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Abstract—This paper presents RobotTrust, an adaptive trust 

framework for fault-tolerant coordination in multi-drone systems 

for precision agriculture. The study aims to improve mission 

reliability under sensor/actuator faults and uncertain 

interactions by combining a structured fault taxonomy 

(behavioral, actuator, sensor) with team-based recovery and an 

adaptive trust model that integrates direct experience with 

filtered indirect recommendations. We formalize trust 

computation (direct, recommended, and global trust) and 

introduce safeguards such as a minimum-trust threshold and 

weighted fusion to curb misinformation propagation. The 

framework is evaluated in simulation using the AgriFleet drone 

team and is compared against the TReconf baseline across three 

metrics: (i) time-step efficiency for task completion, (ii) RMSD 

between predicted and true trustworthiness, and (iii) interaction 

quality (preference for reliable peers). Results show 20–40% 

faster task completion, lower RMSD (more accurate trust 

estimation), and selective interaction patterns that prioritize 

dependable agents while limiting exposure to unreliable ones. 

These findings indicate that RobotTrust enhances responsiveness 

and robustness in decentralized, fault-prone environments 

typical of agricultural deployments. The work contributes a 

practical, generalizable approach to trust-aware coordination in 

multi-robot systems and outlines directions for context-aware 

weighting, explainable trust signals, heterogeneous teams, 

adversarial robustness, and large-scale field trials. 
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I. INTRODUCTION 

Multi-Robot Systems (MRS) are new approaches in 
automation and enable collaborative tasks in complex and 
dynamic environments, such as precision agriculture [1-3], 
search and rescue missions [4-6], and industrial logistics [7-8]. 
These systems provide significant scalability, redundancy and 
adaptation advantages using distributed intelligence, qualities 
that are essential to real-world applications. However, its 
decentralized nature poses crucial challenges in fault 
management and trust-based coordination, where unrecognized 
failures or poor communication can lead to systemic 
inefficiencies or total failures of missions [9-11]. The latest 
progress in MRS focuses on improving fault tolerance and 
cooperative decision-making. Traditional fault detection 

methods, such as rule-based diagnostics [12] and anomaly 
detection based on machine learning [13], are widely accepted. 
These approaches are effective in controlled environments, but 
these solutions often lack the sensitivity required for dynamic 
environments where robot interactions are intrinsically 
uncertain. At the same time, the trust model in MRS has 
evolved significantly, and frameworks such as TReconf [14] 
provide mechanisms for reliability assessment. However, these 
models demonstrated limitations in dealing with real-time 
adaptation and reducing errors caused by misinformation, 
especially in systems affected by sensor noise or partial 
observation [15]. The recent work of Li et al. [16] has made 
progress in the integration of trust and fault recovery, but there 
is still a lack of a comprehensive framework for combining 
dynamic fault classification, team-based recovery and adaptive 
trust calculation. 

While existing models like TReconf offer basic trust-based 
coordination, they fall short in handling real-time fault 
adaptation and mitigating misinformation spread, especially 
under sensor noise and partial observability. This gap 
underscores the need for a more robust framework that 
integrates dynamic fault classification with adaptive trust 
evaluation—motivating the development of RobotTrust. This 
paper presents an integrated framework for fault-resistance 
MRS, addressing these challenges. Our approach begins with a 
systematic fault classification system that classifies faults into 
behavioral, actuator and sensor errors, enabling targeted 
diagnosis and recovery. Based on this, we have developed a 
decentralized fault handling platform, which uses dynamic task 
assignment, shared knowledge and self-diagnosis mechanisms 
to maintain the continuity of the mission. The core innovation 
of the framework is the RobotTrust model, an adaptive trust 
evaluation system that quantifies robot reliability through 
direct interactions, transitional recommendations and global 
trust aggregation, significantly improving resilience to sensor 
failures and coordination failures. We validate our framework 
by extensive testing with AgriFleet, a multi-drone platform 
designed for precision agricultural applications. Our 
comparative analysis compares RobotTrust with the 
established TReconf model [14] in scenarios that simulate the 
probability of defects and produces three key results. First, our 
approach has shown that there are approximately 20% 
improvements in the efficiency of the time-step for the 
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completion of tasks. Secondly, it reaches greater accuracy of 
trust, as shown by lower values of root average square 
deviation than TReconf. Thirdly, the system effectively 
reduces unnecessary interactions with unreliable agents and 
optimizes the overall performance of the system. 

