterthought. 

4) Medium-term objectives (3-5 years) 

a) Regulatory pathway development: Work with 
regulatory agencies to create suitable frameworks for 

measurement enhancement systems, learning from established 
FDA routes for diagnostic support AI while addressing the 

specific needs of measurement improvement applications. 

b) Economic value demonstration: Conduct thorough 

cost-effectiveness studies that show clear ROI for hybrid 
systems, following successful screening AI models that offer 
clear value benefits through improved accuracy and workflow 

efficiency. 

c) Clinical evidence generation: Create clinical 
evidence through pilot implementations that show improved 
measurement reliability and workflow efficiency, following 
the evidence development strategies used in successful 

medical AI fields. 

B. Technology Selection Framework Based on Medical AI 

Success Patterns 

Healthcare institutions considering automated system 
implementation can use our analysis for evidence-based 
guidance drawn from successful medical AI patterns rather 
than theoretical performance data. 

1) Technology recommendation framework: Based on 

comprehensive review of 55 studies and comparison with 

successful medical AI fields, current evidence strongly favors 

hybrid enhancement approaches over complete automation 

systems for clinical use. 

2) Learning from successful implementation patterns: 

Successful medical AI fields achieve clinical value through 

enhancement strategies that improve human capabilities while 

keeping human oversight and decision control. Scoliosis AI 

should follow similar approaches, emphasizing measurement 

quality improvement, error detection, and workflow support 

instead of pursuing complete measurement automation. 

3) Clinical decision support framework: Healthcare 

institutions should consider enhancement systems for high-

volume screening programs needing standardized procedures, 

quality assurance applications for manual measurement 

validation, educational environments for training 

standardization, and research studies requiring measurement 

standardization and error reduction. 

4) Implementation readiness assessment: Healthcare 

institutions should assess implementation readiness using 

criteria from successful medical AI deployments. Key 

evaluation areas include technical infrastructure capable of 

supporting hybrid workflows, staff training capacity for new 

enhancement tools, quality assurance procedures adapted for 

human-AI collaboration, and organizational commitment to 

workflow adaptation and continuous improvement. 

C. Policy and Regulatory Development Based on Medical AI 

Success 

Policy and regulatory development for measurement 
enhancement system should take lessons from successful 
medical AI but still adapt to its own technical requirement. 

1) Regulatory framework development: Diagnostic AI 

validation method don’t fully work here. New framework 

should cover training data diversity, algorithm transparency, 

and performance monitoring. Post-market evaluation must be 

continuous. Liability keep human in decision loop but also 

address system error. Benchmarks set minimum measurable 

accuracy improvement. 

2) Funding strategy realignment: Funding should shift to 

implementation-focused research that show clinical value. 

Priority include: (i) clinical integration studies from AI 

success stories, (ii) validation methods for real-world 

prediction, (iii) hybrid human–AI systems that combine skill 

and enhancement, and (iv) cross-disciplinary collaboration 

connecting technical, clinical, and implementation expertise . 

3) Technology integration: Integration should follow 

proven models: multimodal imaging (X-ray, MRI, surface 

topography) from radiology AI, explainable decision support 

from pathology AI, and federated learning for multi-site 

training with privacy protection. 

4) Economic model development: Economic structure 

should follow medical AI demonstration: ROI based on 

workflow improvement and error reduction, cost-effectiveness 

beyond setup, and reimbursement aligned with medical AI 

reimbursement examples. 

D. Summary 

This analysis, drawn from successful medical AI, points a 
way forward. By shifting to enhancement, aligning funding, 
and following proven patterns, scoliosis AI adoption can show 
improved progress. The recommendation is simple but 
important: success will come when technology helps the 
human expert, not when it tries to replace. 
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VIII. CONCLUSIONS 

It was found from 55 studies that a paradox appears. 
Performance has kept improving for 70 years, but clinical 
usage keeps going down. Semi-automated method performs 
better than fully automated, with accuracy 1.8° ± 0.4° MAD 
against 4.2° ± 1.8° MAE. This suggests the opposite of what 
medical AI normally shows, where more complexity usually 
performs better. Moreover, moving from lab to clinic cause 5–
10% accuracy drop, and clinical use still below 5%. This 
shows that technical gain does not equal real usage. The main 
cause is task-technology mismatch. Cobb angles need 
geometric accuracy, but AI chase full automation instead of 
enhancement. Other fields already show improved progress 
with enhancement, but scoliosis AI push too far. This reduces 
trust, reduces confidence, and reduces adoption. Thus, it can be 
concluded that success needs shift to enhancement. Hybrid 
system with mathematical accuracy plus AI support perform 
better and give clearer value. Institutions should focus on 
measurement quality, error detection, and workflow support 
with human control. The message is simple but repeat again: 
success will not come from replacing the human, it will come 
from helping the human. In terms of practical steps, 
implementation needs coordinated action across three phases. 
The immediate priority is to create hybrid enhancement system 
and to establish validation procedures that include real-world 
workflow integration. The medium-term goal is to set 
regulatory route for measurement enhancement system and to 
provide cost-effectiveness evidence through pilot 
implementation. The long-term aim is to integrate multi-modal 
approach and comprehensive spine analysis capability. Finally, 
success depends on testing system inside actual clinical 
workflow rather than only laboratory setting, following the 
validation pattern already established in successful medical AI. 
This analysis has several important limitations that should be 
recognized. The focus on English-language publications may 
have missed relevant international developments, particularly 
given the global nature of scoliosis research. Publication bias 
may favor positive results, potentially overestimating 
automated system performance compared to clinical reality. 
The rapid pace of technology change means some recent 
advances may not yet show their clinical implementation 
potential, while the 77-year study timeframe may hide recent 
improvement trends. Additionally, limited availability of real-
world clinical validation data restricted the scope of 
implementation analysis, and the binary view of 
implementation success versus failure may oversimplify the 
complex factors affecting clinical adoption. The field must 
abandon complete automation approaches in favor of 
augmentation strategies that have proven successful across 
medical AI domains. Researchers should focus on hybrid 
system development, clinicians should advocate for workflow-
integrated solutions, industry should invest in augmentation 
rather than replacement technologies, and regulators should 
develop appropriate frameworks for measurement 
enhancement systems. Only through coordinated stakeholder 
efforts that incorporate lessons from successful medical AI 
implementations while addressing the unique challenges of 
geometric measurement tasks can the field overcome this 
translation crisis and deliver meaningful benefits for patient 
care. 
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