Our work has made four important contributions in this 
field. We introduced a structured fault taxonomy for MRS, 
supported by real-world case studies of the AgriFleet platform. 
We have developed a new team-based fault recovery 
mechanism to ensure robust operation in dynamic 
environments. The RobotTrust model represents a significant 
advance over existing trust computation frameworks. Finally, 
our extensive empirical validation shows that the system is 
more resistant to errors under fault-prone operation conditions. 

This paper is organized as follows. Section II provides a 
detailed examination of fault classification and handling 
strategies. Section III introduces the computational framework 
underlying RobotTrust. Section IV presents our comparative 
simulation results and performance analysis. By integrating 
fault resilience with trust-aware coordination, this work 
advances the state of MRS robustness, offering practical 
solutions that address real-world deployment challenges. 

II. COLLABORATIVE FAULT MANAGEMENT FRAMEWORK 

FOR MULTI-ROBOT SYSTEMS 

Exploration of multi-robot systems (MRSs) requires 
proactive fault management, especially by early identification 
and classification of possible system failures. Establishing clear 
fault categories provides the basis for developing a structured 
response strategy. In this context, we present a collaborative 
fault management framework that integrates team-based 
coordination to detect, isolate and mitigate faults between 
multiple robots. This strategy emphasizes the system's 
collective capability and promotes resilience and maintenance 
of functionality even in the case of failure of individual 
components.  

A. Fault Classification 

To enable systematic fault detection and processing, we 
classify faults that affect intelligent robot performance in MRS 
environments into three main areas: behavioral, actuator and 
sensor faults. 

1) Behavioral deficiencies: Behavioral faults refer to the 

decision-making and planning processes of robots: 

a) Action deficiencies: occur when a robot does not 

perform a commanded action correctly or completely. 

b) Plan fault: a failure of a planned action plan caused 

by a robot not achieving the intended goal. 

c) Unexpected conditions: When robots encounter 
unpredicted environmental conditions and tasks outside their 

operational design, triggers are activated. 

2) Actuator errors: These errors affect the robot's ability 

to interact physically with the environment: 

a) Blocked actuator errors: actuators cannot initiate the 

necessary movements or operations despite receiving a 

command. 

b) Blocking fault: Even in the absence of a control 

signal, the actuator remains inactive or active. 

3) Sensor errors: These involve errors in the acquisition 

of sensory data, affecting situational consciousness: 

a) Sensor bias errors: sensors provide constant 

dispersion or misreading, which affects perception and 

decision-making. 

b) Sensor freezing fault: The sensor becomes 

unresponsive, ceasing to update or transmit data. 

B. Fault Handling Using a Team Approach 

In collaborative MRS, effective fault management and 
dynamic task coordination are essential, especially when 
individual agents encounter operational failures during 
collective missions. Consider the scenario in which robot R1 
suffers a failure (F1) while performing a collective task. The 
fault management process involves several key participants: a 
defective robot (R1), other participating robots (such as R2, 
R3), and a central coordinate entity called a fault manager. 
Two main system components support this architecture: 

• Shared knowledge: A repository containing the team's 
current understanding of tasks objectives and 
allocations. 

• The Fault Registry is a structured record of known 
faults, related robots, and current resolution status. 

Communication between system components is promoted 
by structured messages, including report Fault, query 
Capabilities, updateTaskPlan, performTask, diagnoseFault, 
reportStatus, and updateFaultRegistry. 

III. MULTI-ROBOT SYSTEMS TRUST MODELING 

This section presents a new trust assessment framework, 
RobotTrust, and compares it to the existing TReconf trust 
model described in study [14]. The robotic trust methodology 
is described in detail, focusing on its application to fault 
detection and trust-based decision making in multi-robot 
systems (MRSs). The RobotTrust model is an effective 
mechanism for assessing the trustworthiness of robots in a 
multi-agent environment. It facilitates the monitoring and 
detection of faulty robots by analyzing historical interaction 
data. The model computes multiple trust indicators, including 
direct trust, recommended trust, and global trust values, and 
provides a multilevel understanding of the reliability between 
robots. Trust (i) represents the global trust value assigned to 
robot i, and Trust (i, j) represents the local trust value assigned 
to robot j by robot i in direct or indirect interactions. The trust 
model distinguishes between robots that have previously 
interacted and those that have not, structuring trust 
computation accordingly. 

A. Types of Trust Metrics 

1) Direct trust value: The direct trust value quantifies the 

relationship between two robots engaged in observable 

interactions. Using the difference between the number of 

satisfactory and unsatisfactory interactions  as shown in Eq. 

(1). 

Sa,b = sat(a,b) - unsat (a,b)        (1) 
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This defines the direct trust between robots (a) and (b), as 
defined in Eq. (2). 

trust(a,b) = f(Sa,b)   (2) 

and f represents a transformation function that normalizes 
the satisfaction score. 

2) Recommended trust value: If there is no direct 

interaction between two robots (e.g. (a) and (d)), the 

recommended trust value is derived using transition 

relationships defined in Eq. (3). 

  ( , ) ( , ) ( , )   (3)Trust a d Trust a k Trust k d=      (3) 

DirectPeers Dirwhere ectPee( r) (s )k a d   

This method uses mutual neighbors to estimate the trust 
between agents indirectly connected. 

3) Global trust value: Global trust value represents the 

trustworthiness of a robot in the network, aggregating direct 

and recommended trust metrics of all other robots, as shown 

in Eq. (4). 
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where: 

• Ti
k+1: global trust of a robot i at the k+1 iteration,  

• Trust(j,i): local trust of a robot from j to i,  

• n: total number of robots in the network.  

Firstly, the global trust values of all robots are distributed 
uniformly, i.e. for N robot networks. Algorithm 1 calculates the 
adaptive trust between robots in two main phases: the direct 
trust calculation of immediate peers and the indirect trust 
propagation of non-direct peers. Firstly, all trust values are 
initialized as neutral values (0.5), which represent uncertainty 
regarding unknown peers. For each direct peer (the robot j with 
which robot i has directly interacted), the algorithm calculates a 
trust score based on the historical interaction. It counts a 
satisfactory (pos) and an unsatisfactory (neg) interaction, and 
then combines these interactions with a parameter α (set to 
0.7). Trust value mixes the satisfaction ratio (pos/total 
interaction) and the penalty factor (1/(1+neg)), which is 
degraded with negative experiences. The result is limited 
between 0 and 1 to ensure a valid trust value. If robot R1 (trust 
= 0.9) shares accurate data, its trust score increases; if robot R2 
(trust = 0.6) reports false data, its score decays. 

In the case of the indirect peers (robot j with which robot i 
has not directly interacted), the algorithm calculates trust 
through intermediary robots connecting i and j. It only 
considers intermediaries that meet the minimum trust threshold 
(min_trust = 0.1) to prevent unreliable spread. The indirect 
trust is calculated as a weighted average of the path of trust, 
and the contribution of each path depends on the relationship 
between trust (i,k) and trust (k,j). Parameter β (0.3) controls the 
amount of indirect trust that updates the existing trust value. If 
there is no valid path, trust remains at initial neutral value. The 

algorithm generates a trust value of 0 (complete distrust) to 1 
(complete trust) and combines direct experience with carefully 
filtered indirect information to form a complete assessment of 
each peer's trust. 

Algorithm 1: ComputeAdaptiveTrust 

Output: 

Trust(i,j): trust value assigned by robot i to each robot j 

Parameters: 

α ← 0.7   // weight for direct experience 

β ← 0.3   // weight for indirect trust propagation 

min_trust ← 0.1   // minimum trust threshold for propagation 

neutral_trust ← 0.5   // default neutral trust value 

 

Initialize Trust(i,j) ← neutral_trust for all robot j ∈ AllRobots 

// First calculate direct trust 

for each robot j ∈ DirectPeers(i) do 

     pos ← countSatisfactory(i, j) 

     neg ← countUnsatisfactory(i, j) 

     total ← pos + neg 

      if total > 0 then 

           satisfaction_ratio ← pos / total 

           penalty_factor ← 1 / (1 + neg)   

           Trust(i,j) ←  α  * satisfaction_ratio + (1 - α ) *              

penalty_factor 

           Trust(i,j) ← max(0, min(1, Trust(i,j))) 

     end if 

end for 

 

// Calculate indirect trust for non-direct peers 

for each robot j ∈ IndirectPeers(i) \ DirectPeers(i) do 

     candidates ← findBridgeRobots(i, j) 

     weighted_trust_sum ← 0 

     total_weights ← 0 

     for each robot k ∈ candidates do 

          // Only with sufficient trust 

          if Trust(i,k) ≥ min_trust and Trust(k,j) ≥ min_trust  

               weight ← Trust(i,k) * Trust(k,j) 

               weighted_trust_sum ←  weighted_trust_sum +                      

weight  

               total_weights ← total_weights + weight 

          end if 

     end for   

     if total_weights > 0 then 

          indirect_trust ← weighted_trust_sum / total_weights 

          // Combine with existing trust if any  

          Trust(i,j) ← β * indirect_trust + (1 - β) * Trust(i,j) 

     end if 

   end for 

IV. SIMULATION SCENARIO AND COMPARATIVE TRUST 

EVALUATION 

A. AgriFleet: Trust-Based Fault-Tolerant Drone 

Coordination 

The AgriFleet system consists of a team of specially 
equipped autonomous air drones (D1, D2, D3, and D4), each 
equipped with specific capabilities required for the precise 
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surveillance of agriculture and field data collection. D1 
performs high-resolution aerial imaging, D2 achieves soil 
moisture detection, D3 makes multispectral crop health 
analysis, and D4 performs environmental mapping and terrain 
classification. Each drone operates independently, but its 
operational interdependence is essential for the success of 
complex agricultural tasks. During the execution of missions, 
drones constantly communicate, and delegate tasks based on 
environmental data in real time. For example, D1 can detect 
crop stress signs by image and transmit this information to D3, 
which then performs detailed spectral analysis of the affected 
area. Similarly, D3 can identify areas of suspected soil dilution 
and prompt D2 to carry out targeted moisture assessment. This 
type of cooperation enables better coverage, avoids redundancy 
and increases the overall efficiency of the air monitoring 
process. To ensure consistency of coordination and reliable 
task execution, the system incorporates dynamic trust models, 
based on the accuracy and utility of shared data, where the trust 
value of drones evolves. The level of trust is quantified on a 
continuous scale of [0.0, 1.0] and 0.5 represents a neutral 
baseline. Accurate assessments and successful completion of 
tasks lead to higher confidence, whereas false reports or 
failures lead to a decrease in trustworthiness. Despite 
structured cooperation, drones may suffer from sensor failures, 
each with unique probability of occurrence. These deficiencies 
are unknown to drones themselves but affect how their output 
is trusted by peers. The probability of sensor failure and the 
corresponding initial trust score are presented in Table I. 

TABLE I.  DRONE SENSOR RELIABILITY AND TRUSTWORTHINESS 

Drone Function 
Sensor 

malfunction 

Prob 

Trust 

D1 High-resolution Imaging 0.1 0.9 

D2 Soil Moisture Detection 0.4 0.6 

D3 Spectral Crop Health Assessment 0 1 

D4 Terrain Mapping and Profiling 0.3 0.7 

We evaluated the efficiency of RobotTrust models 
compared to previously developed TReconf model [14]. The 
objective is to determine how each trust framework adapts to 
an environment characterized by interdependent behaviour and 
probabilistic misinformation due to sensor errors. In 85 
interaction rounds, drones act as both trustors and trustees, 
engaging in communication and task delegation, while 
considering the probability of sensor-induced false 
information. The formation of trust is influenced by the 
interaction between trust scores, feedback on success and 
interaction results in this time window. 

B. Comparative Evaluation of RobotTrust and TReconf 

Models 

The performance of the RobotTrust and TReconf models is 
evaluated based on three basic parameters: 

• Time-step analysis: measures the system's response and 
task completion speed under different trust conditions. 

• Root Mean Square Deviation (RMSD): Evaluate the 
coherence and convergence of trust assessments 
throughout the simulation timeline. 

• Interaction analysis: investigating the quality and 
frequency of interactions between robots, especially 
under uncertainties and partial trust conditions. 

This comparative analysis aims to determine which models 
better capture trust dynamics and improve system reliability in 
collaborative, fault-prone and multi-robot environments. 

1) Time step analysis for trust-based aerial coordination: 

Fig. 1 shows a clear performance advantage over the 

TReconfig baseline in various simulation iterations. As shown 

by time-step analysis, RobotTrust consistently requires fewer 

time-steps to complete coordination tasks, indicating better 

system reaction and efficient task execution under the 

proposed trust-based framework. The data reveal several 

important trends. First, the performance gap between 

RobotTrust and TReconfig is most prominent during mid-

range iterations (40-60 simulation cycles), and the trust model 

seems to maximize direct experience evaluation and indirect 

trust propagation. This suggests that adaptive weighting 

mechanisms (α = 0.7 for direct trust, β = 0.3 for indirect trust) 

filter unreliable information effectively under typical 

operational conditions. Secondly, although the performance of 

the two systems has increased considerably in higher iteration 

(approximately 80), RobotTrust maintains an important 

advantage in the testing range. The relative stability of the 

RobotTrust time step requirement shows that its fault-tolerant 

design successfully mitigates coordination failures that 

increasingly impact baseline systems as the complexity of 

operations increases. The reduced time step of RobotTrust can 

bring tangible operational benefits to agricultural applications. 

More short-term work is required, which means faster 

response to field conditions, more efficient allocation of 

resources, and ultimately higher completion rates of critical 

operations such as crop monitoring or precision spraying. 

These results validate two key characteristics of RobotTrust 

design: (1) Minimum Trust Limit (min_trust = 0.1) effectively 

prevents the spread of errors by unreliable intermediaries; and 

(2) a mixed trust measurement combining satisfaction rates 

and penalty factors maintains accuracy despite changes in 

environmental conditions. 

 
Fig. 1. Comparative analysis of time step efficiency: robottrust vs. treconf in 

the presence of probabilistic sensor malfunctions. 

Performance advantages are particularly present in the most 
common operational scenario, while modest convergence in 
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extreme iterations suggests areas for potential improvements in 
the handling of edge cases. Experimental evidence supports the 
adoption of trust-based coordination in the agricultural drone 
fleet, where unpredictable field conditions and the reliability of 
equipment require a robust and responsive decision-making 
process. 

2) RMSD Evaluation for trustworthiness estimation: The 

root mean square deviation (RMSD) measurement is used in 

this study to quantitatively measure the accuracy with which a 

trust model estimates the true trustworthiness of individual 

drones in the AgriFleet system. RMSD provides statistical 

assessments of differences between predictability values 

generated by trust models and real trust levels derived from 

established drone attributes such as sensor reliability, mission 

coherence, and functional performance (as described below). 

Lower RMSD values indicate a higher degree of alignment 

between predicted and actual trustworthiness, indicating more 

accurate and reliable trust models. RMSD is particularly 

useful in identifying cases of overestimation or 

underestimation, which may have adverse effects on the 

coordination of multi-drones, the allocation of resources and 

the robustness of operations of agricultural missions. For each 

drone in AgriFleet, the actual value of trust is set as the 

ground truth reference based on predefined operational 

parameters. The predicted trust score is derived from the 

results of the RobotTrust and TReconf models after 

simulations. The RMSD is computed as shown in Eq. (5). 

2

pred, actual,

1

1
( ) (5)

n

i i

i

RMSD T T
n =

= −
                (5) 

Where: 

Tpred,i: Predicted trust value of drone i at the end of 
simulation, 

Tactual,i : Actual trust value of drone i based on initial drone 
specifications, 

n: Total number of drones (in this case, 4). 

Fig. 2 shows a comparison analysis of the coordination 
performance of the RobotTrust system with TReconf baseline, 
measured with the root mean square deviation (RMSD) value 
between different combinations of drones (T1,2 to T3,4). 
RMSD measurement serves as a quantitative indicator of 
coordination accuracy, and the lowest value represents more 
precise and stable collaboration behaviors between drone pairs. 
The results show that RobotTrust consistently achieves better 
coordination performance than TReconf in all tested drone 
pairings. The RMSD values show particularly significant 
improvements in certain pair combinations (especially T1,3 
and T2,4), suggesting that a trust-based approach can 
effectively address challenging coordination scenarios in which 
conventional methods fail. This increased performance is based 
on RobotTrust's adaptive trust mechanism, which dynamically 
adjusts interaction weights based on real-time reliability 
assessments. The variation in RMSD reductions in different 
drone pairs highlights the effectiveness of trust models based 

on context. Some pairings have seen dramatic improvements, 
while others have seen more modest but still significant gains. 
This pattern suggests that, although the trust framework 
provides universal benefits, its influence is more significant in 
situations that require complex interdependent procedures or 
those that are vulnerable to communication failures. These 
findings confirm the robustness of the Decentralized 
Coordination Approach of RobotTrust, especially for 
agricultural applications, where environmental factors and 
equipment reliability may vary significantly. The continuous 
reduction in RMSD in all tested pairs confirms that the system 
maintains its coordination accuracy advantage, regardless of 
which specific drones are involved, and proves the reliability of 
the trust framework. The results highlight the practical value of 
incorporating adaptive trust indicators into multi-drone systems 
to improve operation. 

 
Fig. 2. Root Mean Square Deviation (RMSD) of trust estimation. 

3) Interaction analysis: The effectiveness of trust 

development in multi-drone agricultural systems such as 

AgriFleet depends primarily on the frequency and quality of 

interaction between the drones. In this context, interaction 

analysis evaluates the effectiveness of each trust model 

(RobotTrust and TReconf) in identifying and prioritizing 

reliable agents to unreliable agents in field operations. 

An optimal trust framework must enable the system to: 

• Maximize the value of interactions with reliable drones 
that are continuously reliable; 

• Minimize the dependence on drones that are vulnerable 
to defects or misinformation; 

• Ensure mission progress through reliable 
communication links for accurate and timely decision-
making. 

Reliable drones are identified through consistent, accurate 
and mission-enhancing contributions in various interactions. 
The trust model that gives these drones a clear priority helps 
reduce flight redundancy, avoid conflicting data collection, and 
simplify the overall performance of missions. In the AgriFleet 
system, the D1 and D3 drones showed higher interaction 
frequencies than D2 and D4. This distribution is closely linked 
to the lower probability of sensor malfunction, making it a 
more reliable data source for collaborative air missions. 
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Fig. 3 shows the comparison of the thermal maps of the 
frequencies of interaction between drones under two models: 
TReconf and RobotTrust. Each subplot shows a 4x4 matrix 
that represents the number of times each drone interacts with 
each other, and the rows and columns represent drones D1 to 
D4. Because drones do not interact with each other, the 
diagonal entry is zero. 

In the TReconf model, interaction frequencies appear to be 
widely distributed and have relatively high and consistent 
values for all drone pairs. This indicates a more uniform or 
dispersed communication model, indicating that TReconf does 
not differentiate between reliable and unreliable agents in its 
trust decisions. For example, D1 interacts frequently with other 
users, including D4, and is unsuitable if D4 is untrustworthy. 
On the other hand, the RobotTrust model shows a more 
selective pattern of interaction. The strongest interactions are 
concentrated in specific pairs (D1 and D3) and show much 
higher values (e.g. 18 interactions). Interactions with D2 and 
D4 are less frequent across the board, indicating that 
RobotTrust is actively avoiding collaborations with drones that 
might exhibit unreliable behavior. This behavior reflects 
RobotTrust's intention to isolate unreliable agents and prioritize 
reliable communication channels. Overall, Fig. 3 effectively 
shows how trust-based decision-making strategies can shape 
multi-agent robotic communication patterns. 

 
Fig. 3. Heatmap of interaction frequencies among drones under sensor 

faults, comparing TReconf and RobotTrust models. 

C. Discussion 

This study shows that RobotTrust improves multi-drone 
coordination by reducing time-steps to task completion, 
aligning estimated trust more closely with ground truth (lower 
RMSD), and prioritizing interactions with reliable peers. These 
gains appear to stem from two design choices: (i) weighting 
direct experience more than indirect recommendations and (ii) 
filtering low-quality recommendations via a minimum-trust 
threshold. Practically, this combination limits the propagation 
of misinformation under sensor noise and helps maintain 
mission progress in fault-prone conditions typical of precision 
agriculture. 

There are, however, several alternative paths we could have 
taken. First, rather than a hand-crafted trust update, a learned 
model (e.g., graph neural networks or Bayesian filters) could 
infer trust dynamics from data, potentially capturing richer 
inter-robot dependencies at the cost of interpretability and data 
requirements. Second, instead of rule-based task reassignment, 
a planning layer based on reinforcement learning or POMDPs 
could map trust states to actions; this may improve adaptability 

but raises concerns about sample efficiency and safety 
guarantees. Third, our probabilistic fault model could be 
complemented by domain-randomized simulators or hardware-
in-the-loop experiments to narrow the sim-to-real gap. Finally, 
comparisons against consensus-based reputation or Byzantine-
resilient aggregation would help position RobotTrust among 
broader trust frameworks. 

We also acknowledge limitations and threats to validity. 
Communication latency, wind disturbances, GPS/IMU drift, 
and battery degradation were simplified, and fixed α/β weights 
may underperform under rapidly changing conditions. Our 
small-team evaluations (four drones) limit claims about 
scalability and heterogeneity (air/ground/IoT), and we 
considered stochastic faults rather than coordinated 
adversaries. 

V. CONCLUSION 

The paper introduced an adaptive trust model to address the 
fault tolerance coordination of agricultural multidrone systems. 
The proposed approach enables responsive decision-making 
even when the individual agent fails or provides unreliable data 
by dynamically balancing direct experience and indirect trust 
recommendations through a weighted mechanism. By 
implementing minimum trust threshold, the system eliminates 
non-trustworthy intermediaries and significantly reduces the 
spread of errors across the network. Across simulation studies 
with the AgriFleet team (D1–D4), RobotTrust reduced 
coordination time-steps by ~20–40% relative to TReconf, 
lowered RMSD in trust estimation (indicating closer alignment 
to true reliability), and prioritized interactions with reliable 
agents while limiting exposure to unreliable peers. Design 
elements such as a minimum trust threshold and weighted 
fusion (α for direct, β for indirect) were pivotal in filtering 
misinformation and sustaining mission progress under sensor 
faults. Collectively, these results demonstrate that adaptive, 
trust-aware coordination can improve responsiveness, 
reliability, and operational efficiency in fault-prone field 
conditions typical of agricultural deployments. By accelerating 
task completion, improving trust accuracy, and curbing 
counterproductive interactions, RobotTrust supports safer, 
more efficient flight operations (e.g., crop monitoring, targeted 
spraying), and offers a generalizable mechanism for 
decentralized fault management in other mission-critical, 
multi-robot settings. 

Future work will focus on making RobotTrust more 
adaptive, explainable, and field-ready: first, we will replace 
fixed trust weights with context-aware weighting that adapts to 
mission urgency, environmental uncertainty, and sensor health; 
second, we will add online fault-severity estimation and 
dynamic task reallocation to shorten recovery latency during 
actuator/sensor anomalies; third, we will introduce explainable 
trust signals so operators can audit why trust increased or 
decreased for a given agent; fourth, we will validate on 
heterogeneous teams (air/ground/IoT) and new domains 
beyond agriculture (e.g., disaster response, autonomous 
logistics) to assess transferability; fifth, we will harden the 
framework against adversarial misinformation and Byzantine 
behavior using reputation damping and consensus safeguards; 
and finally, we will run scalable field trials with larger fleets to 
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measure compute/communication overheads, energy usage, 
and mission-level KPIs under realistic fault conditions. 
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